Approximation Methods for Pricing Problems under the Nested Logit Model with Price Bounds

W. Zachary Rayfield
School of ORIE, Cornell University

Paat Rusmevichientong
Marshall School of Business, University of Southern California

Huseyin Topaloglu
School of ORIE, Cornell University
Nested Logit Model

Store

Competitor Space

• n products, $N = \{1, \ldots, n\}$
Nested Logit Model

- Store
 - Preference weight of product j: w_j

- Competitor Space
 - n products, $N = \{1, \ldots, n\}$
 - Preference weight of product j: w_j
Nested Logit Model

- **Store**
 - w_1
 - w_j
 - w_n

- **Competitor Space**
 - $w_0 = 1$

- n products, $N = \{1, \ldots, n\}$
- Preference weight of product j: w_j
- Total preference weight of competitor space normalized to 1
Decision: Prices

• price of product j:

\[w_0 = 1 \]
Decision: Prices

- price of product j: p_j

\[w_0 = 1 \]
Decision: Prices

• Price of product j: p_j

\[w_j = e^{\alpha_j - \beta_j p_j} \]
Decision: Prices

• price of product j: \(p_j \)

\[
w_j = e^{\alpha_j - \beta_j p_j}
\]

• prices are constrained: \(l_j \leq p_j \leq u_j \)
• price of product j: p_j

$$p_j = \frac{\alpha_j}{\beta_j} - \frac{1}{\beta_j} \log w_j$$

• prices are constrained: $l_j \leq p_j \leq u_j$
Decision: Prices

- **price of product j**: p_j

 $$p_j = \kappa_j - \eta_j \log w_j$$

- **prices are constrained**: $l_j \leq p_j \leq u_j$
Decision: Prices

- **Price of product j:** p_j

 $p_j = \kappa_j - \eta_j \log w_j$

- **Prices are constrained:** $L_j \leq w_j \leq U_j$
Nested Logit Model

• If the customer buys from our firm, product j is purchased with probability

$$\frac{w_j}{\sum_{k \in N} w_k}$$
Nested Logit Model

\[w_0 = 1 \]

\[\frac{w_j}{\sum_{k \in N} w_k} \]
Nested Logit Model

Store

Competitor Space

\[w_0 = 1 \]

\[
\frac{w_j}{\sum_{k \in N} w_k}
\]
Nested Logit Model

- Expected revenue obtained given that the customer buys from our firm

\[
R(w) = \sum_{j \in N} (\kappa_j - \eta_j \log w_j) \frac{w_j}{\sum_{k \in N} w_k}
\]

\[
w_0 = 1
\]
Nested Logit Model

Store

\[\gamma \in [0, 1] \]

\[w_1, w_j, w_n \]

Competitor Space

\[w_0 = 1 \]
Nested Logit Model

Customer buys from our firm with probability

\[
Q(w) = \frac{(\sum_{j \in N} w_j)^\gamma}{1 + (\sum_{j \in N} w_j)^\gamma}
\]

\[
\gamma \in [0, 1]
\]

Store

\[
\begin{align*}
\gamma & \in [0, 1] \\
\sum_{j \in N} w_j & = 1 \\
\end{align*}
\]

Competitor Space

\[
\sum_{j \in N} w_j = 1
\]

\[
\begin{align*}
w_0 & = 1 \\
\end{align*}
\]
Problem Statement

• Expected revenue: $\Pi(w) = Q(w)R(w)$

Store

\[w_1, \gamma \in [0, 1], w_j, w_n \]

Competitor Space

\[w_0 = 1 \]
Problem Statement

- **Store**

 \(w_1 \) \(\gamma \in [0, 1] \) \(w_j \) \(w_n \)

- **Competitor Space**

 \(w_0 = 1 \)

- **Expected revenue:**

 \[
 \Pi(w) = Q(w)R(w)
 \]

- **Maximization:**

 \[
 Z^* = \max_{L \leq w \leq U} \Pi(w)
 \]
Contributions

• Prior work: Li and Huh (2011), Gallego and Wang (2011) - unconstrained pricing under NL model

Our Approach:
Contributions

• Prior work: Li and Huh (2011), Gallego and Wang (2011) - unconstrained pricing under NL model

Our Approach:

• Handles arbitrary price sensitivity values
Contributions

Prior work: Li and Huh (2011), Gallego and Wang (2011) - unconstrained pricing under NL model

