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1. Introduction: Network Input Models Based on Ses-
sions.

Session: higher order construct typically obtained by amalgamating
either

• packets (see Part II)

• connections

• flows or reponses (one way connections)

• groups of connections.

according to some chosen – and undoubtedly not unique– definition.

Search for (or assume)

• Poisson structure

• Distributional descriptors of sessions.

Hope (or assume)

• Sessions are independent.
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Which hat are you wearing?

• Mathematical modeler hat (Part I):

– Superimpose sessions,

A(0, t] = total end-user input from sessions in (0, t]

and construct limit theorems to explain observed features of
“traffic”.

∗ Large time scale distributional process limits for

A(0, T t] as T →∞.

∗ Small time scale distributional limits for

{A((k − 1)δ, kδ], k ≥ 0}, as δ ↓ 0,

and understanding of dependence structure.
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• Empirical modeler hat (Part II)

– Analyze Cornell netflow data.

– In contrast to netflows, for packet level modeling, no obvious
definition of session.

∗ Must amalgamate packets into sessions according to some
rule. Usually the rule is a threshold rule, sometimes time
based.

∗ For example: successively arriving packets are in the same
session if arrival times are within 2 seconds of each other .

– See what properties are empirically present?

– Heavy tail analysis to understand statistical characteristics.

– Search for Poisson time points in the mess.
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2. Part I: Modeling Approach

Sessions characterized by

• Initiation times {Γk} where often assume for tractability

{Γk} ∼ Poisson, rate λ.

• The mark or session descriptor of Γk:

(Sk, Dk, Rk) = (Size, Duration, Rate ),

where R is average rate in session:

Rk = Sk/Dk.

• Approach: Consider a family of models indexed by T → ∞ or
δ → 0; move through the family by taking a limit on T or δ and
seek a limit model providing a useful approximation. Consider
either:
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– Large time scale approximations; model family indexed by T
and T →∞:

d− lim
T→∞

A(0, T t]− bT (t)

aT (t)

and will permit λ = λ(T )→∞.
– Small time scale approximations: A(kδ, (k + 1)δ], the work

inputted in (kδ, (k + 1)δ].

Approximation as δ → 0? Will need λ = λ(δ) ↑ ∞ (a la
heavy traffic limit theorems).

• Compute dependence measures.

• Results dependent on distributional assumptions on (S,D,R).
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2.1. Difficulties

1. What is the joint distribution of (S,D,R)? Statistical studies are
inconclusive since

• Different types of data analyzed.

– file sizes

– responses

– flows

– connections

– packet headers

• Sessions constructed using different amalgamation rules: eg,

– amalgamate packets using 2s threshold rule when

(source ip, destination ip)

same?

– Or amalgamate using 2s threshold rule when

(source ip, destination ip, source port, destination port)

same.
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• Segmenting sessions according to various rules leads to differ-
ent statistical characteristics.

– Segment by peak rate.

– Segment by application (HTTP, SMTP, FTP, VOIP, stream-
ing, . . . ).

– Segment by protocol (TCP, UDP, . . . ).

• Different types of data and collection methods may be heavily
or lightly influenced by censoring. Some sessions start before
the collection window and some end after. Take into account
or ignore?
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2. Distributional possibilities (remember S = DR so any two deter-
mine the third):

• (S,D) jointly heavy tailed.

• (R, S) satisfies the conditional extreme value (CEV) model in
which

R− β(t)

α(t)

∣∣∣S > t

has a limit distribution approximation for large t and S is
heavy tailed.

• S ⊥⊥ R (Hernández-Campos et al., 2005) ?

• D ⊥⊥ R ?

• Mixture of the previous 2 cases?

• Some asymptotic form of independence?

– Possibly no pair of (S,D,R) is truly independent in prac-
tice.

– BUT: For mathematical analysis of model, asymptotic in-
dependence rather than independence increases the cost
in complexity?
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3. Oversimplifications:

(a) Connection initiations–as opposed to sessions–may be bet-
ter modeled as point process with clusters where a primary
connection (“get NY Times”) triggers subsidiary connections
(“get ads, get pics, get text”);

• cluster structure may depend on definitions of session.

