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Abstract

We consider a practically motivated variant of the canonical online fair allocation problem:
a decision-maker has a budget of resources to allocate over a fixed number of rounds. Each
round sees a random number of arrivals, and the decision-maker must commit to an allocation
for these individuals before moving on to the next round. In contrast to prior work, we consider
a setting in which resources are perishable and individuals’ utilities are potentially non-linear
(e.g., goods exhibit complementarities). The goal is to construct a sequence of allocations that
is envy-free and efficient. We design an algorithm which takes as input (i) a prediction of
the perishing order, and (ii) a desired bound on envy. Given the remaining budget in each
period, the algorithm uses forecasts of future demand and perishing to adaptively choose one
of two carefully constructed guardrail quantities. We characterize conditions under which our
algorithm achieves the optimal envy-efficiency Pareto frontier. We moreover demonstrate its
strong numerical performance using data from a partnering food bank. Our results emphasize
the importance of high-fidelity predictions of future perishing, all the while highlighting classes
of perishable resources for which a decision-maker cannot hope to achieve classical notions of
fairness.
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1 Introduction

Online resource allocation under uncertainty is one of the canonical problems in sequential decision-
making/control. While most work in this area focuses on maximizing a single objective (eg.
throughput or revenue), more recent work has started looking at fundamental tradeoffs in multi-
objective settings. An important example of this is in settings where the principal wants to ensure
some form of equitable or fair division of the resources while maximizing a primary objective. In
particular, while fairness concerns have long been central in the networking and scheduling litera-
ture (Kelly et al., 1998; Bonald et al., 2006; Ghodsi et al., 2011; Joe-Wong et al., 2013; Grosof et al.,
2019), more recent work has started characterizing the fundamental tradeoffs between fairness and
overall utility in different allocation problems (Bertsimas et al., 2011; Donahue and Kleinberg, 2020;
Lien et al., 2014; Manshadi et al., 2021; Sinclair et al., 2022; Hassanzadeh et al., 2023). Getting
such detailed tradeoffs is useful, as it allows a system designer to understand and choose their
desired operating point, balancing the loss in efficiency and equity (or envy). All of these works,
however, have only considered linear utility functions, and non-restless constraints (where budgets
only change when resources are allocated). This limits their use in many situations of interest, such
as the following:

• A food bank often has fixed replenishment intervals (weekly/monthly), and in between two
replenishments, has to ration its stocks while serving requests. The food bank manager wants
to ensure that allocations are equitable across individuals, despite uncertainty in future demand.
Unfortunately, as is often the case with food pantries, many food items are perishable, and spoil
if not allocated early enough. Moreover, there is often a mix of expiration dates between items,
as donations from companies and charities tend to be fresher, while donations from grocery
retailers tend to contain near-perishing goods. These expiration dates can serve as a natural
schedule according to which items are allocated.

• During the COVID-19 pandemic, the U.S. government tasked itself with distributing ventilators,
vaccines, and the antiviral drug Remdesivir (Lupkin, 2020). Each month, states were given a
fixed amount of these complementary resources. While a primary goal was to distribute as many
of these goods as possible (i.e., efficiency), an additional constraint was equitable access on a
national level. Achieving these goals proved challenging: between end of 2020 and mid-2022,
over 82 million COVID-19 vaccine doses went to waste due to miscalibration of allocations to
state’s uncertain demands and expiration of multi-vial doses (Eaton, 2022).

• A federated cloud service such as the inter-university Aristotle Cloud Federation (Aristotle
Cloud Federation Project, 2022) comprises computer servers contributed by different partici-
pating providers (university computing centers). The aim of the cloud scheduler is to adjust the
amount of resources allocated to incoming requests while making sure that future requests are
guaranteed a minimum level of service (Ghodsi et al., 2011). Moreover, different service providers
may remove their unused servers over time to serve internal requests. The scheduler needs to
anticipate this exogenous depletion while serving its requests.

1.1 Our Contributions

The basic model we study follows the setting considered in Sinclair et al. (2022) (and generalizing
single-item allocation models of Lien et al. (2014); Manshadi et al. (2021)): a decision-maker
starts with some budget of resources that they must allocate over T discrete rounds to a stream
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of online arrivals. In each round, arriving agents are drawn from a known distribution (which
may be time-varying). Each agent is characterized by a given type, with each type associated
with a utility function, which (unlike existing work), we allow to be non-linear in the allocations.
More importantly, rather than assuming resource budgets remain fixed unless we allocate them, we
consider settings where the resources are perishable, and as a result, the budgets are exogenously
depleted over time (also according to a known distribution), even if we do not allocate. Our goal
is to find a policy that trades off between two metrics:

1. Envy – Maximum over agents (in hindsight) of the difference between the utility they receive,
and their utility under the allocation received by any other agent; this serves as a measure of
(un)fairness.

2. Inefficiency – Amount of goods leftover at the end of the time horizon.

We first consider the classical setting of additive utilities. Contrary to prior models, in the
perishable resource setting we are faced with two additional challenges. On the one hand, there
exist fundamental barriers to what a controller can achieve for general perishing processes. To
see this, consider an extreme scenario in which all items perish at the end of the first round.
Clearly, there is no hope of achieving low envy in such a setting since future demand cannot
be satisfied. In our first main contribution, we identify a class of perishing distributions, offset-
expiring processes (see Definition 3.2), for which one can meaningfully consider classical notions
of envy. For such processes, an important algorithmic challenge remains: an algorithm must have
an accurate prediction of how many resources will perish in future rounds, but also the order in
which they perish. This timing aspect of the allocation is the key point of departure from previous
models: since items can no longer be allocated after they perish, the algorithm must judiciously
choose between the remaining units in each period and allocate those that are likely to perish in
subsequent periods to minimize inefficiency.

In our second main contribution, we propose a “guardrail”-style algorithm, Perishing-Guardrail,
that takes as input (i) a prediction of the order according to which items perish, (ii) a desired upper
bound on envy LT , and (iii) a high probability value δ. Given these inputs, it computes exactly
two allocations (or guardrails): high-probability upper and lower bounds on the fair solution in
hindsight without perishing,that are also within LT of one another. In each round the algorithm
chooses which of the two to guardrails to allocate to each individual, cautiously doing so via the
construction of pessimistic forecasts of future arrivals and perishing. Moreover, it allocates accord-
ing to the input prediction of the perishing order. With this, we have the following main result.

Informal Theorem 1 (see Theorem 4.1). Suppose the perishing process is offset-expiring. Given
a “good enough” prediction of the perishing order, Perishing-Guardrail with parameter LT

achieves with high probability:

Envy ≲ LT , ∆efficiency ≲ min{
√
T , 1/LT }.

The assumption that the principal has access to a “good” prediction of the perishing order indeed
holds in most practical settings — for example, food banks can use the expiry date of canned goods,
or the ripeness of fruits and vegetables to determine which are at most risk of spoiling. Moreover,
a significant contribution from a modeling perspective is that the class of perishing processes we
consider extends far past current state-of-the-art models of online resource allocation of perishable
resources, which are limited to deterministic or i.i.d. perishing times (Perry, 1999).
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Our result then identifies a class of perishable resources for which the envy-efficiency trade-
off previously identified in the literature is not fundamentally affected. The intuition behind this
is that, when resources perish earlier than expected, they adversely affect both envy and waste;
in contrast, uncertainty in the number of arrivals affects the two in opposite directions. Hence,
uncertainty in arrivals is the only aspect of this setting that contributes to the trade-off. That
said, the design and analysis of an algorithm that is able to account for uncertainty in future
perishing constitutes a significant departure from past work. This is due to the fact that though the
perishing times are exogenous, the quantity that any good algorithm must forecast is the amount
of unallocated goods that perish in the future; this quantity is inherently dependent on future
decisions made by the algorithm, and is as a result endogenous. The key insight that allows us to
tackle this challenge is the coupling of our algorithm’s sequence of decisions to a tractable “slow”
allocation process without perishing; in this process, the number of goods that perish constitute a
high-probability upper bound on our algorithm’s waste.

Motivated by the limiting nature of the additive preference assumption, we then extend our
results to the class of utility functions that are concave, one-positively homogeneous, and non-
decreasing. This class of functions subsumes additive utilities, in addition to the popular classes of
functions such as Leontief and Cobb-Douglas utilities, which respectively model complementarities
and decreasing returns to scale. For such functions, we show that a careful modification of the
guardrail construction achieves the envy-efficiency Pareto frontier. The key difficulty in establishing
this result is in deriving sharp bounds on the sensitivity of the Eisenberg-Gale (EG) program
(Eisenberg, 1961) upon which the guardrail construction relies. In particular, showing that solutions
to this program are robust to mild perturbations in the arrival process relies on a property known
as competitive monotonicity, previously known only for the setting of weak gross substitutes (Jain
and Vazirani, 2010).

1.2 Paper Organization

We next survey related work in Section 2. In Section 3, we present the general online resource
allocation problem, as well as introducing the perish model and fairness notions of interest. We then
design and analyze a guardrail-based algorithm for the setting with perishable goods in Section 4.
In Section 5 we extend our results to the setting of non-linear utilities. We conclude by comparing
the numerical performance of our algorithms against state-of-the-art benchmarks in Section 6.

2 Related Work

Fairness in resource allocation has a long history in the economics and computation literature,
beginning with Varian’s seminal work (Varian, 1974, 1976). We highlight the most closely related
works below, especially as they relate to online fair allocation; see Aleksandrov and Walsh (2019b)
for a comprehensive survey.

Fair allocation without perishable resources. We first detail various models and objectives
considered in settings without perishable goods. There exists a long line of work in which the
resource becomes available to the decision-maker online, whereas agents are fixed (Benade et al.,
2018; Aleksandrov et al., 2015; Mattei et al., 2018, 2017; Aleksandrov and Walsh, 2019a; Banerjee
et al., 2020; Bansal et al., 2020; Bogomolnaia et al., 2021; He et al., 2019; Aziz et al., 2016; Zeng and
Psomas, 2020). These models lie in contrast to the one we consider, wherein resources are fixed and
individuals arrive online. Papers that consider this latter setting include Kalinowski et al. (2013),
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who consider maximizing utilitarian welfare with indivisible goods, rather than focusing on fairness
guarantees with divisible goods. Gerding et al. (2019) consider a scheduling setting wherein agents
have fixed and known arrival and departure times, as well as demand for the resource. A series
of papers also consider the problem of fair division with minimal disruptions relative to previous
allocations, as measured by a fairness ratio, a competitive ratio analog of counterfactual envy in
our setting (Friedman et al., 2017; Cole et al., 2013; Friedman et al., 2015). A number of papers
also seek to design algorithms with attractive competitive ratios with respect to the Nash Social
Welfare objective (Azar et al., 2010; Banerjee et al., 2020), or the max-min objective (Lien et al.,
2014; Manshadi et al., 2021).

The above papers situate themselves within the adversarial, or worst-case, tradition. A separate
line of work considers fair resource allocation in stochastic settings (Donahue and Kleinberg, 2020;
Elzayn et al., 2019; Freund and Hssaine, 2021), as we do. The algorithms developed in these papers,
however, are non-adaptive: they decide on the entire allocation upfront, before observing any of the
realized demand. In contrast, we consider a model where the decision-maker makes the allocation
decision in each round after observing the number of arrivals. Freeman et al. (2017) consider a
problem in which agents’ utilities are realized from an unknown distribution, and the budget resets
in each round. They present algorithms for Nash social welfare maximization and discuss some
of their properties. Our work is most closely related to (and indeed, builds upon) Sinclair et al.
(2022), who first introduced the envy-freeness and efficiency tradeoff we are interested in. We
improve upon their results in showing the applicability of the algorithmic guardrail framework to
a broader class of utilities, which subsumes additive utilities that they considered in their original
paper. Moreover, we consider a model in which goods also perish over time, which none of the
aforementioned works consider.

Perishable resources. Though online resource allocation of perishable goods has a long history
in the operations research literature (see, e.g., Nahmias (2011) for a comprehensive survey of
earlier literature), to the best of our knowledge, the question of fairly allocating perishable goods
has attracted relatively little attention. Perry (1999) and Hanukov et al. (2020) analyze FIFO-style
policies for efficiency maximization in inventory models with Poisson demand and deterministic
or Poisson perishing times. Motivated by the problem of electric vehicle charging, Gerding et al.
(2019) consider an online scheduling problem where agents arrive and compete for a perishable
resource which spoils at the end of every period, and as a result must be allocated at every time
step. They consider a range of objectives, including: maximum total resource allocated, maximum
number of satisfied agents, as well as envy-freeness. Bateni et al. (2022) similarly consider a setting
wherein goods perish immediately. Our paper, in contrast, considers stochastic perishing over the
course of multiple rounds. Alijani et al. (2020) similarly consider a setting with stochastic perishing;
in the problem they consider, a decision-maker seeks to sell perishable items to a stream of buyers
in order to maximize social welfare. They show that, when items have independent perishing times
satisfying the monotone hazard rate condition, the competitive ratio of any policy is lower bounded
by a constant greater than one. This negative result is in line with our discussion regarding i.i.d.
perishing times representing the worst-case for the decision-maker. Also related is recent work on
stochastic matching with unknown arrivals and abandonments. For instance, Aouad and Saritaç
(2020) design constant-factor approximations for a setting where agents of different types arrive
according to a Poisson process and abandon the system once their exponentially distributed sojourn
time elapses, and the decision-maker seeks to maximize cumulative rewards.
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3 Preliminaries

In this section, we state the most general form of the model, relegating specifics for the applications
we consider to subsequent sections.

Notation. We use R+ to denote the set of non-negative reals, ∥X∥∞ = maxi,j |Xi,j | to denote
the matrix maximum norm, and cX to denote entry-wise multiplication for a constant c. When
comparing vectors, we use X ≤ Y to denote that each component Xi ≤ Yi. Finally, given n ∈ N+,
we let [n] = {1, . . . , n}.

3.1 Model

We consider a decision-maker who, over T distinct rounds, must divide K divisible resources among
a population of individuals. The decision-maker has an initial fixed budget of Bk ∈ R divisible units
(also referred to as items, or goods) of each resource k ∈ [K]. Let B = (Bk)k∈[K]. We often abuse
notation and use [B] = {1, . . . ,∑k Bk} to denote the set of all items.

Demand model. In each round t ∈ [T ], a random number of individuals arrives, each requesting
a share of the resources. Each individual is characterized by their type θ ∈ Θ, with |Θ| < ∞.
Specifically, each type θ ∈ Θ is associated with a known utility function u(x, θ) : RK × Θ 7→ R+,
for a given allocation x ∈ RK of resources.