Our Approach:

• Handles arbitrary price sensitivity values

• Allows for the inclusion of price bounds
Contributions

• Prior work: Li and Huh (2011), Gallego and Wang (2011) - unconstrained pricing under NL model

Our Approach:

• Handles arbitrary price sensitivity values

• Allows for the inclusion of price bounds

• Provides a performance guarantee not found in existing literature
Transformation of Objective

\[Z^* \geq \Pi(w) = Q(w)R(w) \]

\[(1 + \left(\sum_{j \in N} w_j \right)^\gamma)Z^* \geq \left(\sum_{j \in N} w_j \right)^\gamma \frac{\sum_{j \in N} (\kappa_j - \eta_j \log w_j)w_j}{\sum_{j \in N} w_j} \]

\[\forall L \leq w \leq U \]
Transformation of Objective

\[Z^* \geq \left(\sum_{j \in N} w_j \right)^\gamma \frac{\sum_{j \in N}(\kappa_j - \eta_j \log w_j)w_j}{1 + \left(\sum_{j \in N} w_j \right)^\gamma \sum_{j \in N} w_j} \quad \forall L \leq w \leq U \]

\[(1 + \left(\sum_{j \in N} w_j \right)^\gamma) Z^* \geq \left(\sum_{j \in N} w_j \right)^\gamma \frac{\sum_{j \in N}(\kappa_j - \eta_j \log w_j)w_j}{1 + \left(\sum_{j \in N} w_j \right)^\gamma \sum_{j \in N} w_j} \quad \forall L \leq w \leq U \]
Transformation of Objective

\[Z^* \geq \frac{\left(\sum_{j \in N} w_j \right)^\gamma}{1 + \left(\sum_{j \in N} w_j \right)^\gamma} \cdot \frac{\sum_{j \in N} (\kappa_j - \eta_j \log w_j) w_j}{\sum_{j \in N} w_j} \quad \forall L \leq w \leq U \]
Transformation of Objective

\[
Z^* \geq \frac{\left(\sum_{j \in N} w_j \right)^\gamma}{1 + \left(\sum_{j \in N} w_j \right)^\gamma} \frac{\sum_{j \in N} (\kappa_j - \eta_j \log w_j) w_j}{\sum_{j \in N} w_j} \sum_{j \in N} w_j \quad \forall L \leq w \leq U
\]

\[
\left(\sum_{j \in N} w_j \right)^\gamma \left(\frac{\sum_{j \in N} (\kappa_j - \eta_j \log w_j) w_j}{\sum_{j \in N} w_j} - Z^* \right) \quad \forall L \leq w \leq U
\]
Transformation of Objective

\[Z^* \geq \frac{(\sum_{j \in N} w_j)^{\gamma}}{1 + (\sum_{j \in N} w_j)^{\gamma}} \frac{\sum_{j \in N} (\kappa_j - \eta_j \log w_j)w_j}{\sum_{j \in N} w_j} \forall L \leq w \leq U \]

\[Z^* \geq (\sum_{j \in N} w_j)^{\gamma} \left(\frac{\sum_{j \in N} (\kappa_j - \eta_j \log w_j)w_j}{\sum_{j \in N} w_j} - Z^* \right) \forall L \leq w \leq U \]
Transformation of Objective

\[Z^* \geq \frac{(\sum_{j \in N} w_j)^\gamma}{1 + (\sum_{j \in N} w_j)^\gamma} \sum_{j \in N} (\kappa_j - \eta_j \log w_j)w_j \sum_{j \in N} w_j \quad \forall L \leq w \leq U \]

\[Z^* \geq (\sum_{j \in N} w_j)^\gamma \left(\frac{\sum_{j \in N} (\kappa_j - \eta_j \log w_j)w_j}{\sum_{j \in N} w_j} - Z^* \right) \quad \forall L \leq w \leq U \]

\[Z^* = \]
Transformation of Objective

\[Z^* \geq \frac{(\sum_{j \in N} w_j)^{\gamma}}{1 + (\sum_{j \in N} w_j)^{\gamma}} \frac{\sum_{j \in N} (\kappa_j - \eta_j \log w_j)w_j}{\sum_{j \in N} w_j} \quad \forall L \leq w \leq U \]

\[Z^* \geq \left(\sum_{j \in N} w_j \right)^{\gamma} \left(\frac{\sum_{j \in N} (\kappa_j - \eta_j \log w_j)w_j}{\sum_{j \in N} w_j} - Z^* \right) \quad \forall L \leq w \leq U \]