• the statistical structure of clusters is not obvious.

(b) Transmission rate is not constant over the connection interval.

(c) Typically, these models only of end-user behavior and do not
model the influence of congestion and queueing; but appli-
cable to studying things like protocol design. (BUT: certain
types of data reflect effect of protocols.)

(d) Empirical studies typically ignore issue of censoring; this issue
will increase in importance with the ubiquity of streaming.
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2.2. Assessing dependence structure of (S,D,R).

Consider

S = file size, total info in session, # bytes

D = duration of transmission or session,

R = throughput, average rate = S/D.

All three, are usually (alas–not always) empirically seen to be heavy
tailed:

P [S > x] =x−αS`S(x)

P [D > x] =x−αD`D(x)

P [R > x] =x−αR`R(x).

Note:

1. Segmenting data in various ways (eg by peak rate) may preclude
certain segments from having R heavy tailed.

2. For some data, the effect of censoring is noticeable since there
are multiple values of duration equal to the length of collection
window.
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3. Small time scale results

3.1. S ⊥⊥ R: Assumptions

Assume:

• Sessions begin: {Γk}, homogeneous Poisson rate λ.

• For the k-th session, independently attach iid marks (Sk, Dk, Rk);
S,R independent, heavy tailed; S = DR,

S ∼ FS(x) R ∼ FR(x).

• 1 < αS, αD, αR < 2; finite means, infinite 2nd moments.

• Distribution tail of D given by

F̄D(l) ∼ E
(

1

R

)αS

F̄S(l),

provided assume (Breiman (1965))

E
[

1

R

]αS+η

<∞,

for some η > 0. (Other assumptions possible!)

• Time slots (kδ, (k + 1)δ], k = 0,±1,±2, . . . }.
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• Limiting procedure shrinks the observation windows (δ → 0). To
get limit, increase the arrival rate λ = λ(δ) of sessions.

• Heavy traffic limit theorem philosophy; move through a family of
models indexed by δ as δ ↓ 0. Choice of λ:

λ(δ) =
1

δF̄R(δ−1)
.

• Since 1 < αR < 2, this choice of λ guarantees as δ → 0,

λ(δ) =
1

δαR+1`R(δ−1)
→∞ and δλ(δ) =

1

δαR`R(δ−1)
→∞.

• Seek limit behavior of

A(δ) := {A(kδ, (k + 1)δ],−∞ < k <∞}

where

A(kδ, (k + 1)δ] = work inputted in time (kδ, (k + 1)δ],

as

– δ → 0, OR

– δ is fixed and we study Cov(A(0, δ], A(kδ, (k+1)δ]) as k →∞
to seek LRD.
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3.2. D ⊥⊥ R: Model Assumptions:

• Same choice of Poisson rate λ as before:

λ(δ) =
1

δF̄R(δ−1)
.

• The file size distribution FS is determined by FD and FR.

• Tails of traffic sum is heavier than when S ⊥⊥ R. Now for fixed δ,
as x→∞,

P
[
A(δ) > x

]
∼ cF̄R(x).

• Oops! Infinite 2nd moment for A(0, δ], A(kδ, (k + 1)δ]

– Cannot use correlations for assessing decay of dependence as
k →∞.

– Used EDM to measure LRD.
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3.3. Summary: Compare model outcomes from two assumptions

Feature S ⊥⊥ R Model D ⊥⊥ R Model

1. P [A(0, δ] > x] RV−(αR+αS), RV−αR
,

fixed δ; x→∞ fixed δ; x→∞

2. LRD across slots Cov(k) ∼ cF̄
(0)
S (k); EDM(k) ∼ cF̄

(0)
D (k);

fixed δ; k →∞ fixed δ; k →∞

3. Cum traffic/slot
(A(0, δ]− (ctering(δ))

a(δ)

(A(0, δ]− (ctering(δ))

b(δ)

is N(0, 1)?
d
≈ N(0, 1)

d
≈ XαR

(·)



Intro

Math modeling

Small time scale results

Large time scale modeling

Part II: Empirical

Cornell Data

Sessions

Distn Structure

Dependence

Finale

Title Page

JJ II

J I

Page 16 of 61

Go Back

Full Screen

Close

Quit

4. Large time scale modeling

Kaj and Taqqu (2008), Konstantopoulos and Lin (1998), Mikosch et al.
(2002), Taqqu et al. (1997)
Sessions characterized by

• Initiation times

{Γk} ∼ homogeneous Poisson on (−∞,∞), rate λ.