We let Nt,θ denote the number of type θ arrivals in round t, with Nt,θ drawn independently
from a known distribution Ft,θ. For a fixed vector of arrivals (Nt,θ)t∈[T ],θ∈Θ, we will often use N≥t,θ

to denote the total number of individuals who arrived in round t and afterwards (i.e., N≥t,θ =∑T
t′=tNt′,θ). We similarly let N≤t,θ =

∑t
t′=1Nt′,θ, and use N[t,t′),θ to denote arrivals of type θ

between rounds t and t′. We use Nθ to denote the total number of type θ individuals across all
rounds (i.e., Nθ =

∑
t∈[T ]Nt,θ), and let N =

∑
t∈[T ]

∑
θ∈ΘNt,θ. For ease of notation, we use similar

subscripting for random variables throughout this paper. Whenever the θ subscript is omitted, it
is assumed that we are considering the aggregate quantity, summed over all θ.

Perishing model. Each unit of resource b ∈ [B] is associated with a perishing time Tb ∈ N+

drawn from a known distribution. We assume items’ perishing times are independent of one another,
as well as of the arrival process, and that perishing occurs at the end of each round, after items
have been allocated to individuals. For t ∈ [T ], we let Pt =

∑
b∈[B] 1{Tb = t} denote the number of

units of resource perishing in period t, and define P<t =
∑

τ<t Pt to denote the number of resources
that perished before period t; we use νt to denote its expected value.

Objective. The goal is to design a fair online algorithm that observes the number of arrivals of
each type Nt,θ at the beginning of round t and determines (i) the amount of resource k to give out
to each type θ ∈ Θ, for all k ∈ [K], and (ii) the order in which to allocate these resources. Let
Xalg ∈ RT×|Θ|×K be the sequence of allocations determined by the algorithm. We assume that, for
t ∈ [T ], θ ∈ Θ, any algorithm allocates Xt,θ uniformly across all Nt,θ individuals.

3.1.1 Additional assumptions and notation.

For technical simplicity, we begin by considering the classical setting with additive utilities: u(Xt,θ, θ) =∑
k wθkXt,θ,k for some collection of weights {wθk}k∈[K], and K = 1 (thus, wθ = 1 without loss of
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generality); we show how to extend our results to a more general class of utility functions and
K ≥ 1 in Section 5.

For all t ∈ [T ], θ ∈ Θ, we assumeNt,θ ≥ 1 almost surely. This is for ease of exposition; our results
continue to hold (up to constants) as long as P(Nt,θ = 0) does not scale with T . We also assume

that E[N ] = Θ(T ). We define βavg =
∑

k Bk

E[N ] to be the average resource per individual, and assume

βavg ∈ Θ(1). We moreover let σ2
t,θ = Var(Nt,θ) < ∞, and assume ρt,θ = |Nt,θ − E[Nt,θ]| < ∞

almost surely. Finally, we let µmax = maxt,θ E[Nt,θ], σ
2
min = mint,θ σ

2
t,θ, σ

2
max = maxt,θ σ

2
t,θ, and

ρmax = maxt,θ ρt,θ. We summarize all notation in Appendix A.

3.2 Notions of Fairness and Efficiency

Before defining our notions of fairness and efficiency for the online setting, in which the decision-
maker observes the arrivals (Nt,θ)θ∈Θ at the beginning of each round t ∈ [T ], we introduce standard
notions of fairness and efficiency in the offline setting, in which the decision-maker knows the entire
vector of arrivals (Nt,θ)t∈[T ],θ∈Θ at the beginning of time.

3.2.1 Fairness and Efficiency in Offline Allocations

The notion of offline fairness we consider is that of Varian Fairness (Varian, 1974), widely used in
the operations research and economics literature.

Definition 3.1 (Fair Allocation). Given types Θ, number of individuals of each type (Nt,θ)t∈[T ],θ∈Θ,

perishing times (Tb)b∈[B], and utility functions (u(·, θ))θ∈Θ, an allocation X = {Xt,θ ∈ RK
+ |∑T

t=1

∑
θ∈ΘNt,θXt,θ ≤ B} is fair if it simultaneously satisfies the following:

1. Envy-Freeness (EF): u(Xt,θ, θ) ≥ u(Xt′,θ′ , θ) for all t, t′ ∈ [T ], θ, θ′ ∈ Θ

2. Pareto Efficiency (PE): Consider feasible allocations Y ∈ RT×|Θ|×K , X ∈ RT×|Θ|×K such
that Y ̸= X, and u(Yt,θ, θ) > u(Xt,θ, θ) for t ∈ [T ], θ ∈ Θ. Then, there exists t′ ∈ [T ], θ′ ∈ Θ
such that u(Yt′,θ′ , θ

′) < u(Xt′,θ′ , θ
′).

3. Proportionality (PROP): For all t ∈ [T ], θ ∈ Θ, u(Xt,θ, θ) ≥ u(B/N, θ).

Contrary to the setting without perishable resources, a fair solution need not exist for arbitrary
perishing processes, as illustrated in Section 1. For example, suppose all resources expire at the end
of the first day; demand for days t ≥ 2 cannot be satisfied no matter the allocation decisions. In
such settings, re-defining envy to be forward-looking would be more appropriate, since customers
have no reason to “envy” products that perished before they arrive. We leave the treatment of such
important modeling questions to future work, and instead restrict our attention to consider “offset-
expiring” processes which are such that B/N , the hindsight optimal allocation without perishing
(Sinclair et al., 2022), remains optimal.

Definition 3.2. A perishing process (Pt)t∈[T ] is offset-expiring if P<t ≤ B
NN<t, for all t ∈ [T ].

Such processes model settings wherein the number of perished resources up to any round t is
smaller than what the optimal hindsight allocation decision would have allocated up to that time.
In Section 4 we give a sufficient condition on the joint distribution over perishing and arrivals for
the process to be offset-expiring with high probability. One would expect this condition to hold in
practice; as noted in Section 1, food banks typically have an idea of goods’ expiry dates, and may
even refuse to accept items that have a high risk of spoiling before the next replenishment.
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We next present a convex program, termed the offline perishing Eisenberg-Gale (EG) program,
which we will show produces fair solutions for offset-expiring perishing processes.

max
X∈RT×|Θ|

∑
t∈[T ]

∑
θ∈Θ

Nt,θ log u(Xt,θ, θ) (EG-P)

s.t.
∑
τ≥t

∑
θ

Nτ,θXτ,θ ≤ B −
∑
τ<t

Pτ ∀ t ∈ [T ]

Xt,θ ≥ 0 ∀ t ∈ [T ], θ ∈ Θ

(EG-P) is a variant of the well-known EG program (Eisenberg, 1961), for which solutions are well-
known to satisfy the three fairness properties under a special class of utility functions (including
additive utilities). In particular, (EG-P) accounts for perishable resources through its first set of
constraints which enforces that, for each period, the amount allocated to individuals in subsequent
periods cannot exceed the number of items that haven’t perished yet. Note that (EG-P) is an
aggregate optimization problem which does not encode the order in which items must be allocated.
However, it is easy to show that the optimal value of this relaxation is exactly equal to that of a
more granular program wherein timing is indeed encoded, under the optimal hindsight timing rule
which allocates items according to the known perishing time; we thus omit the proof of this fact.
Moreover, when the utility functions are concave, solutions to (EG-P) are efficiently computable.

The following proposition implies that, under offset-expiring processes, (EG-P) produces a fair
solution. We defer its proof to Appendix B.

Proposition 3.3. Suppose (Pt)t∈[T ] is offset-expiring. Then, Xopt
t,θ = B/N for all t ∈ [T ], θ ∈ Θ

solves (EG-P) and is fair.

In contrast to the online problem we are interested in, which only has access to (Nt,θ)θ∈Θ at
the beginning of round t, the perishing EG program is offline, i.e., it has access to all arrivals at
the beginning of time. Unfortunately, though computing fair allocations is possible in the offline
setting for this class of perishing processes, Sinclair et al. (2022) showed that no online algorithm
can simultaneously achieve the three desired properties of envy-freeness, Pareto efficiency and
proportionality, even in a simple setting without perishable resources. This then motivates the goal
of finding approximately fair allocations in the online setting.

3.2.2 Approximate Fairness and Efficiency in Online Allocations

We formally define the notions of online fairness we are interested in, first introduced in Sinclair
et al. (2022). Let Xalg ∈ RT×|Θ|×K be the allocations determined by an arbitrary online algorithm.

Definition 3.4 (Counterfactual Envy, Hindsight Envy, Efficiency, and Proportionality). Given
individuals with types Θ, sizes (Nt,θ)t∈[T ],θ∈Θ, resource budgets (Bk)k∈[K], and perishing times

(Tb)b∈[B], for any online allocation (Xalg
t,θ )t∈[T ],θ∈Θ ∈ RK , we define:

• Counterfactual Envy: The counterfactual distance of Xalg to envy-freeness as

∆EF ≜ max
t∈[T ],θ∈Θ

∥u(Xalg
t,θ , θ)− u(Xopt

t,θ , θ)∥∞ (1)

where Xopt is a solution to the offline EG program (EG-P).

• Hindsight Envy: The hindsight distance of Xalg to envy-freeness as

Envy ≜ max
t,t′∈[T ]2,θ,θ′∈Θ2

u(Xalg
t′,θ′ , θ)− u(Xalg

t,θ , θ). (2)
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• Efficiency: The distance to efficiency as

∆efficiency ≜
∑
k∈K

Bk −
∑
t∈[T ]

∑
θ∈Θ

Nt,θX
alg
t,θ,k −

∑
t∈[T ]

PUAt,k

, (3)

where PUAt,k =
∑

b∈Bk
1{Tb = t, b ̸∈ At} denotes the amount of resource k that perished at

the end of round t before having been allocated.

• Hindsight Proportionality: The hindsight distance of Xalg to proportionality as

∆prop ≜ max
t∈[T ],θ

u(B/N, θ)− u(Xalg
t,θ , θ). (4)

At a high level, counterfactual envy ∆EF can be viewed as the online algorithm’s distance to
fairness in hindsight. Though this latter envy-freeness metric is with respect to an offline solution,
hindsight envy measures how differently the online algorithm treats any two individuals, across
types and time. Finally, the efficiency of the online algorithm ∆efficiency measures how wasteful
the algorithm was in hindsight. Namely, if at the end of the horizon, the decision-maker has a
large number of unallocated goods remaining, she could have gone back and re-distributed these
items, thereby increasing their utilities. The reader may notice that this definition of distance to
efficiency does not exactly mirror the offline notion of Pareto efficiency defined in the previous
section. However, it is easy to see that under strict monotonicity of utility functions, a distance to
efficiency of zero is a necessary precondition to Pareto efficiency.

Note that this definition of waste does not include waste incurred from perishing; this is due to
the fact that, even with perfect knowledge of the number of arrivals and the order in which items
perish, one can construct offset-expiring processes such that a non-trivial amount of spoilage occurs
under any envy-free allocation (see Section 4.3 for further discussion of this). Defining inefficiency
in this way avoids penalizing our algorithm for unavoidable spoilage; we leave the investigation of
tight bounds on total waste to future work.

These metrics are, in a sense, at odds with each other, which marks the inherent difficulty of
this problem. To see this, consider the following two extreme scenarios. On the one hand, an
algorithm can trivially achieve a hindsight envy of zero by allocating nothing to individuals in any
round; this, however, would result in both high counterfactual envy and proportionality, in addition
to maximal inefficiency. On the other hand, a distance to efficiency of zero can trivially be satisfied
by exhausting the budget in the initial round, at a cost of maximal envy as individuals arriving at
later rounds would be envious of the allocation given in the first. Sinclair et al. (2022) formalized
this tension for the additive utility setting without perishable resources via the following lower
bounds, which we re-state here for completeness.

Theorem 3.5 (Theorems 1 and 2, Sinclair et al. (2022)). Under any arrival distribution satisfying
the assumptions outlined above, there exists a problem instance with K = 1, additive utilities, and
no perishing, such that any algorithm must incur ∆EF ≳ 1√

T
. Moreover, any algorithm that achieves

∆EF ≤ LT = o(1) or Envy ≤ LT = o(1) must also incur waste ∆efficiency ≳ min{
√
T , 1/LT }.

This lower bound also holds for the more general setting we consider, as even with arbitrary
utilities the optimal fair allocation in the case of a single resource is Xopt

t,θ = B
N , for t ∈ [T ], θ ∈ Θ,

where N =
∑

t,θ Nt,θ. This follows from the fact that solutions to the EG program are envy-free,
and the unique envy-free allocation and Pareto-efficient solution is B/N in the case of a single
resource.
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Since settings without perishable resources are a special case of our setting (e.g., a perishing
process with Tb > T a.s., for all b ∈ [B]), this lower bound holds in our case; the goal will then be
to design algorithms that achieve this lower bound with high-probability.

Attempts to naively utilize algorithms achieving this lower bound for the setting without per-
ishable resources face an obvious first obstacle in our setting. Any algorithm needs to properly
use the perishing prediction as well as leverage distributional information on the perishing process
to predict future perishing resources. This is difficult due to the interdependence between future
perishing and future allocations; not only does the algorithm’s decision today impact future perish-
ing (i.e., allocating many, resp. few, goods today results in potentially less, resp. more, perishing
tomorrow), but the algorithm’s decision today must consider such effects of all future decisions to
construct a prediction of future perishing. We present an algorithm that tackles these subtleties
and achieves the optimal envy-efficiency tradeoff in the following section.

4 Online Fair Allocation with Perishing Resources

4.1 The Algorithm

Our algorithm, Perishing-Guardrail, takes as input (i) a desired bound on envy LT , (ii) a pre-
specified allocation schedule σ (also referred to as an ordering or priority list), according to which
it allocates items, and (iii) a high probability parameter δ. The allocation schedule functionally
acts as a prediction of the order in which items will perish; though our theoretical results hold for
a variety of schedules, practically speaking “good” schedules allocate the items that are most likely
to perish early on, and defer items that are unlikely to perish to later rounds.

Using a high-probability upper bound on the number of arrivals throughout the time horizon,
denoted by N , our algorithm computes two allocations, X and X, that it will restrict itself to use
as long as there is sufficient budget remaining:{

X = B
N

(
1− c√

T

)
, c = (1 +

√
3 log(2T/δ))/βavg

X = X + LT .

X, the lower guardrail, is then a high-probability lower bound on the hindsight fair solution Xopt
t =

B/N , and X, the upper guardrail, is constructed to be LT away.
In order to decide when the algorithm allocates the lower versus upper guardrail in periods

where it has enough budget remaining, it checks if it can allocate the higher allocation X assuming
(i) a high-probability upper bound on the number of future arrivals guaranteeing them the lower
guardrail allocation, and (ii) a high-probability upper bound on future perishing. If so, it chooses
this higher allocation X, otherwise, it allocates X. Once the allocation is decided, the algorithm
allocates the resources in order according to the allocation schedule σ.