\[Z^* = \max_{L \leq w \leq U} \left\{ \left(\sum_{j \in N} w_j \right)^{\gamma} \left(\frac{\sum_{j \in N} (\kappa_j - \eta_j \log w_j)w_j}{\sum_{j \in N} w_j} - Z^* \right) \right\} \]
Transformation of Objective

\[Z^* \geq \frac{\left(\sum_{j \in N} w_j \right)^\gamma}{1 + \left(\sum_{j \in N} w_j \right)^\gamma} \frac{\sum_{j \in N} (\kappa_j - \eta_j \log w_j) w_j}{\sum_{j \in N} w_j} \quad \forall L \leq w \leq U \]

\[Z^* \geq \left(\sum_{j \in N} w_j \right)^\gamma \left(\frac{\sum_{j \in N} (\kappa_j - \eta_j \log w_j) w_j}{\sum_{j \in N} w_j} - Z^* \right) \quad \forall L \leq w \leq U \]

\[Z^* = \max_{L \leq w \leq U} \left\{ \left(\sum_{j \in N} w_j \right)^\gamma \left(\frac{\sum_{j \in N} (\kappa_j - \eta_j \log w_j) w_j}{\sum_{j \in N} w_j} - Z^* \right) \right\} \]
Transformation of Objective

\[Z^* \geq \frac{(\sum_{j \in N} w_j)^\gamma}{1 + (\sum_{j \in N} w_j)^\gamma} \frac{\sum_{j \in N} (\kappa_j - \eta_j \log w_j)w_j}{\sum_{j \in N} w_j} \quad \forall L \leq w \leq U \]

\[Z^* \geq \left(\sum_{j \in N} w_j \right)^\gamma \left(\frac{\sum_{j \in N} (\kappa_j - \eta_j \log w_j)w_j}{\sum_{j \in N} w_j} - Z^* \right) \quad \forall L \leq w \leq U \]

\[Z^* = \max_{L \leq w \leq U} \left\{ \left(\sum_{j \in N} w_j \right)^\gamma \left(\frac{\sum_{j \in N} (\kappa_j - \eta_j \log w_j)w_j}{\sum_{j \in N} w_j} - Z^* \right) \right\} \]

• Use single decision variable to capture \(\sum_{j \in N} w_j \)
Transformation of Objective

\[Z^* = \max_{L \leq w \leq U} \left\{ \left(\sum_{j \in N} w_j \right)^\gamma \left(\frac{\sum_{j \in N} (k_j - \eta_j \log w_j) w_j}{\sum_{j \in N} w_j} - Z^* \right) \right\} \]

- Use single decision variable to capture \(\sum_{j \in N} w_j \)
Transformation of Objective

\[
\max_{y \in ?} \left\{ y^\gamma \left(\frac{?}{y} - Z^* \right) \right\}
\]

\[
Z^* = \max_{L \leq w \leq U} \left\{ \left(\sum_{j \in N} w_j \right)^\gamma \left(\frac{\sum_{j \in N} (\kappa_j - \eta_j \log w_j) w_j}{\sum_{j \in N} w_j} - Z^* \right) \right\}
\]

• Use single decision variable to capture \(\sum_{j \in N} w_j \)
Transformation of Objective

\[
\max_{y \in \mathbb{?}} \left\{ y^\gamma \left(\frac{?}{y} - Z^* \right) \right\}
\]

- Capture numerator with

\[
g(y) = \max \left\{ \sum_{j \in N} (\kappa_j - \eta_j \log w_j)w_j : \sum_{j \in N} w_j \leq y, w_j \in [L_j, U_j] \forall j \in N \right\}
\]

\[
Z^* = \max_{L \leq w \leq U} \left\{ \left(\sum_{j \in N} w_j \right)^\gamma \left(\frac{\sum_{j \in N} (\kappa_j - \eta_j \log w_j)w_j}{\sum_{j \in N} w_j} - Z^* \right) \right\}
\]

- Use single decision variable to capture \(\sum_{j \in N} w_j \)
Transformation of Objective

\[
\max_{y \in ?} \left\{ y^\gamma \left(\frac{?}{y} - Z^* \right) \right\}
\]