• Marks for Poisson points {(Dk, Rk)}. Assume {Rk} ⊥⊥ {Dk} and
Rk iid with finite 2nd moment and {(Dk, Rk)} ⊥⊥ {Γk} and session
length distribution has heavy tail:

P(Dk > x) = F̄D(x) = x−α`(x), x > 0, 1 < α < 2 , (1)

where ` is a slowly varying function. Then {(Γk, Dk, Rk)} are
points of a 3-dimensional Poisson process.

Simplest case: Assume

Rk ≡ 1 so Sk = Dk and 1 < αS = α < 2.

Assumed to make tutorial more comprehensible.

• Number of sessions in progress at t

M(t) =
∞∑
k=1

1[Γk≤t<Γk+Dk]
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• Cumulative input in [0, t] if R ≡ 1,

A(t) =

∫ t

0

M(s)ds.

• α ∈ (1, 2) means the variance of Dk is infinite and its mean µD is
finite.

• Quantile function

b(t) =

(
1

1− FD

)←
(t) =: inf{x :

1

1− FD(x)
≥ t}, t > 0, (2)

which is regularly varying with index 1/α.

• Scale time in cumulative input by T →∞ and if necessary allow
λ = λ(T )→∞ (at what rate?) and consider for the T th model:

AT (t) = A(Tt).

• Family of models indexed by T . As we move through the family
by letting T →∞, is there an informative limit?
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Growth conditions

• λ = λ(T ): the parameter governing the initiation of sessions in
the T th model;

• Suppose λ = λ(T ) is non-decreasing function of T .

• Asymptotic behavior ofAT (·) is very different depending on whether

– slow ,

– moderate or

– fast growth

holds for λ(T ).



Intro

Math modeling

Small time scale results

Large time scale modeling

Part II: Empirical

Cornell Data

Sessions

Distn Structure

Dependence

Finale

Title Page

JJ II

J I

Page 19 of 61

Go Back

Full Screen

Close

Quit

Lemma 1 (Slow/moderate/fast growth.) Suppose for simplicity
Rk ≡ 1 and

• F̄D ∈ RV−α, 1 < α < 2; the quantile function of FD is

b(t) =
( 1

1− FD

)←
(t).

• Session initiations in the T th model form a stationary PRM on
R, rate λ = λ(T ).

Then MT (t), the number of active sources at time t in the T th model is
a stationary process on R and the following are equivalent and define
slow growth:

1.

lim
T→∞

b(λT )

T
= 0,

2.
lim
T→∞

λT F̄D(T ) = 0,

3.
lim
T→∞

Cov (MT (0),MT (T )) = 0.

Remark: If λ(T ) is constant or bounded, then always have slow growth.
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Fast growth: replace 0 by ∞.
Moderate growth: replace 0 by 0 < c <∞.

Very different approximations

Kaj and Taqqu (2008), Konstantopoulos and Lin (1998), Mikosch et al.
(2002), Taqqu et al. (1997)

Theorem 1 If slow growth holds, then the process (A(Tt), t ≥ 0) de-
scribing the total cumulative input in [0, T t], t ≥ 0, satisfies the limit
relation

X(T )(·) :=
A(T ·)− TλµD(·)

b(λT )

fidi→ Xα(·), (3)

where

• Xα(·) is α-stable Lévy motion;

• fidi→ denotes convergence of the finite dimensional distributions.
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Theorem 2 If fast growth holds, then the process (A(Tt), t ≥ 0) de-
scribing the total accumulated input in [0, T t], t ≥ 0, satisfies the limit
relation

A(T ·)− λµDT (·)
[λT 3F̄D(T )σ2]1/2

d→ BH(·) ,

where

• d→ denotes weak convergence in (D[0,∞), J1),

• BH is standard fractional Brownian motion,

• H = (3− α)/2

• σ2 is a constant.