Under this algorithm, envy is managed by the construction of X and X being LT away, and
is only ever additionally incurred if the algorithm runs out of budget, in which case agents later
on in the time horizon will receive nothing. On the other hand, waste is incurred if the algorithm
allocates too little relative to the budget.

Before formally presenting our algorithm, we introduce notation that will be of use throughout.

Notation. For ease of notation, for t < t′ we letN [t,t′] = E
[
N[t,t′]

]
−ConfNt,t′ , N [t,t′] = E

[
N[t,t′]

]
+

ConfNt,t′ be high-probability upper and lower bounds on realized demand between t and t′ for
appropriately defined confidence terms. For t ∈ [T ], let At denote the set of items allocated in

11



round t, and PUAt the quantity of unallocated items that perished at the end of round t. For
i ∈ [B], σ(i) denotes the ith-ranked item in the allocation schedule. For any two items b, b′ such
that b comes (weakly) before b′ in σ, we write b ⪯σ b′. Then, for any subset S ⊆ [B] of items,
Prec(b | S) =

∑
b′∈S 1{b′ ⪯σ b} represents the number of items in S that are ranked (weakly)

before b according to σ. It will often be useful for us to consider a “slow” resource consumption
sample path, in which N tX items are allocated in each period t ∈ [T ], and no items perish ahead
of time. Fixing t ∈ [T ], S ⊆ [B] and b ∈ S, we let τb(t | S) be the period in which b would
have been entirely allocated after t under a slow resource consumption sample path. Formally,
τb(t | S) = inf{t′ ≥ t : N [t:t′]X > Prec(b | S)}. Under this slow process, we moreover define

the remaining set of items in period t to be [Bt] = {σ(⌊N<tX⌋), . . . , σ(B)}. With this notation
in hand we finally define ηt =

∑
b∈[Bt]

P
(
t ≤ Tb < min{T, τb(t | [Bt])}

)
, the expected number of

perished resources from t onwards under this slow process. See Table 1 for a summary of this
notation.

We now present our algorithm, Perishing-Guardrail, in Algorithm 1.

ALGORITHM 1: Perishing-Guardrail

Input: Budget B = Balg
1 , allocation schedule σ, envy parameter LT , confidence terms with respect to

the arrival process (ConfNt,t′)t,t′∈[T ],θ∈Θ and perishing inputs (ηt)t∈[T ]

Output: An allocation Xalg ∈ RT×|Θ|

Compute X = B
E[N ]+ConfN0,T

(
1− c√

T

)
for c = (1 +

√
3 log(2T/δ))/βavg X = X + LT

for t = 1, . . . , T do

Compute P t = ηt +
√
3 log(2T/δ)ηt // Compute ‘‘worst-case’’ perishing

if Balg
t < NtX then // insufficient budget to allocate lower guardrail

Set Xalg
t,θ =

Balg
t

Nt
for each θ ∈ Θ. Allocate items b ∈ [Balg

t ] according to σ.

else if Balg
t −NtX ≥ X(E[N>t] +ConfNt,T ) + P t then// use upper guardrail

Set Xalg
t,θ = X for each θ ∈ Θ. Allocate items b ∈ [Balg

t ] according to σ.

else // use lower guardrail

Set Xalg
t,θ = X for each θ ∈ Θ. Allocate items b ∈ [Balg

t ] according to σ.

Update Balg
t+1 = Balg

t −NtX
alg
t −PUAt

end

return Xalg

4.2 Performance Guarantee

In our main result, we show that under offset-expiring models, if (i) perishing is “slow,” and (ii)
the prediction of the perishing order σ is high-fidelity (in a sense made formal below), Perishing-
Guardrail achieves the optimal envy-efficiency tradeoff with high probability. We defer a discus-
sion of the conditions under which our algorithm enjoys its guarantees to Section 4.3.

Theorem 4.1. For t′ > t, let ConfNt,t′ =
√
2(t′ − t)|Θ|ρ2max log(2T

2/δ), and ConfPt =
√

3νt log(2T/δ),
and define

P t = ηt +
√
3 log(2T/δ)ηt.

Suppose the following conditions hold, for all t ∈ [T ]:

(1) E[P<t] +ConfPt ≤ E[N<t]−ConfN0,t−1

E[N ]+ConfN0,T
B and

(2) ηt ≤
√
T − t.
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Then with probability at least 1− 4δ, Perishing-Guardrail achieves:

∆EF ≲ max{1/
√
T ,LT } ∆efficiency ≲ min{

√
T , 1/LT } Envy ≲ LT ∆prop ≲ max{1/

√
T , LT },

where ≲ drops poly-logarithmic factors of T , log(1/δ), o(1) terms, and absolute constants.

Before proving our main technical result, we discuss salient aspects of the theorem statement.
Condition (1) of Theorem 4.1 is a sufficient condition on the joint distribution over perishing and
arrivals for the process to be offset-expiring with high probability, constructed via straightforward
concentration arguments. This condition isn’t expected to be restrictive in practice, as discussed
in Section 3. We also note that the dependence on δ can be removed by taking δ = O(1/T 2); in
this case, the derived bounds hold in expectation.

We next state the main building blocks upon which the theorem relies, deferring their proofs
to Appendix C.

The theorem relies on a careful analysis of both the allocations decided by Perishing-Guardrail
and the quantity of unallocated items that perished at the end of each round, under event E , defined
to be the intersection of the following three events:

1. EN = {|N(t,t′] − E
[
N(t,t′]

]
| ≤ ConfNt,t′ ∀ t, t′ > t }

2. EP = {|P<t − E[P<t]| ≤ ConfPt ∀ t ∈ [T ]}

3. EP = {P t ≥ PUA≥t ∀ t ∈ [T ]}, where PUA≥t represents the quantity of unallocated items
that perished between the end of round t and the end of round T − 1.1

In words, E represents the event that the arrival and perishing processes fall close to their respective
means, and moreover that P t is indeed a pessimistic estimate of the unallocated goods that perish
in the future. The following lemma implies that it suffices to restrict attention to E .

Lemma 4.2. Let E = EN ∩ EP ∩ EP . Then, P(E) ≥ 1− 4δ.

Though the concentration bounds associated with events EN and EP follow from standard
applications of Hoeffding’s inequality, the high-probability bound associated with EP presents ad-
ditional challenges. To upper bound the amount of unallocated resources that perished between t
and T − 1, we must now account for both the uncertainty in arrivals Nt, in addition to the realized
order in which resources perished, and relate these two sources of uncertainty to the time at which
the algorithm intended to allocate these resources. Establishing this fact hinges upon the careful
construction of the “slow” process described above, which decouples future perishing from future
allocations to compute P t. Note moreover that E and Condition (2) together imply that the total
spoilage under our algorithm is O(

√
T ).

Given E , Lemma 4.3 establishes that in every round, the algorithm has enough budget to
allocate at least the lower guardrail X to all future arrivals.

Lemma 4.3. Under event E, Balg
t ≥ N≥tX for all t ∈ [T ].

As a result, either X or X is allocated in every round, thus guaranteeing envy of at most
LT . With that we turn our attention to obtaining a bound on ∆efficiency. Note that whenever
the algorithm allocates X, by the threshold condition it must be that the remaining budget is
“tight within the confidence radius” of the future demand (hence, low waste). However, since the

1Perishing at the end of round T does not “matter” to the performance of our algorithm, in a sense, since anything
that is unallocated at the end of round T (perished or not) counts as waste.
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confidence radius scales with respect to the number of remaining rounds in the horizon, this is
an easier condition to satisfy early on versus later in the horizon. We first address this with the
following lemma, which states that there exists a timestep t0 close to the end of the time horizon
for which the algorithm allocates X (and allocates X for every round afterwards).

Lemma 4.4. Let t0 be the last time that Xalg
t ̸= X (or else 0 if the algorithm always allocates

according to X). Then, under event E, for some c̃ = Θ̃(1), t0 ≥ max{0, T − c̃L−2
T }.

With these lemmas in hand, we prove our main result.

Proof. By Lemma 4.3, the algorithm never runs out of budget under event E , which occurs with
probability at least 1− 4δ. In the remainder of the proof, we assume event E holds.

The following lemma implies that X is indeed a good approximation of Xopt, given E .
Lemma 4.5. Given E, Xopt

t,θ = B
N for all t ∈ [T ], θ ∈ Θ.

We now proceed with the bounds on envy and efficiency.
Counterfactual Envy: Under E , X ≤ B

N = Xopt
t,θ for all t, θ. We break the proof out into two

different cases, depending on X.

Case 1: X ≤ X ≤ B
N . By definition:

∆EF =
B

N
−X ≤ B

E[N ]−ConfN0,T
− B

E[N ] +ConfN0,T

(
1− c√

T

)

=
B

E[N ]

 1

1− ConfN0,T
E[N ]

− 1− c/
√
T

1 +
ConfN0,T
E[N ]

 = βavg

 1

1− ConfN0,T
E[N ]

− 1− c/
√
T

1 +
ConfN0,T
E[N ]

.

Using the fact that ConfN0,T =
√
2T |Θ|ρ2max log(2T

2/δ) and E[N ] ∈ Θ(T ), there exists c1, c2 ∈

Θ̃(1) such that, for large enough T ,

(
1− ConfN0,T

E[N ]

)−1

≤
(
1− c1/

√
T
)−1

≤ 1 + 2c1/
√
T and(

1 +
ConfN0,T
E[N ]

)−1

≥
(
1 + c2/

√
T
)−1

≥ 1− c2/
√
T . Plugging this into the above we have that:

∆EF ≤ βavg

(
1 + 2c1/

√
T − (1− c/

√
T )(1− c2/

√
T )
)

≤ βavg(2c1 + c2 + c)/
√
T ≲ 1/

√
T .

Case 2: X ≤ B
N ≤ X. We have that:

∆EF = max

{
B

N
−X,

B

N
−X

}
≤ X −X = LT .

Combining these two cases gives that ∆EF ≲ max{1/
√
T ,LT } as needed.

Hindsight Envy: Envy is trivially bounded above by LT since we have that for any t, t′:

Xt′ −Xt ≤ |X −X| = LT .
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Efficiency: We next consider the bound on distance to efficiency ∆efficiency. Here we leverage
Lemma 4.4, and let t0 be the last time that Xt ̸= X. This implies that:

∆efficiency = B −
∑
t

NtX
alg
t −PUA≤T

= Bt0 +
∑
t<t0

NtX
alg
t +PUA<t0 −

∑
t

NtX
alg
t −PUA≤T

≤ Bt0 −
∑
t≥t0

NtX
alg
t

< Nt0X +N>t0X + P t0 −Nt0X −N>t0X

= X(N>t0 −N>t0)− (X −X)(N>t0 −Nt0) + P t0 ,

where the first inequality follows from the fact that PUA<t0 ≤ PUA≤T , and the second from

Xalg
t0

= X. Noting that X ≤ βavg and N>t0 − N>t0 ≤ 2ConfNt0,T , we have the following upper
bound on the first term:

X(N>t0 −N>t0) ≤ βavg · 2
√
2(T − t0)|Θ|ρ2max log(2T

2/δ).

We loosely upper bound the second term by (X − X)Nt0 ≤ LT |Θ|(µmax + ρmax). Finally, by
Lemma 4.4 we have that t0 ≥ max{0, T − c̃L−2

T } for some c̃ ∈ Θ̃(1). Hence, we obtain:

∆efficiency ≤ 2βavg
√
2c̃|Θ|ρ2max log(2T

2/δ)min{
√
T , 1/LT }+ LT |Θ|(µmax + ρmax)

+ (1 +
√
3 log(2T/δ)

√
T − t0

≤ 2βavg
√

2c̃|Θ|ρ2max log(2T
2/δ)min{

√
T , 1/LT }+ LT |Θ|(µmax + ρmax)+

(1 +
√
3 log(2T/δ)min{

√
T , 1/LT },

where we combined the definition of P t0 with the upper bound on T − t0 to finalize the bound.

Proportionality: In this setting, ∆prop = ∆EF sinceXopt = B
N , so ∆prop = ∆EF ≲ max{1/

√
T ,LT }.

4.3 Discussion of Assumptions

The motivation behind the conditions in Theorem 4.1 is similar to the one outlined in Section 3
regarding offset-expiring processes. In practical settings such as food pantries, it must be that
a vanishingly small number of goods perish in between replenishments (otherwise, the food bank
is being run poorly). For Condition (2), note the natural dependence on t in the upper bound.
As t increases, the “worst-case” allocation time τb(t | [Bt]) can only (weakly) decrease. Thus,
the likelihood that a good’s perishing time falls in [t,min{T, τb(t | [Bt])}) can only decrease as t
increases. Putting this together with the fact that the size of the set [Bt] itself decreases in each
round shows that this quantity can only decrease.

We next provide necessary and sufficient conditions on the perishing distribution to satisfy the
conditions outlined in Theorem 4.1. Since our goal is to highlight the perishing process’s dependence
on T , for clarity of exposition we assume B = N = T almost surely, and set X = 1. At the cost
of cumbersome algebra, identical insights can be derived when relaxing this assumption. We omit
the straightforward proofs of the facts in this section.

The following proposition establishes that, for our conditions to hold, in the worst case at most
O(

√
T ) items can perish in the first period, in expectation.
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Proposition 4.6. Suppose
∑

b∈[B] P(Tb = 1) ≥
√
T − 1. Then, for any ordering σ: (i) Condition

(1) is not satisfied for any value of δ, and (ii) η1 >
√
T − 1.

Note that this necessary condition fails to hold for one of the most standard models of perishing:
geometrically distributed perishing with parameter 1/T (that is, a constant fraction of items perish
every day). This highlights that one of the most popular models in the literature is, in a sense, far
too pessimistic; for this setting, there is no hope of achieving low envy and efficiency.

Having established this necessary condition, we next consider the two extreme models of per-
ishing that have been considered in the literature: i.i.d. and deterministic perishing times. In a
sense, the former setting is the most difficult case for the decision-maker, as the best they can do
is to choose which items to allocate uniformly at random, resulting in a high number of ‘mistakes’
in hindsight. In this case, then, it must be that the vast majority of items perish toward the end
of the time horizon. We formalize this intuition below.

Proposition 4.7. Suppose items’ perishing times are drawn i.i.d. from the same distribution in
each period, and satisfies for all b ∈ [B], t ∈ [T − 1]:

1. P(t ≤ Tb < T ) ≤
√

T−t
(T−t+1)2

2. P(Tb = 1) ≥ 1− t
T −

√
T−t

(T−t+1)2
.

Furthermore, let σ allocate items arbitrarily. Then, (i) there exists δ∗ > 0 such that Condition (1)
is satisfied ∀ δ ≤ δ∗, and (ii) ηt ≤

√
T − t for all t ∈ [T ].