- Capture numerator with

\[
g(y) = \max \left\{ \sum_{j \in N} (\kappa_j - \eta_j \log w_j)w_j : \sum_{j \in N} w_j \leq y, w_j \in [L_j, U_j] \forall j \in N \right\}
\]

- Restrict attention to \(y \in [\bar{L}, \bar{U}] \),

\[
\bar{L} = \sum_{j \in N} L_j, \bar{U} = \sum_{j \in N} \min\{\max\{\exp(\kappa_j/\eta_j - 1), L_j\}, U_j\}
\]

- Use single decision variable to capture \(\sum_{j \in N} w_j \)
Fixed Point Problem

\(Z^* \) is the solution to

\[
z = \max_{y \in [\bar{L}, \bar{U}]} \left\{ y^\gamma \frac{g(y)}{y} - y^\gamma z \right\}
\]
Recovering Optimal Prices

\[y \]

• If we know \(\text{Z}^* \), solving

\[
\max_{y \in [\bar{L}, \bar{U}]} \left\{ y^\gamma \frac{g(y)}{y} - y^\gamma \text{Z}^* \right\}
\]

recovers the optimal solution

\[
g(y) = \max \left\{ \sum_{j \in N} (\kappa_j - \eta_j \log w_j) w_j : \sum_{j \in N} w_j \leq y, w_j \in [L_j, U_j] \forall j \in N \right\}
\]
Recovering Optimal Prices

\[g(\cdot) \]

\[y \]

\[\text{If we know } Z^*, \text{ solving} \]

\[
\max_{y \in [\bar{L}, \bar{U}]} \left\{ y^\gamma \frac{g(y)}{y} - y^\gamma Z^* \right\}
\]

recovers the optimal solution

\[g(y) = \max \left\{ \sum_{j \in N} (\kappa_j - \eta_j \log w_j) w_j : \sum_{j \in N} w_j \leq y, w_j \in [L_j, U_j] \forall j \in N \right\} \]
Recovering Optimal Prices

• If we know Z^*, solving

$$g(y) = \max \left\{ \sum_{j \in N} (\kappa_j - \eta_j \log w_j) w_j : \sum_{j \in N} w_j \leq y, w_j \in [L_j, U_j] \forall j \in N \right\}$$

recovers the optimal solution

$$\max_{y \in [\bar{L}, \bar{U}]} \left\{ y^\gamma \frac{g(y)}{y} - y^\gamma Z^* \right\}$$
Recovering Optimal Prices

• If we know Z^*, solving

$$\max_{y \in [\bar{L}, \bar{U}]} \left\{ y^\gamma \frac{g(y)}{y} - y^\gamma Z^* \right\}$$

recovers the optimal solution

$$g(y) = \max \left\{ \sum_{j \in N} (\kappa_j - \eta_j \log w_j) w_j : \sum_{j \in N} w_j \leq y, w_j \in [L_j, U_j] \forall j \in N \right\}$$
Recovering Optimal Prices

If we know Z^*, solving

$$\max_{y \in [\bar{L}, \bar{U}]} \left\{ y^\gamma \frac{g(y)}{y} - y^\gamma Z^* \right\}$$

recovers the optimal solution

$$g(y) = \max \left\{ \sum_{j \in N} (\kappa_j - \eta_j \log w_j) w_j : \sum_{j \in N} w_j \leq y, w_j \in [L_j, U_j] \forall j \in N \right\}$$
Recovering Optimal Prices

If we know \(Z^* \), solving

\[
\max_{y \in [\bar{L}, \bar{U}]} \left\{ y^\gamma \frac{g(y)}{y} - y^\gamma Z^* \right\}
\]

recovers the optimal solution

\[
g(y) = \max \left\{ \sum_{j \in N} (\kappa_j - \eta_j \log w_j)w_j : \sum_{j \in N} w_j \leq y, w_j \in [L_j, U_j] \forall j \in N \right\}
\]
Recovering Optimal Prices

If we know \mathbf{Z}^*, solving

$$
\max_{y \in [\bar{L}, \bar{U}]} \left\{ y^\gamma \frac{g(y)}{y} - y^\gamma \mathbf{Z}^* \right\}
$$

recovers the optimal solution

$$
g(y) = \max \left\{ \sum_{j \in N} (\kappa_j - \eta_j \log w_j)w_j : \sum_{j \in N} w_j \leq y, w_j \in [L_j, U_j] \forall j \in N \right\}
$$
Recovering Optimal Prices

