A Infinite Pseudolikelihood Estimates

Consider the model $\Pr(Z|\phi) = g(\phi)^{-1} \exp \left\{ \phi \sum_{i \sim j} 1 \{Z_i = Z_j\} \right\}$ for the cluster membership vector Z, where $g(\phi) \equiv \sum_w \exp \left\{ \phi \sum_{i \sim j} 1 \{w_i = w_j\} \right\}$; this is a simplification of model (3).

In the context where $Z = z$ is directly observed, we give an example of a vector z for which the maximum likelihood estimate of ϕ is finite, while the maximum pseudolikelihood estimate is infinite. This finite-sample example does not contradict the consistency of the pseudolikelihood estimator as established by Geman and Graffigne (1986).

Consider a two-dimensional square image where the grid size is an even number J, so that $n = J^2$. Index the pixels from left to right and then top to bottom, so that the low-numbered pixels are at the top of the image and the high-numbered pixels are at the bottom. Then define $z_i = 1 + 1_{\{i > J^2/2\}}$, so that the top half of the image is labeled with 1’s and the bottom half of the image is labeled with 2’s. We have

$$
\frac{d}{d\phi} \log \Pr(Z = z|\phi) = \sum_{i \sim j} 1 \{z_i = z_j\} - \frac{\sum_w \exp \left\{ \phi \sum_{i \sim j} 1 \{w_i = w_j\} \right\} \sum_{i \sim j} 1 \{w_i = w_j\}}{\sum_w \exp \left\{ \phi \sum_{i \sim j} 1 \{w_i = w_j\} \right\}}
$$

$$
= \sum_{i \sim j} 1 \{z_i = z_j\} - E(\sum_{i \sim j} 1 \{z_i = z_j\} | \phi).
$$

As $\phi \to \infty$ the probability under $\Pr(Z|\phi)$ of having all $Z_i = 1$ or all $Z_i = 2$ approaches one. For such configurations the value of $\sum_{i \sim j} 1 \{z_i = z_j\}$ is greater than the observed sum $\sum_{i \sim j} 1 \{z_i = z_j\}$, so for all ϕ large enough $\frac{d}{d\phi} \log \Pr(Z = z|\phi)$ is negative. This implies that the maximum likelihood estimate of ϕ is finite.

The pseudolikelihood in this example is $\prod_{i=1}^n \frac{\exp \left\{ \phi \sum_{j \sim i} 1 \{z_i = z_j\} \right\}}{\sum_k \exp \left\{ \phi \sum_{j \sim i} 1 \{z_j = k\} \right\}}$. So the derivative
of the log-pseudolikelihood is

\[
\frac{d}{d\phi} \log \prod_i \sum_{k=1}^2 \exp\{\phi \sum_{j:i\sim j} 1_{\{z_i=z_j\}}\} \sum_{k=1}^2 \exp\{\phi \sum_{j:i\sim j} 1_{\{z_j=k\}}\}
\]

\[
= \sum_i \left[\sum_{j:i\sim j} 1_{\{z_i=z_j\}} - \frac{\sum_{k=1}^2 \exp\{\phi \sum_{j:i\sim j} 1_{\{z_j=k\}}\} \sum_{j:i\sim j} 1_{\{z_j=k\}}}{\sum_{k=1}^2 \exp\{\phi \sum_{j:i\sim j} 1_{\{z_j=k\}}\}} \right].
\]

The second term inside the brackets is a weighted average of \(\sum_{j:i\sim j} 1_{\{z_j=k\}}\) over the two values \(k = z_i\) and \(k \neq z_i\). For our choice of \(z\), every voxel \(i\) has more neighbors with the same label than with the opposite label. So the value of \(\sum_{j:i\sim j} 1_{\{z_j=k\}}\) with \(k = z_i\) is strictly greater than that with \(k \neq z_i\). This implies that the derivative of the log-pseudolikelihood is always strictly positive, and so the maximum pseudolikelihood estimate is infinite.

References