Deterministic perishing times find themselves at the opposite end of the spectrum: obtaining
a “good” perishing prediction comes for free. Fairness, however, does not; to see this, suppose
all items perish at the end of the first period. At a high level, then, fairness in the deterministic
setting is hindered by “redundancy” in the initial budget (i.e. resources that will perish at the
same timestep). Proposition 4.8 formalizes this idea.

Proposition 4.8. Suppose items’ perishing times are known, deterministic, and offset-expiring. Let
Pt =

∑
b∈[B] 1{Tb = t} be the number of resources that perish at time t, and suppose

∑
τ≥t Pτ ≤√

T − t for all t. If σ allocates items in increasing order of Tb, breaking ties arbitrarily, then
ηt ≤

√
T − t for all t ∈ [T ].

In the previous example, the hindrance arises from the fact that the algorithm is unable to
allocate resources fast enough relative to the time they are perishing. We close with an example
combining these two aspects, both “redundancy” (with multiple resources with identical expected
perishing times) and classes of i.i.d. distributions.

Proposition 4.9. Suppose items are partitioned into two classes of size
√
T and T −

√
T respec-

tively. Suppose that within each class the items are drawn i.i.d. from the same distribution, and
that the following hold:

1. P(T (1)
b < T ) = 1

2

√
1− 1√

T
for all items in the first class;

2. P(T (2)
b < T ) = 1

2

√
1

T−
√
T

for all items in the second class;

3.
√
TP(T (1)

b < t) + (T −
√
T )P(T (2)

b < t) < t for all t ∈ [T − 1].
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Let σ allocate all items in the first class before items in the second class, breaking ties arbitrarily
within classes; then (i) there exists δ∗ > 0 such that Condition (1) is satisfied ∀δ ≤ δ∗, and
(ii) ηt ≤

√
T − t for all t ∈ [T ].

We leave a further investigation of the necessity of the condition on ηt to future work.

5 Online Fair Allocation with Non-Linear Utility Functions

In this section we discuss the extension of our results to a broad class of utility functions, moving
past the additive utility assumption typically made in the literature. In particular, we consider the
following class of utilities:

Assumption 1. For θ ∈ Θ, u(·, θ) is concave, one-positively homothetic2, and strictly increasing.

We refer to this class of functions as regular utilities. Examples include:

• Linear: u(x, θ) = ⟨wθ, x⟩ for some vector of per-resource preferences wθ ∈ RK
>0.

• Cobb-Douglas: u(x, θ) =
∏K

k=1wθ,kx
αθ,k

k , where wθ ∈ RK
>0, αθ ∈ RK

>0, and
∑

k∈[K] αθ,k = 1.

• Leontief + ϵ-linear: Such an ϵ-perturbation trick is more widely useful for utilities which
are homothetic and concave, but not strictly increasing.: u(x, θ) = min{xk/wθ,k}+ ϵ⟨w′

θ, xθ⟩,
where wθ, w

′
θ ∈ RK

>0, and ϵ > 0.

Note that the popular class of utility functions, Leontief utilities, fails to satisfy the requirements
of Proposition 5.2 since they are not strictly increasing. In Appendix E we however show that our
algorithmic framework can nonetheless be leveraged to obtain fairness bounds in this latter setting
by considering the Leontief+ϵ-linear perturbation, for an appropriately chosen value of ϵ.

In order to disentangle the complexity of non-additive utilities with that of the uncertainty
of the perishing process, in the remainder of this section we consider the no-perishing setting.
Tacking perishing onto these insights then follows immediately via a straightforward modification
of the definition of offset-expiring processes (for which the hindsight fair solution is the same
as that under no-perishing), and by maintaining separate allocation schedules for each of the K
resources. Finally, before proceeding, we emphasize that our contribution here is technical, rather
than algorithmic. The algorithmic idea presented in Algorithm 2 was first introduced in Sinclair
et al. (2022); their analysis, however, relied heavily on the additive utility assumption. Via careful
analysis, we show that the insights continue to hold for this much broader, practical class of utilities.

5.1 Structure of Offline Eisenberg-Gale Solutions

We being by establishing properties of solutions to the EG program under regular utilities that will
be leveraged to establish our algorithm’s guarantees. We defer their proofs to Appendix D.1.

Recall, one of the fairness metrics we consider is that of counterfactual envy, the distance
between the utilities under the algorithm’s allocations and the hindsight optimal solution produced
by the EG program (easily shown to be fair under additive utilities). We first establish that
this latter solution remains a meaningful benchmark for regular utilities (i.e., it is indeed fair in
hindsight).

The following property of solutions to the EG program will simplify subsequent analyses.

2u(·, θ) is one-positively homothetic if u(αx, θ) = αu(x, θ) for all α > 0.
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Proposition 5.1. Suppose u(x, θ) is concave in x for all θ ∈ Θ. Then there exists a time-invariant
solution Xopt to the EG program. That is, for all θ ∈ Θ, Xopt

t,θ = Xopt
t′,θ for all t, t′ ∈ [T ].

Thus, in the remainder of the section we will equivalently consider the following formulation of
the EG program:

max
X∈R|Θ|×K

∑
θ∈Θ

Nθ log u(Xθ, θ) (EG)

s.t.
∑
θ∈Θ

NθXθ,k ≤ Bk ∀ k ∈ [K]

Xθ,k ≥ 0 ∀ θ ∈ Θ, k ∈ [K].

With this simplification in hand, we show that solutions to the EG program satisfy the three
fairness properties defined in Definition 3.1.

Proposition 5.2. Suppose u(·, θ) satisfies Assumption 1. Then, any solution to the EG program
is Pareto-efficient, envy-free, and proportional.

The proof of Proposition 5.2 relies on the fact that, under the regularity assumption, solutions
to the EG program correspond precisely to allocations in a competitive equilibrium of the corre-
sponding Fisher market with equal incomes. We then leverage the seminal result of Varian (1974)
which states that, under mild conditions, competitive equilibria are envy-free and Pareto efficient.
With some additional work, proportionality follows.

Proposition 5.3, which describes sensitivity of solutions to the EG program, is central to estab-
lishing our algorithm’s performance guarantee, and is our key technical contribution of this section.
To the best of our knowledge the second property, termed competitive monotonicity in the litera-
ture, was only known to hold for the setting of weak gross substitutes (Jain and Vazirani, 2010).

Proposition 5.3. Let x((Nθ)θ∈Θ) denote optimal primal solutions to the Eisenberg-Gale program
for a given vector of arrivals (Nθ)θ∈Θ, and fix ζ > 0. Then, we have that:

(1) Scaling: If Ñθ = (1 + ζ)Nθ for every θ ∈ Θ, then:

x((Ñθ)θ∈Θ) =
x((Nθ)θ∈Θ)

1 + ζ

u(x((Nθ)θ∈Θ)θ, θ)− u(x((Ñθ)θ∈Θ)θ, θ) =

(
1− 1

1 + ζ

)
u(x((Nθ)θ∈Θ)θ, θ)

(2) Monotonicity: If Nθ ≤ Ñθ for every θ ∈ Θ then

u(x((Ñθ)θ∈Θ)θ, θ) ≤ u(x((Nθ)θ∈Θ)θ, θ) ∀θ ∈ Θ

5.2 Algorithm and Performance Guarantee

Whereas for the setting with additive utilities andK = 1, it suffices to construct guardrails such that
∥X −X∥ = LT , for more general utility functions an LT -distance in allocations need not translate
into an LT distance in utilities. Moreover, a key challenge in achieving lower counterfactual envy is
the construction of guardrails such that the utilities under these allocations sandwiches the utilities
under Xopt. Our algorithm achieves this by solving the EG program twice: once assuming a high-
probability upper bound on the arrival sequence, and once assuming a high-probability lower bound
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ALGORITHM 2: NL-Guardrail

Input: Budget B = Balg
1 , confidence terms (Conft,t′,θ)t,t′∈[T ],θ∈Θ, desired bound on envy LT , arrival

confidence bounds (nθ)θ∈Θ, (nθ)θ∈Θ

Output: An allocation Xalg ∈ RT×|Θ|×K

Solve for X = x((nθ)θ∈Θ) as the solution to (EG) with arrival vector (nθ)θ∈Θ

Solve for X = x((nθ)θ∈Θ) as the solution to (EG) with arrival vector (nθ)θ∈Θ // solve for

guardrails

for t = 1, . . . , T do
for each resource k ∈ [K] do

if Balg
t,k <

∑
θ∈Θ Nt,θXθ,k then // insufficient budget to allocate lower guardrail

Set Xalg
t,θ,k =

Balg
t,k∑

θ∈Θ Nt,θ
for each θ ∈ Θ

else if Balg
t,k −∑θ Nt,θXθ,k ≥∑θ∈Θ Xθ,k(E[N>t,θ]+Conft,T,θ) then// use upper guardrail

Set Xalg
t,θ,k = Xθ,k for each θ ∈ Θ

else // use lower guardrail

Set Xalg
t,θ,k = Xθ,k for each θ ∈ Θ

end

Update Balg
t+1 = Balg

t −∑θ∈Θ Nt,θX
alg
t,θ

end

return Xalg

on the arrival sequence. It then allocates either of the two guardrails similarly to Algorithm 1. Our
algorithm, NL-Guardrail, is presented in Algorithm 2.

Our main result shows that, under carefully constructed guardrails, NL-Guardrail achieves
the optimal envy-efficiency trade-off for all regular utility functions.

Theorem 5.4. Fix LT = o(1), and let NL-Guardrail be initialized with

Conft,t′,θ =
√
2(t′ − t)ρ2max log(2T

2|Θ|/δ) ∀ t′ > t, θ ∈ Θ

nθ = E[Nθ]

(
1 + max

θ

Conf0,T,θ
E[Nθ]

)
∀ θ ∈ Θ

nθ = E[Nθ](1− c) ∀ θ ∈ Θ, c =
LT

maxθ∈Θ u(B, θ)

(
1 + max

θ

Conf0,T,θ
E[Nθ]

)
−max

θ

Conf0,T,θ
E[Nθ]

.

Then, with probability at least 1− δ, NL-Guardrail achieves:

Envy ≤ LT ∆EF ≲ max{1/
√
T , LT } ∆efficiency ≲ min{

√
T , 1/LT } ∆prop ≲ max{1/

√
T , LT },

where ≲ drops poly-logarithmic factors of T , log(1/δ), o(1) terms, and absolute constants.

The outline of the proof follows similarly to that of Theorem 4.1. Namely, we restrict our
attention to a “good event” E = {|N(t,t′],θ − E

[
N(t,t′],θ

]
| ≤ Conft,t′,θ ∀ t′ > t, θ ∈ Θ} which holds

with probability 1 − δ. We then show that, given E , the algorithm never runs out budget, and
is adaptively cautious. The main obstacle in establishing our bounds lies in (i) analyzing agents’
utilities under X and X, static solutions to the EG program which are fair, and (ii) relating these
back to Xopt, the offline optimal solution, all as a function of LT . Proposition 5.3 is central in
tackling this challenge. We defer the proof of the theorem to Appendix D.2.
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6 Numerical Experiments

We conclude by complementing the theoretical analysis of Perishing-Guardrail (Section 4) and
NL-Guardrail (Section 5) with a numerical study using data provided by a food bank adapted
from Sinclair et al. (2022). For each of the models described in Sections 4 and 5, we first describe
the data-driven experiments, and then compare the effectiveness of our algorithms to that of state-
of-the-art benchmarks. All of the code for the experiments is available at https://github.com/
seanrsinclair/Online-Resource-Allocation. Due to space limitations, see Appendix F for
experiments with non-linear utilities.

6.1 Experimental setup

In each simulation we set the total budget B to be
∑

t,θ E[Nt,θ], so that the average budget per
unit demand is βavg = 1.

For our first set of experiments, we consider a single type of perishable resource with individual
utilities u(x, θ) = x, for simplicity. We test the performance of our algorithm for three different
perishing distributions satisfying the conditions outlined in Section 4.3 (motivated by the examples
in Section 4.3):

1. I.I.D.: Tb ∈ {T/2, T}, with P(Tb = T/2) =
√

1
2

T
( 1
2
T+1)2

.

2. Deterministic: Deterministic perishing times satisfying offset-expiry are constructed such
that the number of duplicate items perishing after t is exactly

√
T − t.

3. Two-Class: Tb ∈ {T/2, T}, with the first
√
T resources perishing according to P(T (1)

b =

T/2) = 1
2

√
1− 1√

T
, and the remaining resources perishing according to P(T (2)

b = T/2) =

1
2

√
1

T−
√
T
.

6.2 Simulation Results

For each of the experiments, we compare the performance of Perishing-Guardrail on values of
LT ∈ {0, T−1/2, T−1/3} to two state-of-the-art algorithms:

1. Guarded-Hope (Sinclair et al. (2022)) which similarly takes as input an envy parameter
LT , but does not account for perishing;

2. Static CE, which solves (EG-P), replacing the random variables (Nt, Pt)
T
t=1 with their ex-

pectation, and allocating according to the initial solution until it runs out of budget.

Our results can be found in Fig. 1.
In all settings, running Perishing-Guardrail with LT > 0 vastly outperforms the zero-envy

variant, with LT = 0. This highlights how the use of both upper and lower guardrails improves
efficiency with little-to-no trade-off on envy. We moreover observe relatively little empirical dif-
ference in performance on ∆efficiency between Perishing-Guardrail for LT = T−1/2 and T−1/3;
however, ∆EF is much smaller for LT = T−1/2. This suggests that setting LT = T−1/2 achieves
strong performance on ∆EF with relatively little trade-off in ∆efficiency.

We also observe that Perishing-Guardrail outperforms Guarded-Hope across all settings
(with the exception of theDeterministic setup, for which perishing plays no role due to its slow and
non-random nature). This highlights how accounting for future perishing is necessary for designing
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Perishing-Guardrail LT = 0 Perishing-Guardrail LT = T−1/2 Perishing-Guardrail LT = T−1/3 Guarded Hope LT = T−1/2 Static CE

Figure 1: Comparison of (i) Perishing-Guardrail for LT = 0, T−1/2 and T−1/3, (ii) Guarded-Hope
from Sinclair et al. (2022) with LT = T−1/2, and (iii) Static CE.
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an algorithm: without it, the algorithm fails to allocate resources that are set to perish, as a result
running out and yielding poor performance on ∆EF. Finally, we see that Static CE achieves poor
performance on ∆EF. Such behavior is intuitive since with constant probability arrivals come in
higher than expected; as a result the EG program’s solution allocates too aggressively and similarly
runs out of budget.