If we know Z^*, solving

$$
\max_{y \in [\bar{L}, \bar{U}]} \left\{ y^\gamma \frac{g(y)}{y} - y^\gamma Z^* \right\}
$$

recovers the optimal solution

$$
g(y) = \max \left\{ \sum_{j \in N} (\kappa_j - \eta_j \log w_j)w_j : \sum_{j \in N} w_j \leq y, w_j \in [L_j, U_j] \forall j \in N \right\}
$$
Recovering Optimal Prices

\[g(\cdot) \]

\[y \rightarrow w_1(y) \rightarrow p_1(y) \]

\[\vdots \]

\[w_n(y) \rightarrow \]

- If we know \(Z^* \), solving

\[
\max_{y \in [\bar{L}, \bar{U}]} \left\{ y^\gamma \frac{g(y)}{y} - y^\gamma Z^* \right\}
\]

recovers the optimal solution

\[g(y) = \max \left\{ \sum_{j \in N} (\kappa_j - \eta_j \log w_j)w_j : \sum_{j \in N} w_j \leq y, \ w_j \in [L_j, U_j] \ \forall j \in N \right\} \]
Recovering Optimal Prices

If we know Z^*, solving

$$\max_{y \in [\bar{L}, \bar{U}]} \left\{ y^\gamma \frac{g(y)}{y} - y^\gamma Z^* \right\}$$

recovers the optimal solution

$$g(y) = \max \left\{ \sum_{j \in N} (\kappa_j - \eta_j \log w_j) w_j : \sum_{j \in N} w_j \leq y, w_j \in [L_j, U_j] \forall j \in N \right\}$$
Recovering Optimal Prices

If we know Z^*, solving

$$\max_{y \in [\bar{L}, \bar{U}]} \left\{ y^\gamma \frac{g(y)}{y} - y^\gamma Z^* \right\}$$

recovers the optimal solution

• Problem: structural challenges
Recovering Optimal Prices

If we know Z^*, solving

$$\max_{y \in [\bar{L}, \bar{U}]} \left\{ y^\gamma \frac{g(y)}{y} - y^\gamma Z^* \right\}$$

recovers the optimal solution

Problem: structural challenges
Problematic Example

\[y^\gamma \frac{g(y)}{y} - y^\gamma Z^* \]
Approximation Framework

- Construct a set of grid points $\{\tilde{y}^t : t = 1, \ldots, T\}$, solve

$$
z = \max_{y \in \{\tilde{y}^t : t = 1, \ldots, T\}} \left\{ y^\gamma \frac{g(y)}{y} - y^\gamma z \right\}
$$
Approximation Framework

- Construct a set of grid points \(\{ \tilde{y}^t : t = 1, \ldots, T \} \), solve

\[
\hat{z} = \max_{y \in \{ \tilde{y}^t : t = 1, \ldots, T \}} \left\{ y^\gamma \frac{g(y)}{y} - y^\gamma z \right\}
\]

- Objective: given \(\rho > 0 \), obtain an approximate solution with expected revenue

\[
\hat{z} \geq \frac{1}{1 + \rho} Z^*
\]

- Keep grid size small
Approximation Framework

• Construct a set of grid points \(\{\tilde{y}^t : t = 1, \ldots, T\} \), solve

\[
\hat{z} = \max_{y \in \{\tilde{y}^t : t = 1, \ldots, T\}} \left\{ y^\gamma \frac{g(y)}{y} - y^\gamma z \right\}
\]

• Objective: given \(\rho > 0 \), obtain an approximate solution with expected revenue \(\hat{z} \geq \frac{1}{1 + \rho} Z^* \)

• Keep grid size small

Thm: A grid with \(g(\tilde{y}^t) \leq (1 + \rho) g(\tilde{y}^{t+1}) \) \(\forall t = 1, \ldots, T - 1 \) yields desired approx. guarantee
Partitioning Intervals

- Exist $O(n)$ intervals $\{I^k : k = 1, \ldots, K\}$ partitioning $[\bar{L}, \bar{U}]$

Free Products F^K
- Snapped to L_j
- Snapped to U_j
Partitioning Intervals

• Associated product sets F^k, L^k, U^k
 partitioning \mathbb{N}

\bar{L} \mathcal{I}^k \bar{U}

\mathcal{F}^k Free Products

$(w_j)_{j \in \mathbb{N}}$

\mathcal{L}^k Snapped to L_j

\mathcal{U}^k Snapped to U_j
Partitioning Intervals

\[g(y) \text{ uniquely determined by free products on each interval} \]

\[\tilde{L} \rightarrow \mathcal{I}_k^j \rightarrow \tilde{U} \]

\[(\omega_j)_{j \in \mathbb{N}} \]

- \(\mathcal{F}^k \): Free Products
- \(\mathcal{L}^k \): Snapped to \(L_j \)
- \(\mathcal{U}^k \): Snapped to \(U_j \)
Partitioning Intervals

\[
g(y) = \max \left\{ \sum_{j \in \mathcal{F}^k} w_j (\kappa_j - \eta_j \log w_j) : \sum_{j \in \mathcal{F}^k} w_j \leq y - (\sum_{j \in \mathcal{L}^k} L_j + \sum_{j \in \mathcal{U}^k} U_j) \right\} \\
+ \sum_{j \in \mathcal{L}^k} u_j L_j + \sum_{j \in \mathcal{U}^k} l_j U_j
\]

\[
g(\cdot) \rightarrow (w_j)_{j \in \mathcal{N}}
\]

- \(\mathcal{F}^k\): Free Products
- \(\mathcal{L}^k\): Snapped to \(L_j\)
- \(\mathcal{U}^k\): Snapped to \(U_j\)
Grid Construction

• Intermediate points of the form

\[\tilde{Y}^{kq} = \sum_{j \in \mathcal{L}^k} L_j + \sum_{j \in \mathcal{U}^k} U_j + (1 + \rho)^q, \quad q = \ldots, -1, 0, 1, \ldots \]

together with the interval endpoints, compose our grid.
Grid Construction

- Intermediate points of the form

\[\tilde{Y}_{kq} = \sum_{j \in L^k} L_j + \sum_{j \in U^k} U_j + (1 + \rho)^q, q = \ldots, -1, 0, 1, \ldots \]

together with the interval endpoints, compose our grid.
Grid Properties

\[g(y) \leq (1 + \rho) g(\tilde{Y}^{kq}) \ \forall y \in I^k \cap [\tilde{Y}^{kq}, \tilde{Y}^{k,q+1}] \]

\[\forall q, \forall k \]
Grid Properties

\[g(y) \leq (1 + \rho)g(\tilde{Y}^{kq}) \quad \forall y \in \mathcal{I}^k \cap [\tilde{Y}^{kq}, \tilde{Y}^{k,q+1}] \quad \forall q, \forall k \]

• Our grid satisfies the properties needed for the desired approximation guarantee
Grid Properties

\[g(y) \leq (1 + \rho)g(\tilde{Y}^{k,q}) \forall y \in I^k \cap [\tilde{Y}^{k,q}, \tilde{Y}^{k,q+1}] \]

• Our grid satisfies the properties needed for the desired approximation guarantee

of grid points:

\[O(n + n \log(n \max_j U_j / \min_j L_j) / \log(1 + \rho)) \]
Multiple Product Categories

Product Categories

- $\gamma_i \in [0, 1]
- w_{ij}
- w_{in}
- w_{11}

Competitor Space

- $w_0 = 1$

- m categories, $M = \{1, \ldots, m\}$
Multiple Product Categories

- Probability that customer buys product j, given customer chooses category i:

$$ \frac{w_{ij}}{\sum_{k \in N} w_{ik}} $$
Multiple Product Categories

Product Categories

$\gamma_i \in [0, 1]$

w_{i1}

w_{ij}

w_{in}

Competitor Space

$w_0 = 1$

$$\frac{w_{ij}}{\sum_{k \in N} w_{ik}}$$
• Expected revenue given customer buys from category i:

$$R_i(w_i) = \sum_{j \in N} (\kappa_{ij} - \eta_{ij} \log w_{ij}) \frac{w_{ij}}{\sum_{k \in N} w_{ik}}$$
Customer buys from category i with probability

$$Q_i(w_1, \ldots, w_m) = \frac{(\sum_{j \in N} w_{ij})^{\gamma_i}}{1 + \sum_{l \in M} (\sum_{j \in N} w_{lj})^{\gamma_l}}$$
Multiple Product Categories

Product Categories

\[\gamma_i \in [0, 1] \]

\[w_{ij} \]

\[w_{in} \]

Competitor Space

\[w_0 = 1 \]