7 Conclusion

In this paper we considered a practically motivated variant of the canonical problem of online fair
allocation: a principal has a budget B of perishable resources to allocate over T rounds. Each round
sees a random number of arrivals with potentially non-linear utility functions, and the principal
must commit to an allocation before moving on to the next round. We derived an algorithm which,
under “good” allocation schedules, and “regular” utilities, achieves the optimal envy-efficiency
trade-off under no perishing. In so doing, we demonstrate the effectiveness of guardrail allocations
for a much wider variety of settings than what was initially known.

Several open questions remain, including (i) investigating the necessity of the condition on
ηt to achieve this trade-off, (ii) deriving the envy-efficiency Pareto frontier in relation to total
waste (include spoilage), and (iii) considering more appropriate notions of envy for non-offset-
expiring processes. Finally, though this paper considered exogenous depletion of the budget, a
natural practical extension is one whereinB evolves stochastically, accounting for external donations
independent of the allocations made by the algorithm.
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Bonald, T., Massoulié, L., Proutiere, A., and Virtamo, J. (2006). A queueing analysis of max-min
fairness, proportional fairness and balanced fairness. Queueing systems, 53:65–84.

Cole, R., Gkatzelis, V., and Goel, G. (2013). Mechanism design for fair division: Allocating divisible
items without payments. In EC 2013.

Donahue, K. and Kleinberg, J. (2020). Fairness and utilization in allocating resources with uncertain
demand. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency,
pages 658–668.

Eaton, J. (2022). The u.s. has wasted over 82 million covid vaccine doses. NBC News.

Eisenberg, E. (1961). Aggregation of utility functions. Management Science, 7(4):337–350.

Elzayn, H., Jabbari, S., Jung, C., Kearns, M., Neel, S., Roth, A., and Schutzman, Z. (2019). Fair
algorithms for learning in allocation problems. In Proceedings of the Conference on Fairness,
Accountability, and Transparency, pages 170–179.

Freeman, R., Zahedi, S. M., and Conitzer, V. (2017). Fair social choice in dynamic settings. In
Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), pages
4580–4587. International Joint Conferences on Artificial Intelligence Marina del Rey, CA.

Freund, D. and Hssaine, C. (2021). Fair incentives for repeated engagement. arXiv preprint
arXiv:2111.00002.

23

https://www.hpcwire.com/off-the-wire/aristotle-project-advances-campus-cloud-technologies/
https://www.hpcwire.com/off-the-wire/aristotle-project-advances-campus-cloud-technologies/


Friedman, E., Psomas, C.-A., and Vardi, S. (2015). Dynamic fair division with minimal disruptions.
In Proceedings of the Sixteenth ACM Conference on Economics and Computation, EC ’15, page
697–713, New York, NY, USA. Association for Computing Machinery.

Friedman, E., Psomas, C.-A., and Vardi, S. (2017). Controlled dynamic fair division. In Proceedings
of the 2017 ACM Conference on Economics and Computation, EC ’17, page 461–478, New York,
NY, USA. Association for Computing Machinery.

Gerding, E., Perez-Diaz, A., Aziz, H., Gaspers, S., Marcu, A., Mattei, N., and Walsh, T. (2019).
Fair online allocation of perishable goods and its application to electric vehicle charging.

Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., and Stoica, I. (2011). Dominant
resource fairness: Fair allocation of multiple resource types. In Nsdi, volume 11, pages 24–24.

Grosof, I., Scully, Z., and Harchol-Balter, M. (2019). Load balancing guardrails: keeping your
heavy traffic on the road to low response times. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 3(2):1–31.

Hanukov, G., Avinadav, T., Chernonog, T., and Yechiali, U. (2020). A service system with per-
ishable products where customers are either fastidious or strategic. International Journal of
Production Economics, 228:107696.

Hassanzadeh, P., Kreacic, E., Zeng, S., Xiao, Y., and Ganesh, S. (2023). Sequential fair resource
allocation under a markov decision process framework. arXiv preprint arXiv:2301.03758.

He, J., Procaccia, A. D., Psomas, A., and Zeng, D. (2019). Achieving a fairer future by chang-
ing the past. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19, pages 343–349. International Joint Conferences on Artificial Intelligence
Organization.

Jain, K. and Vazirani, V. V. (2010). Eisenberg–gale markets: algorithms and game-theoretic
properties. Games and Economic Behavior, 70(1):84–106.

Joe-Wong, C., Sen, S., Lan, T., and Chiang, M. (2013). Multiresource allocation: Fairness–efficiency
tradeoffs in a unifying framework. IEEE/ACM Transactions on Networking, 21(6):1785–1798.

Kalinowski, T., Narodytska, N., and Walsh, T. (2013). A social welfare optimal sequential allocation
procedure. In Twenty-Third International Joint Conference on Artificial Intelligence.

Kelly, F. P., Maulloo, A. K., and Tan, D. K. H. (1998). Rate control for communication networks:
shadow prices, proportional fairness and stability. Journal of the Operational Research society,
49(3):237–252.

Lien, R. W., Iravani, S. M., and Smilowitz, K. R. (2014). Sequential resource allocation for nonprofit
operations. Operations Research, 62(2):301–317.

Lupkin, S. (2020). How feds decide on remdesivir shipments to states remains mysterious.

Manshadi, V., Niazadeh, R., and Rodilitz, S. (2021). Fair dynamic rationing. Available at SSRN
3775895.

Mattei, N., Saffidine, A., and Walsh, T. (2017). Mechanisms for online organ matching. In IJCAI,
pages 345–351.

24



Mattei, N., Saffidine, A., and Walsh, T. (2018). Fairness in deceased organ matching. In Proceedings
of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pages 236–242.

Nahmias, S. (2011). Perishable inventory systems, volume 160. Springer Science & Business Media.
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A Table of Notation

Symbol Definition

Problem setting specifications

T Total number of rounds

K, Bk Number of resources and budget for resource k ∈ [K]

Θ, θ Set of types for individuals, and specification for individual’s type

u(x, θ) : Rk ×Θ → R+ Utility function for individuals of type θ

Nt,θ Number of individuals of type θ in round t

Ft Known distribution over (Nt,θ)θ∈Θ

N≥t,θ
∑

t′≥tNt′,θ

σt,θ, ρt,θ, µt,θ Var[Nt,θ], bound on |Nt,θ − E[Nt,θ]|, and E[Nt,θ]

σ2
min, σ

2
max The respective maximum and minimum value of each quantity

Tb, Pt Perishing time for resource b ∈ [B] and Pt =
∑

b 1{Tb = t}
βavg

∑
k Bk/

∑
θ∈Θ E[Nθ]

Xopt, Xalg Optimal fair allocation in hindsight and allocation by algorithm

∆EF maxt∈[T ],θ∈Θ∥u(Xalg
t,θ , θ)− u(Xopt

t,θ , θ)∥∞
Envy maxt,t′∈[T ]2,θ,θ′∈Θ2 u(Xalg

t′,θ′ , θ)− u(Xalg
t,θ , θ)

∆efficiency
∑

k Bk −
∑

θ∈Θ
∑

tNt,θX
alg
t,θ,k −

∑
t,k PUAt,k

Algorithm specification

Balg
t Budget available to the algorithm at start of round t

Conft Confidence bound on Nt,θ and Pt, indicated by superscript

LT Desired bound on ∆EF,Envy

σ Pre-specified allocation schedule

δ High probability constant

Additional notation

Φ(·) Standard normal CDF

ρ̄θ, σ̄
2
θ , µ̄θ Averages of these quantities, i.e. 1

T

∑
t ρt,θ,

1
T

∑
t σ

2
t,θ,

1
T

∑
t E[Nt,θ]

At Set of resources allocated by algorithm in round t

PUAt Resources which perish and are un-allocated in round t,
∑

b 1{Tb = t, b ̸∈ At}
Prec(b | S) ∑

b′∈S 1{b′ ⪯σ b}
τb Period in which b would have been allocated after t under slow consumption

τb(t | S) = inf{t′ ≥ t : N [t:t′]X > Prec(b | S)}.
[Bt] {σ(⌊N<tX⌋), . . . , σ(B)}
ηt

∑
b∈[Bt]

P
(
t ≤ Tb < min{T, τb(t | [Bt])}

)
Table 1: Common notation
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B Section 3 Proofs

Proof. Let (pt)t∈[T ] and (αt,θ)t∈[T ],θ∈Θ denote the dual variables corresponding to the budget con-
straints and nonnegativity constraints, respectively. Then, by the KKT conditions, we have:

1. pt > 0 =⇒ ∑
τ≥t

∑
θ Nτ,θXτ,θ ≤ B − P<t

2. αt,θ > 0 =⇒ Xt,θ = 0

3. 1
Xt,θ

≤∑τ≤t pτ , with equality whenever Xt,θ > 0.

Let p1 = N/B, and pt = 0 for all t ≥ 2. This construction satisfies properties (1) and (3). It thus
suffices to check feasibility, i.e. that

∑
τ≥t

∑
θ Nτ,θXτ,θ ≤ B − P<t for all t, for Xt,θ = B/N . This

holds if, for all t:

B

N
N≥t ≤ B − P<t ⇐⇒ P<t ≤ B

(
1− N≥t

N

)
= B · N<t

N
,

which holds by assumption.

C Section 4 Proofs

C.1 Theorem 4.1 auxiliary lemmas

C.1.1 Proof of Lemma 4.2

The result is a corollary of high-probability upper bounds on EN , EP and EP .
Lemma C.1 (Concentration on Arrival Process). EN holds with probability at least 1− δ.

Proof. Fix t′ < t. Recall, for all τ ∈ [T ], ρτ,θ := |Nτ,θ − E[Nτ,θ]|, which implies

Nτ,θ ∈ [E[Nτ,θ]− ρτ,θ,E[Nτ,θ] + ρτ,θ].

Thus, from a simple application of Hoeffding’s inequality (Theorem H.1):

P(|N(t,t′] − E
[
N(t,t′]

]
| ≥ ϵ) ≤ 2 exp

(
− 2ϵ2∑

θ

∑
τ∈(t,t′] 4ρ

2
τ,θ

)
(5)

We now consider our desired bound.

P(|N(t,t′] − E
[
N(t,t′]

]
≤ ϵ∀ t, t′) ≥ 1−

∑
t,t′

P(|N(t,t′] − E
[
N(t,t′]

]
| ≥ ϵ)

≥ 1−
∑
t,t′

2 exp

(
− 2ϵ2∑

θ

∑
τ∈(t,t′] 4ρ

2
τ,θ

)

≥ 1−
∑
t,t′

2 exp

(
− ϵ2

2|Θ|ρ2max(t
′ − t)

)
where the first inequality follows from a union bound, the second inequality by plugging in Hoeffd-
ing’s bound (5), and the third inequality by upper bounding ρτ,θ by ρmax, for all τ ∈ (t, t′].

Solving for ϵ such that 2 exp
(
− ϵ2

2|Θ|ρ2max(t
′−t)

)
= δ/T 2, we obtain our result.
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Lemma C.2 (Concentration on Perishing Process). EP holds with probability at least 1− δ.

Proof. By definition, P<t =
∑

b∈[B] 1{Tb < t}, and E[P<t] =
∑

b∈[B] P(Tb < t). Moreover, for
b ∈ [B], 1{Tb < t} is a Bernoulli random variable with probability of success P(Tb < t). Using
Theorem H.2 we then have that:

P(|P<t − νt| ≥ ϵνt) ≤ 2 exp

(
−νtϵ

2

3

)
.

Setting the right-hand side equal to δ/T and solving for ϵ yields ϵ =
√

3
νt
log(2T/δ). Thus we have

that with probability at least 1− δ/T :

|P<t − νt| ≤ νtϵ =
√
3νt log(2T/δ).

Taking a union bound over t yields the desired result.

Lemma C.3. Given EN , EP holds with probability at least 1− δ.

Proof. Given Balg
t , we first upper bound PUA≥t as a function of the worst-case perishing times

τb(t | [Bt]). Recall, PUA≥t represents the amount of unallocated goods that perished between t
and T − 1. Formally:

PUA≥t ≤
T−1∑
τ=t

∑
b∈[Balg

τ ]

1{Tb = τ, b ̸∈ Aτ}

≤
∑

b∈[Balg
t ]

1
{
t ≤ Tb < min{T, τb(t | [Balg

t ])}
}
, (6)

where (6) follows from the fact that, under EN , N [t:t′] ≤ N[t:t′] for all t′ ∈ [T ] and, as long as
the algorithm hasn’t run out of budget (at which point perishing is no longer possible), the least

possible amount that could have been allocated is X. Thus, τb(t | [Balg
t ]) upper bounds the time

at which b would have been allocated under the true arrival sequence (Nt′,θ)t′≥t,θ∈Θ, since it could
have been that an item b′ ≺σ b perished early, resulting in an earlier allocation date for b.

Via a similar argument, it is easy to see that [Balg
t ] ⊆ [Bt]. Hence, Prec(b | [Balg

t ]) ≤ Prec(b |
[Bt]); it then follows that τb(t | [Balg

t ]) ≤ τb(b | [Bt]). Plugging this into (6), we obtain:

PUA≥t ≤
∑

b∈[Bt]

1
{
t ≤ Tb < min{T, τb(t | [Bt])}

}
. (7)

Applying a Chernoff bound to the sum of independent Bernoulli random variables on the left-
hand side of (7) (see Theorem H.2), we obtain that, with probability at least 1− δ/T :

PUA≥t ≤
∑

b∈[Bt]

P(t ≤ Tb < min{T, τb(t | [Bt])})

+
√

3 log(2T/δ)
∑

b∈[Bt]

P(t ≤ Tb < min{T, τb(t | [Bt])})

= ηt +
√

3 log(2T/δ)ηt

= P t,

by definition. A union bound over t completes the proof of the result.
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Proof. The final high-probability bound follows from straightforward algebra, putting Lemmas C.1,
C.2 and C.3 together.

C.1.2 Proof of Lemma 4.3

Proof. By induction on t.
Base Case: t = 1.

By construction:

NX = N
B

E[N ] +ConfN0,T

(
1− c√

T

)
≤ (E[N ] +ConfN0,T )

B

E[N ] +ConfN0,T

(
1− c√

T

)
under event E

≤ B = Balg
1 .

Step Case: t− 1 → t.
In the step case we further condition on the previous allocations made by the algorithm, namely

(Xτ )τ≤t.

Case 1 : Xτ = X for all τ ≤ t.
Since X was allocated for all τ ≤ t, by the recursive budget update:

Balg
t = B −N<tX −PUA<t,

where PUA<t denotes the quantity of unallocated goods that perished before the end of round
t. Re-arranging, Balg

t ≥ N≥tX is then equivalent to B ≥ NX + PUA<t. Since PUA<t is non-
decreasing with respect to t, it suffices to show that this holds for t = T , or that:

B ≥ NX +PUA<T .