• Expected revenue:

\[\Pi(w_1, \ldots, w_m) = \sum_{i \in M} Q_i(w_1, \ldots, w_m) R_i(w_i) \]
Multiple Product Categories

Product Categories

\[\gamma_i \in [0, 1] \]

\[w_i \]

\[w_{ij} \]

\[w_{in} \]

Competitor Space

\[w_0 = 1 \]

- Expected revenue:

\[\Pi(w_1, \ldots, w_m) = \sum_{i \in M} Q_i(w_1, \ldots, w_m) R_i(w_i) \]

\[Z^* = \max_{(w_1, \ldots, w_m): L_i \leq w_i \leq U_i, i \in M} \Pi(w_1, \ldots, w_m) \]
General Fixed Point Problem

Z^* is the solution to

\[
z = \sum_{i \in M} \max_{y_i \in [\bar{L}_i, \bar{U}_i]} \left\{ y_i^{\gamma_i} \frac{g_i(y_i)}{y_i} - y_i^{\gamma_i} z \right\}
\]
General Approximate Problem

\[z = \sum_{i \in M} y_i \in \{ \tilde{y}_i^t : t = 1, \ldots, T_i \} \max \left\{ y_i^{\gamma_i} \frac{g_i(y_i)}{y_i} - y_i^{\gamma_i} z \right\} \]

\[\min \quad z \]

\[\text{s.t.} \quad z \geq \sum_{i \in M} y_i \in \{ \tilde{y}_i^t : t = 1, \ldots, T_i \} \max \left\{ y_i^{\gamma_i} \frac{g_i(y_i)}{y_i} - y_i^{\gamma_i} z \right\} \]
General Approximate Problem

\[z = \sum_{i \in M} \max_{y_i \in \{\tilde{y}_i^t : t = 1, \ldots, T_i\}} \left\{ y_i^{\gamma_i} \frac{g_i(y_i)}{y_i} - y_i^{\gamma_i} z \right\} \]

\[
\min \ z \\
\text{s.t. } z \geq \sum_{i \in M} \max_{y_i \in \{\tilde{y}_i^t : t = 1, \ldots, T_i\}} \left\{ y_i^{\gamma_i} \frac{g_i(y_i)}{y_i} - y_i^{\gamma_i} z \right\}
\]

\[x_i \geq (\tilde{y}_i^t)^{\gamma_i} \frac{g_i(\tilde{y}_i^t)}{\tilde{y}_i^t} - (\tilde{y}_i^t)^{\gamma_i} z, \quad \forall t \in \{1, \ldots, T_i\}, \forall i \in M \]
General Approximate Problem

\[z = \sum_{i \in M} \max_{y_i \in \{\tilde{y}_i^t : t = 1, \ldots, T_i \}} \left\{ y_i^{\gamma_i} \frac{g_i(y_i)}{y_i} - y_i^{\gamma_i} z \right\} \]

\[\min z \]

s.t. \[z \geq \sum_{i \in M} \max_{y_i \in \{\tilde{y}_i^t : t = 1, \ldots, T_i \}} \left\{ y_i^{\gamma_i} \frac{g_i(y_i)}{y_i} - y_i^{\gamma_i} z \right\} \]

\[x_i \geq (\tilde{y}_i^t)^{\gamma_i} \frac{g_i(\tilde{y}_i^t)}{\tilde{y}_i^t} - (\tilde{y}_i^t)^{\gamma_i} z, \quad \forall t \in \{1, \ldots, T_i \}, \forall i \in M \]
General Approximate Problem

\[z = \sum_{i \in M} \max_{y_i \in \{ \bar{y}_i^t : t = 1, \ldots, T_i \}} \left\{ y_i^{\gamma_i} \frac{g_i(y_i)}{y_i} - y_i^{\gamma_i} z \right\} \]
General Approximate Problem

$$z = \sum_{i \in M} \max_{y_i \in \{\tilde{y}_i^t : t = 1, \ldots, T_i\}} \left\{ y_i^{\gamma_i} \frac{g_i(y_i)}{y_i} - y_i^{\gamma_i} z \right\}$$

- The approximate problem is a linear program

$$\min_{(x,z)} z$$

s.t.