Noting that PUA<T = PUA≥1, we apply Lemma C.3 and obtain that the right-hand side is
upper bounded by NX + P 1. Additionally using the fact that N ≤ N under EN , we have:

NX + P 1 ≤ NX + P 1

= B

(
1− c√

T

)
+ η1 +

√
3 log(2T/δ)η1

≤ B

(
1− c√

T

)
+ (1 +

√
3 log(2T/δ))

√
T ,

where the equality follows by definition of X, and the final inequality follows from the assumption
that η1 ≤

√
T . Thus, it suffices to show that

B ≥ B

(
1− c√

T

)
+ (1 +

√
3 log(2T/δ))

√
T ,

or equivalently that

Bc/
√
T ≥ (1 +

√
3 log(2T/δ))

√
T .

Recall, c = (1 +
√
3 log(2T/δ))/βavg = (1 +

√
3 log(2T/δ)) · E[N ]/B, by definition. Multiplying by

B/
√
T , and using the fact that Nt ≥ 1 almost surely (and thus E[N ] ≥ T ), we obtain the desired

inequality.
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Case 2 : There exists τ < t such that Xτ = X.
Let t∗ = sup{τ < t : Xτ = X}. We have:

Balg
t = Balg

t∗ −Nt∗X −N(t∗,t)X −PUA[t∗,t).

Since X was allocated at t∗, by construction it must have been that Balg
t∗ ≥ Nt∗X +N>t∗X + P t∗ .

Plugging this into the above and simplifying we have:

Balg
t ≥ Nt∗X +N>t∗X + P t∗ −Nt∗X −N(t∗,t)X −PUA[t∗,t)

= N>t∗X −N(t∗,t)X + P t∗ −PUA[t∗,t)

≥ N≥tX + P t∗ −PUA[t∗,t),

where the second inequality follows from the fact that, under the good event, N>t∗ ≥ N>t∗ . Thus, it
suffices to show that P t∗ ≥ PUA[t∗,t). This holds since PUA[t∗,t) ≤ PUA≥t∗ ≤ P t∗ by Lemma C.3.

Proof. In the remainder of the proof, we assume that T − c̃L−2
T > 0 (the other case holds trivially).

Suppose for contradiction that 0 < t0 < T− c̃L−2
T . By definition of t0, it must be that the algorithm

allocated Xalg
t0

= X and Xalg
t = X for all t > t0. Then, by construction, for all t > t0,

N>tX ≤ Balg
t −NtX − P t

=

(
Balg

t0
−Nt0X −PUAt0 −

t−1∑
τ=t0+1

(NτX +PUAτ )

)
−NtX − P t, (8)

where the equality follows from the recursive budget update and the fact that, from t0+1 onwards,
X was allocated by assumption.

Since Xalg
t0

= X, it must have been that Balg
t0

< Nt0X +N>t0X + P t0 . Plugging this into (8),
we have:

N>tX < Nt0

(
X −X

)
+N>t0X + P t0 −PUA[t0,t) −N(t0,t]X − P t

⇐⇒ N(t0,t]X < Nt0

(
X −X

)
+
(
N>t0 −N>t

)
X + P t0 − P t −PUA[t0,t)

Rearranging the inequality after plugging in the definitions of N>t0 and N>t, we obtain:

X(N(t0,t] − E
[
N(t0,t]

]
) < (X −X)(Nt0 − E

[
N(t0,t]

]
) +X(ConfNt0,T −ConfNt,T ) + P t0 − P t −PUA[t0,t).

(9)

Under good event E , N(t0,t] − E
[
N(t0,t]

]
≥ −ConfNt0,t. Notice that X ≥ βavg since X = X +

LT and LT ≳ 1√
T
. Putting this together we have that the left-hand side is lower bounded by

−βavg
√
2(t− t0)|Θ|ρ2max log(2T

2/δ) ≥ −βavg
√
2(T − t0)|Θ|ρ2max log(2T

2/δ).
On the other hand, the first term of the right-hand side of (9) is upper bounded by LT |Θ|(µmax+

ρmax) − LT |Θ|(t − t0), where we used the fact that E[Nt] ≥ 1. Moreover, by definition of the
confidence terms and that X ≤ βavg, the second term on the right-hand side of (9) is upper
bounded by:

βavg
√
2|Θ|ρ2max log(2T

2/δ)
(√

T − t0 −
√
T − t

)
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Lastly, since P t and PUA[t0,t) are nonnegative, the last terms on the right hand side are upper

bounded by P t0 . Using the fact that P t0 ≤ (1+
√
3 log(2T/δ))

√
T − t0 by assumption, we combine

these equations and obtain that for any t ≥ t0:

−βavg
√

2(T − t0)|Θ|ρ2max log(2T
2/δ) < LT |Θ|(µmax + ρmax)− LT |Θ|(t− t0)

+ βavg
√
2|Θ|ρ2max log(2T

2/δ)
(√

T − t0 −
√
T − t

)
+ (1 +

√
3 log(2T/δ))

√
T − t0.

Letting t = T and re-arranging, we then have:

0 < LT |Θ|(µmax + ρmax)− LT |Θ|(T − t0)

+
(
1 +

√
3 log(2T/δ) + 2βavg

√
2|Θ|ρ2max log(2T

2/δ)
)(√

T − t0

)
.

Let ξ = 1 +
√
3 log(2T/δ) + 2βavg

√
2|Θ|ρ2max log(2T

2/δ). We will show there exists c ∈ Θ̃(1)
such that, for all t0 ≤ T − 2cL−2

T :

0 ≥ LT |Θ|(ρmax + µmax)− LT |Θ|(T − t0) + ξ
√
T − t0,

a contradiction. Denoting a1 = |Θ|(ρmax + µmax), a2 = |Θ|, and a3 = ξ this reduces to showing:

0 ≥ a1LT − a2LT (T − t0) + a3
√
T − t0.

This is a quadratic inequality in terms of x =
√
T − t0 with a zero at:

x =
−a3 −

√
a23 + 4a2a1L2

T

−2a2LT

=
a3

2a2LT
+

1

2a2LT

√
a23 + 4a2a1L2

T

<
a3

2a2LT
+

1

2a2LT

√
a23 + 4a2a1,

where the final inequality uses the fact that LT = o(1). Thus, we have shown the existence of
c̃ ∈ Θ̃(1) such that the quadratic is non-positive for any value of

x > c̃L−1
T . (10)

Taking this and letting x =
√
T − t0 shows that the quadratic is negative so long as T − t0 ≥

c̃2L−2
T ⇐⇒ t0 ≤ T − c̃2L−2

T . Relabeling, we have shown that this inequality fails to hold for all
t0 ≤ T − c̃L−2

T , a contradiction.

Proof. Under good event E , we have:

P<t ≤ E[P<t] +ConfPt ≤
E[N<t]−ConfN0,t−1

E[N ] +ConfN0,T
B ≤ N<t

N
B,

where the second inequality follows from Assumption (1) of the Theorem, and the third inequality
follows again from the fact that, under good event E , E[N<t] − ConfN0,t−1 ≤ N<t, and N ≤
E[N ] +ConfN0,T . Then, by Proposition 3.3, Xopt is optimal given E .
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D Section 5 Proofs

D.1 Structure of Offline EG Solutions: Proofs

Proof. Consider any feasible solution Xt,θ to the EG program, and let X̃t,θ =
∑

t′ Nt′,θXt′,θ
Nθ

for all t.

That {X̃t,θ} is feasible follows from linearity. We now show that the EG objective under {X̃t,θ} is
no worse than that under Xt,θ.∑

t

∑
θ

Nt,θ log u(X̃t,θ, θ) =
∑
θ

Nθ log u

(∑
t′ Nt′,θXt′,θ

Nθ
, θ

)
≥
∑
θ

Nθ

∑
t′

Nt′,θ

Nθ
log u(Xt′,θ, θ)

=
∑
t

∑
θ

Nt,θ log u(Xt,θ, θ),

where the inequality follows from concavity of the log function and u.

Proof. For concave, one-positively homothetic, and non-decreasing utilities, any solution to the EG
program corresponds to a competitive equilibrium in the corresponding Fisher market (cf. Chapter
6 of Nisan et al. (2007)). Formally, let X∗ denote an optimal allocation for the EG program, and
p∗ = (p∗k)k∈[K] the corresponding optimal dual variables. (X∗, p∗) are said to form a competitive
equilibrium if, the following two conditions hold:

1.
∑

θ NθX
∗
θ,k = Bk, for all k ∈ [K], and

2. For all θ ∈ Θ, X∗
θ is an optimal solution to:

max
Xθ∈RK

+

u(Xθ, θ)

s.t.
∑
k

Xθkp
∗
k ≤ Nθ,

Moreover, by Theorem 2.2 in Varian (1974), if (X∗, p∗) form a competitive equilibrium, then
under this class of functions X∗ is a Pareto-efficient and envy-free allocation.

We conclude by showing that X∗ is proportional. Let X̃ be such that X̃θ = B/N for all θ ∈ Θ.
Clearly, X̃ is feasible to the EG program. By concavity of u, we have:

u(X̃θ, θ) ≤ u(X∗
θ , θ) +∇u(X∗

θ , θ)
T (X̃t,θ −X∗

θ )

=⇒ u(X∗
θ , θ) ≥ u(X̃θ, θ)−∇u(X∗

θ , θ)
T (X̃θ −X∗

θ ).

Using the fact that X∗
θ is the utility-maximizing allocation for type θ ∈ Θ and concavity of u,

we have: ∇u(X∗
θ , θ)

T (X̃θ −X∗
θ ) ≤ 0. Substituting in X̃θ = B/N , we obtain the result.

Proof. Let (pk)k∈[K] and (αθ,k)θ∈Θ,k∈[K] respectively denote optimal dual solutions for the EG
program for an arbitrary vector of arrivals. The KKT conditions for the EG program are given by:

1. Primal Feasibility :
∑

θ∈ΘNθXθ,k ≤ Bk for all k, Xθ,k ≥ 0 for all θ, k

2. Dual Feasibility : pk ≥ 0 for all k, αθ,k ≥ 0 for all θ, k
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3. Complementary Slackness: {
pk > 0 =⇒ ∑

θ∈ΘNθXθ,k = Bk

αθ,k > 0 =⇒ Xθ,k = 0

4. Gradient Condition:

−Nθ
∂

∂Xθ,k
u(Xθ, θ)

u(Xθ, θ)
+Nθpk − αθ,k = 0 ∀ θ ∈ Θ, k ∈ [K].

Using the fact that αθ,k ≥ 0, with equality if Xθ,k > 0 we find that:

pk ≥
∂

∂Xθ,k
u(Xθ, θ)

u(Xθ, θ)
∀ θ ∈ Θ, k ∈ [K]. (11)

with equality whenever Xθ,k > 0.

We now use these conditions to prove the scaling and monotonicity properties. For ease of
notation, we let X∗ and (p∗, α∗) denote optimal primal and dual solutions corresponding to arrivals
(Nθ)θ∈Θ.

Scaling: Suppose Ñθ = (1 + ζ)Nθ for every θ ∈ Θ.
For all k ∈ [K], θ ∈ Θ, define p̃k = (1 + ζ)p∗k, X̃θ,k = X∗

θ,k/(1 + ζ), and α̃θ,k = (1 + ζ)2α∗
θ,k.

Since our constraint set is linear, it suffices to check that X̃, p̃ satisfy the KKT conditions.
Dual feasibility follows from the fact that ζ ≥ 0, and primal feasibility follows from:∑

θ

ÑθX̃θ,k =
∑
θ

(1 + ζ)Nθ

X∗
θ,k

1 + ζ
≤ Bk

by feasibility of X∗
θ,k.

Complementary slackness holds since the resource utilizations are equal under both arrival
vectors, and p∗k > 0 ⇐⇒ p̃k > 0. A similar argument holds for α̃θ,k.

Finally, we verify the gradient condition. Since u is one-positively homogeneous, it follows that

its partial derivatives are 0-positively homogeneous, and as a result ∂u
∂Xθ,k

∣∣∣∣
Xθ=X̃θ

= ∂u
∂Xθ,k

∣∣∣∣
Xθ=X∗

θ

.

Thus, we have that:

−Ñθ
∂

∂Xθ,k
u(Xθ, θ)

∣∣
Xθ=X̃θ

u(X̃θ, θ)
+ Ñθp̃k − α̃θ,k =

−(1 + ζ)Nθ
∂

∂Xθ,k
u(Xθ, θ)

∣∣
Xθ=X∗

θ

1
1+ζu(Xθ, θ)

+ (1 + ζ)2Nθpk

− (1 + ζ)2αθ,k

= (1 + ζ)2

−Nθ
∂

∂Xθ,k
u(Xθ, θ)

∣∣
Xθ=X∗

θ

u(Xθ, θ)
+Nθpk − αθ,k


= 0

by optimality of X∗
θ,k, p

∗
k, α

∗
θ,k.

Plugging optimality of X̃θ = X∗
θ /(1 + ζ), we obtain:

u(X∗
θ , θ)− u(X̃θ, θ) = u(X∗

θ , θ)− u(X∗
θ /(1 + ζ), θ) =

(
1− 1

1 + ζ

)
u(X∗

θ , θ),
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where the final equality follows from the fact that the utility functions are one-homogeneous.

Monotonicity: As before, let X∗ and X̃ respectively denote optimal solutions to the EG program
under (Nθ)θ∈Θ and (Ñθ)θ∈Θ arrivals, with Ñθ ≥ Nθ for all θ, and a strict inequality for at least one
type θ. Similarly, let (p∗k)k∈[K] and (p̃k)k∈[K] be the corresponding dual solutions.

Suppose for contradiction that there exists a type θ ∈ Θ such that u(X̃θ, θ) > u(X∗
θ , θ). Since

u(·, θ) is non-decreasing, it must be that X̃θ,k > X∗
θ,k for some k ∈ [K]. By the KKT condition

(11), we have:

u(X̃θ, θ) =

∂
∂Xθ,k

u(Xθ, θ)
∣∣
Xθ=X̃θ

p̃k
> u(X∗

θ , θ) ≥
∂

∂Xθ,k
u(Xθ, θ)

∣∣
Xθ=X∗

θ

p∗k
.

Moreover, since u is concave and X̃θ,k > X∗
θ,k,

∂
∂Xθ,k

u(Xθ, θ)
∣∣
Xθ=X̃θ

≤ ∂
∂Xθ,k

u(Xθ, θ)
∣∣
Xθ=X∗

θ
. Thus,

it must be that p̃k < p∗k.

Now, note that, since X̃θ,k > X∗
θ,k, it must be that X̃θ′,k < X∗

θ′,k for some θ′ ∈ Θ since X∗

clears the resources Bk. Again, using concavity of u, this implies that ∂
∂Xθ,k

u(Xθ′ , θ
′)
∣∣
Xθ′=X̃θ′

≥
∂

∂Xθ,k
u(Xθ′ , θ

′)
∣∣
Xθ′=X∗

θ′
. Putting this together with the fact that p̃k < p∗k, we obtain:

∂
∂Xθ′,k

u(Xθ′ , θ
′)
∣∣
Xθ′=X̃θ′

p̃k
>

∂
∂Xθ′,k

u(Xθ′ , θ
′)
∣∣
Xθ′=X∗

θ′

p∗k
,

and by the KKT condition (11), u(X̃θ′ , θ
′) > u(X∗

θ′ , θ
′).

Note however that, since (Ñθ)θ∈Θ ≥ (Nθ)θ∈Θ, X̃ is feasible to the EG program under (Nθ)θ∈Θ.
Thus, the objective for this latter program under X̃ strictly improves upon the objective under X∗,
which contradicts optimality of X∗.

D.2 Theorem 5.4

In the remainder of the section, for ease of notation we let Confθ = Conf0,T,θ. Moreover, we
define constants C1 = maxθ∈Θ u(B, θ), C2 = Bmin/E[N ], C3 = ∥B∥∞, where Bmin = mink∈[K]Bk.

The following proposition will be of use throughout the proof. We defer its proof to Ap-
pendix D.2.2.

Proposition D.1. Under good event E, C1 ≥ maxθ∈Θ u(X, θ), C2 ≤ minθ∈Θ∥Xθ∥∞, C3 ≥
maxθ∈Θ∥Xθ∥∞.

We now state the main building blocks of our result. Lemma D.2 implies that it suffices to
restrict our attention to E for the high-probability statement. We omit the this result, as it is
entirely analogous to that of Lemma C.1.

Lemma D.2. With probability at least 1− δ, for every θ ∈ Θ and t′ > t, |N(t,t′],θ − E
[
N(t,t′],θ

]
| ≤

Conft,t′,θ.

Next, Lemmas D.3 and D.4 formalize both thatNL-Guardrail only ever allocates the guardrails
under E , and that it is adaptively cautious.

Lemma D.3. Given event E, for every resource k and time t ∈ [T ],

Balg
t,k ≥

∑
θ∈Θ

N≥t,θXθ,k.

As a result, given E, Xalg
t,θ,k ∈ {Xθ,k, Xθ,k} for all t ∈ [T ], θ ∈ Θ, k ∈ [K].
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Lemma D.4. Consider event E, and let t0,k be the last round for which Xalg
t,θ,k = Xθ,k, (else, define

t0,k = 0 if Xalg
t,θ,k = Xθ,k for all t ∈ [T ]) for each resource k ∈ [K]. Then, t0,k ≥ max{0, T − cL−2

T }
for all k ∈ [K], where c = Θ̃(1).

The following lemma establishes that agents’ utilities under two different allocations differ by
at most LT , and that the allocations themselves are within a factor of LT of each other. Moreover,
under a lower bound on LT , not only is the true vector of arrivals sandwiched by the arrival
confidence bounds, but the hindsight optimal utility is sandwiched by the guardrail utilities.

Lemma D.5. The following holds for our guardrail allocations Xθ and Xθ:

1. u(x((nθ)θ∈θ)θ, θ)− u(x((nθ)θ∈θ)θ, θ) ≤ LT

2. ∥x((nθ)θ∈Θ)− x((nθ)θ∈θ)∥∞ ≥ C2
C1

LT

3. ∥x((nθ)θ∈Θ)− x((nθ)θ∈θ)∥∞ ≤ C3
C1

LT .

If in addition LT ≥ 2C1maxθ
Confθ
E[Nθ]

, under event E we have:

4. nθ ≤ Nθ ≤ nθ for all θ ∈ Θ

5. u(x((nθ)θ∈θ)θ, θ) ≤ u(Xopt
θ , θ) ≤ u(x((nθ)θ∈θ)θ, θ).

Given these building blocks of our main result, we now prove the theorem.

Proof. Efficiency: Consider first ∆efficiency. We have:

∆efficiency =
∑
k

Bk −
∑
t∈[T ]

∑
θ

Xalg
t,θ,kNt,θ

 =
∑
k

Balg
t0,k

−
∑
t≥t0,k

∑
θ∈Θ

Nt,θX
alg
t,θ,k


(a)
=
∑
k

Balg
t0,k,k

−
∑
θ

Xθ,kNt0,k,θ +
∑
t>t0,k

Xθ,kNt,θ


(b)
<
∑
k

∑
θ

Nt0,k,θXθ,k +
∑
θ

Xθ,k

(
E
[
N>t0,k,θ

]
+Conft0,k,T,θ

)
−
∑
θ

Xθ,kNt0,k,θ +
∑
t>t0,k

Xθ,kNt,θ


=
∑
k

∑
θ

Xθ,k

(
E
[
N>t0,k,θ

]
+Conft0,k,T,θ −N>t0,k,θ

)
− (Xθ,k −Xθ,k)(N>t0,k,θ −Nt0,k,θ)

(c)

≤ 2
∑
k

∑
θ

Xθ,kConft0,k,T,θ +Nt0,k,θ(Xθ,k −Xθ,k)

where (a) follows from the fact that, by the definition of t0,k, X
alg
t0,k,θ,k

= Xθ,k, and Xalg
t,θ,k = Xθ,k for

all t > t0,k; (b) follows from the condition in the algorithm for allocating the lower allocation at time

t0,k, which upper bounds Balg
t0,k,k

; and (c) follows from the fact that, under E , E
[
N>t0,k,θ

]
−N>t0,k,θ ≤

Conft0,k,T,θ.
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Plugging in the definition of Conft0,k,T,θ and the fact that (Xθ,k−Xθ,k) ≤ C3
C1

LT by Lemma D.5,
we have:

∆efficiency ≤ 2C3

∑
k

∑
θ

√
2ρ2max(T − t0,k) log(2T 2|Θ|/δ) + (µmax + ρmax)

C3

C1
LT .

Taking this and plugging in the lower bound on t0,k from Lemma D.4, we get that:

∆efficiency ≤2C3K|Θ|
√
2ρ2max log(2T

2|Θ|/δ)min{
√
T ,

√
2c/LT }+K|Θ|(µmax + ρmax)

C3

C1
LT .

Note that, for LT = o(1), the second term is dominated by the first, which gives us the desired
bound on ∆efficiency.

Hindsight Envy: Fix t, t′ ∈ [T ], and θ, θ′ ∈ Θ. By Lemma D.3, Xalg
t,θ,k ∈ {Xθ,k, Xθ,k} for all

t ∈ [T ], θ ∈ Θ, k ∈ [K]. Using the fact that u is non-decreasing, we have:

u(Xalg
t′,θ′ , θ)− u(Xalg

t,θ , θ) ≤ u(Xθ′ , θ)− u(Xθ, θ)

= u(Xθ′ , θ)− u(Xθ, θ) + u(Xθ, θ)− u(Xθ, θ)

(a)

≤ u(Xθ, θ)− u(Xθ, θ)

(b)

≤ LT ,

where (a) follows from the fact that X is envy-free by construction, and (b) follows from the bound
in Lemma D.5. Taking the max over t, t′, θ, θ′ gives the result.

Counterfactual Envy: We next obtain the bound on ∆EF. Consider first the setting where

LT ≥ 2C1

√
2ρ2max log(2T 2|Θ|/δ)

T , such that Properties 4 and 5 of Lemma D.5 are satisfied. Again,

using Lemma D.3 along with the fact that u(X, θ) ≤ u(Xopt, θ) ≤ u(X, θ), by Lemma D.5, we have
that, given E :

|u(Xalg
t,θ , θ)− u(Xopt

θ , θ)| ≤ |u(Xθ, θ)− u(Xθ, θ)| ≤ LT .

Consider now the case where LT < 2C1

√
2ρ2max log(2T 2|Θ|/δ)

T then, one of the following two chain of

inequalities holds for all θ ∈ Θ: (1) u(Xθ, θ) ≤ u(Xopt
θ , θ) ≤ u(Xθ, θ), or (2) u(Xθ, θ) ≤ u(Xθ, θ) ≤

u(Xopt
θ , θ), since u is non-decreasing. In the first case, we have |u(Xalg

t,θ , θ) − u(Xopt
θ , θ)| ≤ LT as

above.

Else, let X̃θ be the upper guardrail solution corresponding to L̃T = 2C1

√
2ρ2max log(2T 2|Θ|/δ)

T . Via
the same reasoning as above, we have:

|u(Xalg
t,θ , θ)− u(Xopt

θ , θ)| ≤ |u(X̃θ, θ)− u(Xθ, θ)| ≤ L̃T = 2C1

√
2ρ2max log(2T

2|Θ|/δ)
T

,

where the second inequality again follows from Lemma D.5.

Hindsight Proportionality: We conclude by showing the bound on ∆prop. We have:

u(B/N, θ)− u(Xalg
t,θ , θ) = u(B/N, θ)− u(Xopt

θ , θ) + u(Xopt
θ , θ)− u(Xalg

t,θ , θ) ≲ max{1/
√
T , LT },

where the final inequality follows from the fact that Xopt satisfies proportionality, by Proposi-
tion 5.2, and thus u(B/N, θ)−u(Xopt

θ , θ) ≤ 0, and u(Xopt
θ , θ)−u(Xalg

t,θ , θ) ≤ ∆EF ≲ max{1/
√
T ,LT },

which we just proved above. Taking the max over t and θ gives the desired bound on ∆prop.
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D.2.1 Proofs of main building blocks

Proof. We show the first statement by induction on t. Given the first statement, the second follows
by construction.
Base Case: t = 1. We first note that Balg

1 = B. Moreover, since X = x(nθ), we have that, for all
k ∈ [K]: ∑

θ

nθXθ,k ≤ Balg
1,k .

Plugging in the definition of nθ = E[Nθ](1 + maxθ
Confθ
E[Nθ]

), we obtain:

Balg
1,k ≥

∑
θ

(
E[Nθ]

(
1 + max

θ

Confθ
E[Nθ]

))
Xθ,k

≥
∑
θ

(E[Nθ] +Confθ)Xθ,k

≥
∑
θ

NθXθ,k,

where the final inequality follows from the definition of event E .

Step Case: t− 1 → t. We split the analysis into two cases, based on the allocation in round t− 1.
If Xalg

t−1,θ,k = Xθ,k, then

Balg
t,k = Balg

t−1,k −
∑
θ∈Θ

Nt−1,θXθ,k ≥
∑
θ∈Θ

N≥t,θXθ,k,

where the last inequality follows from the induction hypothesis.
If Xalg

t−1,θ,k = Xθ,k, then

Balg
t,k = Balg

t−1,k −
∑
θ∈Θ

Nt−1,θX
alg
t−1,θ,k

(a)

≥
∑
θ∈Θ

Xθ,k(E[N≥t,θ] +Conft−1,T,θ)
(b)

≥
∑
θ∈Θ

N≥t,θXθ,k.

where (a) holds by the condition for allocating Xθ,k, and (b) holds under event E .

Proof. By definition of t0,k, it must be that Xalg
t0,k,θ,k

= Xθ,k, and Xalg
t,θ,k = Xθ,k for all t > t0,k.

Thus, for all t > t0,k:

∑
θ

Xθ,k(E[N>t,θ] +Conft,T,θ)
(a)

≤ Balg
t,k −

∑
θ

Nt,θXθ,k
(b)
= Balg

t0,k
−
∑
θ

Xθ,kNt0,k,θ −
∑
θ

Xθ,k

t∑
t′=t0,k+1

Nt′,θ

(c)
<
∑
θ

Xθ,k

(
E
[
N>t0,k,θ

]
+Conft0,k,T,θ

)
+
∑
θ

(Xθ,k −Xθ,k)Nt0,k,θ −
∑
θ

Xθ,k

t∑
t′=t0,k+1

Nt′,θ

where (a) follows from the condition in the algorithm for Xalg
t,θ,k = Xθ,k, (b) follows from the

definition of t0,k and the choice of t > t0,k, and (c) follows from the condition in the algorithm for

Xalg
t0,k,θ,k

= Xθ,k.
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Let N(t0,k,t],θ =
∑

θ

∑t
t′=t0,k+1Nt′,θ. Re-arranging the above inequality, we obtain:∑

θ

Xθ,kN(t0,k,t],θ <
∑
θ

(Xθ,k −Xθ,k)Nt0,k,θ +
∑
θ

Xθ,kE
[
N(t0,k,t],θ

]
+
∑
θ

Xθ,k

(
Conft0,k,T,θ −Conft,T,θ

)
⇐⇒

∑
θ

Xθ,k(N(t0,k,t],θ − E
[
N(t0,k,t],θ

]
) <

∑
θ

(Xθ,k −Xθ,k)
(
Nt0,k,θ − E

[
N(t0,k,t],θ

])
+
∑
θ

Xθ,k

(
Conft0,k,T,θ −Conft,T,θ

)
(12)

Note that C2
C1

LT ≤ Xθ,k − Xθ,k ≤ C3
C1

LT by Lemma D.5. Moreover, |Nt0,k,θ − E
[
Nt0,k,θ

]
| ≤

ρmax =⇒ Nt0,k,θ ≤ µmax + ρmax. We moreover use the fact that E[Nt,θ] ≥ 1 for all t, θ to obtain
the following upper bound on the first term of (12):∑

θ

(Xθ,k −Xθ,k)
(
Nt0,k,θ − E

[
N(t0,k,t],θ

])
≤ C3

C1
LT |Θ|(ρmax + µmax)−

C2

C1
LT |Θ|(t− t0,k).

Putting this together with the definition of the confidence terms and the absolute upper bound
C3 on ||Xθ,k||∞, we obtain:

∑
θ

Xθ,k

(
N(t0,k,t],θ − E

[
N(t0,k,t],θ

])
<

C3

C1
LT |Θ|(ρmax + µmax)−

C2

C1
LT |Θ|(t− t0,k)

+ C3|Θ|
√

2ρ2max log(2T
2|Θ|/δ)

(√
T − t0,k −

√
T − t

)
.

Moreover, given event E , we have the following lower bound on the left-hand side of (12):∑
θ

Xθ,k(N(t0,k,t],θ − E
[
N(t0,k,t],θ

]
) ≥ −C3|Θ|

√
2ρ2max log(2T

2Θ|/δ)(t− t0,k)

≥ −C3|Θ|
√

2ρ2max log(2T
2Θ|/δ)(T − t0,k),

where the final inequality is simply used to simplify algebraic manipulations later on. Combining
these equations we obtain that for any t ≥ t0,k:

−C3|Θ|
√
2ρ2max log(2T

2Θ|/δ)(T − t0,k) <
C3

C1
LT |Θ|(ρmax + µmax)−

C2

C1
LT |Θ|(t− t0,k)

+ C3|Θ|
√
2ρ2max log(2T

2|Θ|/δ)
(√

T − t0,k −
√
T − t

)
.