$$z \geq \sum_{i \in M} x_i$$

$$x_i \geq (\tilde{y}_i^t)^{\gamma_i} \frac{g_i(\tilde{y}_i^t)}{\tilde{y}_i^t} - (\tilde{y}_i^t)^{\gamma_i} z, \quad \forall t \in \{1, \ldots, T_i\}, \forall i \in M.$$
General Approximate Problem

\[z = \sum_{i \in M} y_i \in \{ \tilde{y}_i^t : t = 1, \ldots, T_i \} \max \left\{ y_i^\gamma_i g_i(y_i) \frac{g_i(y_i)}{y_i} - y_i^\gamma_i z \right\} \]

- The approximate problem is a linear program

\[
\begin{align*}
\min_{(x, z)} & \quad z \\
\text{s.t.} & \quad z \geq \sum_{i \in M} x_i \\
& \quad x_i \geq (\tilde{y}_i^t)^\gamma_i g_i(\tilde{y}_i^t) - (\tilde{y}_i^t)^\gamma_i z, \quad \forall t \in \{1, \ldots, T_i\}, \forall i \in M.
\end{align*}
\]

- We apply the same method of grid construction
General Approximate Problem

\[
z = \sum_{i \in M} y_i \in \{ \tilde{y}_i^t : t = 1, \ldots, T_i \} \max \left\{ y_i \frac{g_i(y_i)}{y_i} - y_i \gamma_i z \right\}
\]

• The approximate problem is a linear program

\[
\min_{(x, z)} z
\]

s.t. \[
z \geq \sum_{i \in M} x_i
\]

\[
x_i \geq (\tilde{y}_i^t) \gamma_i \frac{g_i(\tilde{y}_i^t)}{\tilde{y}_i^t} - (\tilde{y}_i^t) \gamma_i z, \quad \forall t \in \{1, \ldots, T_i\}, \forall i \in M.
\]

• We apply the same method of grid construction

\[
\sigma = \max_{i \in M} \left\{ \frac{\max_j U_{i,j}}{\min_j L_{i,j}} \right\}
\]
General Approximate Problem

\[
 z = \sum_{i \in M} \max_{y_i \in \{\tilde{y}_i^t : t = 1, \ldots, T_i\}} \left\{ y_i^{\gamma_i} \frac{g_i(y_i)}{y_i} - y_i^{\gamma_i} z \right\}
\]

• The approximate problem is a linear program

\[
 \min_{(x,z)} \quad z \\
 \text{s.t.} \quad z \geq \sum_{i \in M} x_i \\
 x_i \geq (\tilde{y}_i^t)^{\gamma_i} \frac{g_i(\tilde{y}_i^t)}{\tilde{y}_i^t} - (\tilde{y}_i^t)^{\gamma_i} z, \quad \forall t \in \{1, \ldots, T_i\}, \forall i \in M.
\]

• We apply the same method of grid construction
General Approximate Problem

\[z = \sum_{i \in M} \max_{y_i \in \{\tilde{y}_i^t : t = 1, \ldots, T_i\}} \left\{ y_i^{\gamma_i} \frac{g_i(y_i)}{y_i} - y_i^{\gamma_i} z \right\} \]

• The approximate problem is a linear program

\[
\begin{align*}
\min_{(x, z)} & \quad z \\
\text{s.t.} & \quad z \geq \sum_{i \in M} x_i \\
& \quad x_i \geq (\tilde{y}_i^t)^{\gamma_i} \frac{g_i(\tilde{y}_i^t)}{\tilde{y}_i^t} - (\tilde{y}_i^t)^{\gamma_i} z, \quad \forall t \in \{1, \ldots, T_i\}, \forall i \in M.
\end{align*}
\]

• We apply the same method of grid construction

LP has \(O(mn + mn \log(n\sigma)/\log(1 + \rho)) \) constraints, \(m + 1 \) variables
Upper Bound LP

• Given any set of grid points \(\{\hat{y}_i^d : d = 1, \ldots, D_i\} \) for each \(i \in M \), solve

\[
\min_{(x,z)} z \\
\text{s.t.} \quad z \geq \sum_{i \in M} x_i \\
x_i \geq (y_i^d)^{g_i} g_i \frac{(\hat{y}_i^d+1)}{\hat{y}_i^d} - (y_i^d)^{\gamma_i} z, \quad \forall d \in \{1, \ldots, D_i - 1\}, \forall i \in M.
\]

• Allows comparison of the performance of our algorithm, other heuristics, etc.
Algorithm Performance

Avg. % optimality gap vs. max. U/L ratio

Max. % optimality gap vs. max. U/L ratio
Thank you