We omit the remainder of the proof follows entirely analogous lines as that of Lemma 4.4. Namely,
we prove the existence of c ∈ Θ̃(1) such that for all t0,k ≤ T − cL−2

T , this inequality fails to hold.

Proof. For ease of notation, let γ = maxθ Confθ/E[Nθ]. Then nθ = E[Nθ](1+γ), nθ = E[Nθ](1−c),
and so nθ = 1+γ

1−cnθ. The result follows from the following properties of solutions to the offline EG
program, established in Proposition 5.3.

We first show Parts 1-3 of the claim. By Part 1 of Proposition 5.3, we have that:

u(x((nθ)θ∈θ)θ, θ)− u(x((nθ)θ∈θ)θ, θ) =

(
1− 1− c

1 + γ

)
u(x((nθ)θ∈θ)θ, θ) ≤

c+ γ

1 + γ
C1 = LT .
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Using Part 1 of Proposition 5.3 once again we can lower bound the difference in allocations by

∥x((nθ)θ∈Θ)− x((nθ)θ∈θ)∥∞ =

(
1− 1− c

1 + γ

)
∥x((nθ)θ∈θ)∥∞ ≥ c+ γ

1 + γ
C2 =

C2

C1
LT .

The argument for the upper bound is identical (where instead we use ∥x((nθ)θ∈θ)∥∞ ≤ C3).
We now show Parts 4 and 5 of the claim. We have:

Nθ = E[Nθ] + (Nθ − E[Nθ]) = E[Nθ]

(
1 +

Nθ − E[Nθ]

E[Nθ]

)
(13)

Under event E , Confθ upper bounds |Nθ − E[Nθ]|. Plugging this into Eq. (13), we obtain that

Nθ ≤ E[Nθ]
(
1 + maxθ

Confθ
E[Nθ]

)
= nθ given E .

Via symmetric reasoning, Nθ ≥ E[Nθ]
(
1−maxθ

Confθ
E[Nθ]

)
given E . Simple algebraic manipula-

tions and the assumption that LT ≥ 2C1maxθ
Confθ
E[Nθ]

show that E[Nθ]
(
1−maxθ

Confθ
E[Nθ]

)
≥ nθ, and

thus Nθ ≥ nθ.
Finally, the fact that u(x((nθ)θ∈Θ)θ, θ) ≤ u(Xopt

θ , θ) ≤ u(x((nθ)θ∈θ)θ, θ) given E follows from
putting Part 4 of the above claim and the monotonicity property in Proposition 5.3 together.

D.2.2 Proofs of Auxiliary Results

Proof. For C1, note that X ≤ B by the budget constraint, so maxθ∈Θ u(Xθ, θ) ≤ maxθ∈Θ u(B, θ),
since u is non-decreasing.

For C2 we use that X satisfies Bk =
∑

θ Xθ,knθ for every θ by Pareto efficiency of the optimal
solutions to the EG program, and the assumption that the utilities are strictly monotone. Using
Cauchy-Schwarz and the fact that nθ ≤ E[Nθ] we notice:

Bk =
∑
θ

nθXθ,k ≤ (max
θ

Xθ,k)
∑
θ

nθ = ∥Xθ∥∞E[N ]

=⇒ ∥Xθ∥∞ ≥ Bk/E[N ] ≥ Bmin/E[N ].

Lastly, for C3 we note again by the budget constraint that maxθ∈Θ∥Xθ∥∞ ≤ ∥B∥∞.

E Leontief Utilities

In this section, leveraging the observation that ϵ-perturbed Leontief utilities satisfy the requirements
for our main results of Section 5, we obtain bounds on (∆EF,∆efficiency,Envy) for Leontief utilities,
given by:

u(x, θ) = min{xk/wθ,k} ∀ θ ∈ Θ.

Let uϵ(x, θ) = u(x, θ) + ϵ⟨w′
θ, x⟩ for some ϵ > 0. We refer to u(x, θ) as the nominal utility

function and uϵ(x, θ) as the perturbed utility function. Finally, we introduce the following notions
of ϵ-perturbed fairness.

Definition E.1 (Perturbed Counterfactual Envy, Hindsight Envy, and Efficiency). Given individ-
uals with types Θ, sizes (Nt,θ)t∈[T ],θ∈Θ, and resource budgets (Bk)k∈[K], for any online allocation

(Xalg
t,θ )t∈[T ],θ∈Θ ∈ Rk, we define:
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• Counterfactual Envy: The counterfactual distance of Xalg to envy-freeness as

∆EF(ϵ1, ϵ2) ≜ max
t∈[T ],θ∈Θ

∥uϵ1(Xalg
t,θ , θ)− uϵ1(X

opt(ϵ2)
t,θ , θ)∥∞

where Xopt(ϵ2) is the solution to (EG) with true values (Nt,θ)t∈[T ],θ∈Θ and utilities uϵ2.

• Hindsight Envy: The hindsight distance of Xalg to envy-freeness as

Envy(ϵ) ≜ max
t,t′∈[T ]2,θ,θ′∈Θ2

uϵ(X
alg
t′,θ′ , θ)− uϵ(X

alg
t,θ , θ).

• Efficiency: The distance to efficiency as

∆efficiency ≜
∑
k∈K

Bk −
∑
t∈[T ]

∑
θ∈Θ

Nt,θX
alg
t,θ,k


Given these definitions, obtaining guarantees with respect to the nominal Leontief utilities is

equivalent to obtaining ϵ-perturbed fairness guarantees on ∆EF(0, ϵ),Envy(0), and ∆efficiency, for
some ϵ > 0. Note that we use Xopt(ϵ) as the benchmark allocation in this setting, as in general
solutions to EG under nominal utilities may not be fair without strict monotonicity.

Given this setup, the following theorem shows that we are able to obtain the desired bounds on
the nominal utilities by running NL-Guardrail on the perturbed utilities, for an appropriately
chosen value of ϵ.

Theorem E.2. Fix LT = o(1), and let NL-Guardrail be initialized with utility functions uϵ
where ϵ = LT , and

Conft,t′,θ =
√

2(t′ − t)ρ2max log(2T
2|Θ|/δ) ∀ t′ > t ∈ [T ], θ ∈ Θ

nθ = E[Nθ]

(
1 + max

θ

Conf0,T,θ
E[Nθ]

)
∀ θ ∈ Θ

nθ = E[Nθ](1− c) ∀ θ ∈ Θ, c =
LT

C1

(
1 + max

θ

Conf0,T,θ
E[Nθ]

)
−max

θ

Conf0,T,θ
E[Nθ]

.

Then, with probability at least 1− δ, NL-Guardrail achieves:

Envy(0) ≲ LT ∆EF(0, LT ) ≲ max{1/
√
T ,LT } ∆efficiency ≲ min{

√
T , 1/LT }

where ≲ drops poly-logarithmic factors of T , o(1) terms, and absolute constants.

Proof. The proof follows from Theorem 5.4 by relating (∆EF(ϵ1, ϵ2),Envy(ϵ),∆efficiency) to their
quantities under the nominal utilities. In particular, we have the following fact, whose proof we
defer to the end of this section.

Lemma E.3. For any allocation Xalg we have that:

Envy(0) ≤ Envy(ϵ) + ϵ∥B∥∞∥w′
θ∥1

∆EF(0, ϵ) ≤ ∆EF(ϵ, ϵ) + ϵ∥w′
θ∥1.
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Using Lemma E.3 we are able to show the claim. Running NL-Guardrail on the perturbed
utilities, with ϵ = LT , we have the following upper bounds on (Envy(LT ),∆EF(LT , LT ),∆efficiency),
Theorem 5.4, with probability at least 1− δ:

Envy(LT ) ≤ LT ∆EF ≲ max{1/
√
T , LT }.

Plugging this into Lemma E.3, we obtain:

Envy(0) ≤ Envy(LT ) + LT ∥B∥∞∥w′
θ∥1 ≲ LT + LT ∥B∥∞∥w′

θ∥1
∆EF(0, LT ) ≤ ∆EF(LT , LT ) + LT ∥B∥∞∥w′

θ∥1 ≲ max{1/
√
T , LT }.

We conclude the proof of the theorem by noting that the bounds on ∆efficiency and ∆prop follow
trivially from Theorem 5.4 (since these are statements about the allocations themselves, rather
than the utilities).

Proof. We start with Envy(0). Fix all t, t′, θ, θ′, we have:

u(Xt′,θ′ , θ)− u(Xt,θ, θ) = uϵ(Xt′,θ′ , θ)− uϵ(Xt,θ, θ)− ϵ⟨w′
θ′ , Xt′,θ′⟩+ ϵ⟨w′

θ, Xt,θ⟩
≤ uϵ(Xt′,θ′ , θ)− uϵ(Xt,θ, θ) + ϵ⟨Xt,θ, w

′
θ⟩

≤ uϵ(Xt′,θ′ , θ)− uϵ(Xt,θ, θ) + ϵ∥w′
θ∥1∥B∥∞

≤ Envy(ϵ) + ϵ∥w′
θ∥1∥B∥∞,

where the final inequality uses the fact that the allocations are upper bounded by B, by the
feasibility constraint. The bound on Envy(0) follows by taking the max over t, t′, θ, θ′.

We next consider ∆EF(0, ϵ). Then, for t, θ, we have that:

u(Xt,θ, θ)− u(X
opt(ϵ)
t,θ , θ) = uϵ(Xt,θ, θ)− uϵ(X

opt(ϵ)
t,θ , θ) + ϵ⟨Xopt(ϵ)

t,θ −Xt,θ, w
′
θ⟩

≤ uϵ(Xt,θ, θ)− uϵ(X
opt(ϵ)
t,θ , θ) + ϵ∥B∥∞∥w′

θ∥1
≤ ∆EF(ϵ, ϵ) + ϵ∥B∥∞∥w′

θ∥1.

The result then follows again by taking the max over t and θ.

F Numerical Experiments: Non-Linear Utilities

In our second set of results we explore the non-linear utility extension to our work (as before,
omitting perishing considerations), adopting a similar setup as Sinclair et al. (2022). Namely, we
consider the setting with K = 5 resources (corresponding to cereal, pasta, prepared meals, rice,
and meat) and three types Θ (corresponding to vegetarians, omnivores, and “prepared-food only”
individuals). We consider Leontief and Cobb-Douglas utility functions, given by:

• Leontief : u(x, θ) = mink∈[K]
xk
wθ,k

• Cobb-Douglas: u(x, θ) =
∏K

k=1wθ,kx
αθ,k

k where αθ,k = 1
K

The weights wθ,k = pk1{type θ uses resource k}, and pk are the historical “prices” used by Feed-
ing America in the non-monetary market used to distribute goods to food banks on a national
scale (Prendergast, 2017). For example, wθ,k = 0 for the vegetarian type and the meat resource
(see Table 2 for the full table of weights).
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Figure 2: Comparison of NL-Guardrail for LT ∈ {0, T−1/2, T−1/3}, and Static CE under Leontief and
Cobb-Douglas utilities as we vary T .
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Results.

In this setting we compare the performance of NL-Guardrail on LT ∈ {0, T−1/2, T−1/3} to
Static CE (recall, we’ve assumed Pt = 0 for all t). Our results can be found in Fig. 2.

As in the previous setting, we observe the envy-efficiency trade-off achieved by our algorithm,
with better efficiency for larger values of LT , but worse performance in terms of ∆EF. We again see
that the NL-Guardrail algorithms (with LT > 0) outperform NL-Guardrail (with LT = 0) in
terms of efficiency, as our algorithms greedily allocate the upper threshold while ensuring budget
compliance. Moreover, under Leontief and Cobb-Douglas utilities, NL-Guardrail with parameter
LT = T−1/2 achieves lower counterfactual envy than with LT = 0. This serves in contrast to the
results from Sinclair et al. (2022) where it was observed that both algorithms achieved similar
counterfactual envy. This discrepancy is due to the way sensitivity in the guardrails is propagated
under non-linear utilities. In these models we find that the counterfactual envy is incurred in
periods receiving the upper guardrail allocation (whereas with additive utilities the difference was
the same).

Finally, while Leontief utilities are utility functions of applied interest, they fail to satisfy the
assumptions upon which our theoretical results rely. Our results highlight that the algorithmic
guardrail technique is robust to such phenomena. See Appendix E for more discussion on this fact.

Table 2: Weights wk for the different products. Here we use the weights taken from the historical
prices used in the market mechanism to distribute food resources to food pantries across the United
States (Prendergast, 2017).

Resource Cereal Pasta Prepared Meals Rice Meat

Weights (type θ = omnivore) 3.9 3 2.8 2.7 1.9

Weights (type θ =vegetarian) 3.9 3 0 2.7 0

Weights (type θ =prepared-only) 3.9 3 2.8 2.7 0

G Simulation Details

We further observe the relationship between these metrics in the radar plots included in Fig. 3.

Experiment Setup: Each experiment was run with 200 iterations where the relevant plots are
taking the mean of the related quantities. In all experiments the budget B =

∑
t,θ E[Nt,θ] so that

βavg scales as a constant as we vary the number of rounds T . All randomness is dictated by a seed
set at the start of each simulation for verifying results. In the algorithm description we ignore all
logarithmic terms, setting their value equal to one. Moreover, since all of the examples for perishing
resources satisfy Condition (2) of Theorem 4.1, it is without loss of generality to set ηt =

√
T − t

for all t ∈ [T ].

Computing Infrastructure: The experiments were conducted on a personal computer with an
AMD Ryzen 5 3600 6-Core 3.60 GHz processor and 16.0GB of RAM. No GPUs were harmed in
these experiments.
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Figure 3: Comparison of NL-Guardrail for LT = T 1/2 and LT = T 1/3 Fixed Threshold,
Hope-Online, and Hope-Full under Leontief and filling ratio utilities. The values here are
normalized to be between [0, 1] to better highlight the performance of the algorithms, where larger
values correspond to better performance.

H Useful Lemmas

We use the following standard theorems throughout the proof. See, e..g. Vershynin (2018) for
proofs and further discussion.
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Theorem H.1 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent random variables such that
ai ≤ Xi ≤ bi almost surely and set Sn =

∑
iXi. Then we have that for all t > 0:

P(|Sn − E[Sn]| ≥ t) ≤ 2 exp

(
− 2t2∑

i(bi − ai)2

)
.

Theorem H.2 (Chernoff Bound for Sum of Independent Bernoulli Random Variables). Consider
a sequence of Bernoulli random variables (Xi)i∈[N ], independently distributed with probability of
success pi ∈ (0, 1). Let X =

∑
iXi, and let µ = E[X] =

∑
i pi. Then for all 0 < δ < 1:

P(|X − µ| ≥ δµ) ≤ 2 exp

(
−µδ2

3

)
.
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