See Gaigalas and Kaj (2003), Kaj (1999, 2002), Kaj and Taqqu (2008),
Konstantopoulos and Lin (1998), Mikosch and Stegeman (1999), Mikosch
et al. (2002), Resnick (2003), Resnick and van den Berg (2000).
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5. Part II: Empirical–Statistical Modeling

5.1. Does traffic ever look stable?

• Question: Do you ever see “traffic” that looks like stable Lévy
motion?

• Answer: No. (Guerin et al., 2003)

• Network invariant:

“Traffic at a heavily loaded link which is sufficiently ag-
gregated across users looks Gaussian.”

• I have never met a networking person who believes traffic could be
stable and at networking conferences have gotten several hostile
reactions to the suggestion that it might be.

• Theory says traffic could look stable so how does one explain the
lack of sightings?

• What happens to different streams, some of which could be Gaus-
sian and some stable, when they are combined?
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6. Cornell Netflow Data

The traditional Cisco definition (simplified) of a network flow:

a uni-directional sequence of packets with the same source
and destination IP address, source and destination port, pro-
tocol (TCP, UDP, ...).

• So each flow generates a datum: (source ip, destination ip, source
port, destination port, protocol (TCP, UDP, ...), ..., #bytes in
flow, start time, end time).

• 55 days, 4 hours per day, 1-5pm, time rounded to seconds by
collector.

• We separated flows into TCP flows and UDP flows.

• TCP=web, mail, ftp, ssh, some p2p, ... —source send rate re-
stricted by send/ack system and if ack doesn’t come back in a
time threshold, send rate halved.

• UDP= streaming media, some file sharing, voip; no control; sender
just sends. Such flows may be long.

• In Cornell data, TCP ≈ 68% of bytes but > 80% of flows.
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Analysis of data: Segment by TCP and UDP.

• A(TCP )
k and A

(UDP )
k = the total number of TCP and UDP bytes

in the kth hour, k = 1, . . . , 220.

• Detrend and remove daily seasonality. (With or without this mas-
sage the conclusions are the same.)

• A(TCP )
k , k = 1, . . . , 220 looks Gaussian.

• A(UDP )
k , k = 1, . . . , 220 looks heavy tailed.

• Combining the flows creates traffic that looks Gaussian.
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Normal QQ plot of TCP hourly data; Anderson-Darling test p-value:
0.1369. Reminder: If p-value > 0.05, do not reject hypothesis of nor-
mality at level 0.05.
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Normal QQ plot of UDP hourly data; Anderson-Darling test p-value:
9.18× 10−16.
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A(TCP ) + A(UDP ): Anderson-Darling test p-value: 0.2117.
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The Lopez-Oliveros & Resnick Explanation:

Suppose there are p independent streams. Define

• For jth stream, session arrival rate λ(j) = λ(j)(T ), j = 1, . . . , p;

• Cumulative arrival rate λ =
∑p

j=1 λ
(j),

• Each stream has regularly varying tail probabilities for session

durations with index α
(j)
D , j = 1, . . . , p; set

αD :=
n∧
j=1

α
(j)
D .

• Assume
lim inf
T→∞

∨
j:α

(j)
D =αD

λ(j)/λ > 0,

so that the proportion of traffic with heaviest tailed duration is
greater than positive constant.
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• Mixture: FD :=
∑p

j=1(λ(j)/λ)F
(j)
D with F̄D(x) ∈ RV−αD

for each
fixed T .

• A(j)(t) := cumulative input of the jth stream in [0, t].

• A(t) := cumulative input in [0, t] aggregated over all p streams.

• Each of the p streams satisfies one of the 3 conditions–fast, mod-
erate, or slow.
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How to get FBM limit and Gaussian Traffic:

Scenario Fast: There is at least one stream whose arrival rate satisfies
fast growth; implies the aggregated stream’s arrival rate also satisfies
fast-growth:

λT F̄D(T )→∞, T →∞.

Conclusion: The cumulative traffic aggregated over the p streams
looks like FBM:

A(Tt)− cT (t)

a(T )
⇒ BH(t), T →∞.

So?
In practice port 80 carries HTTP web plus other traffic;

• Dominant application; on typical server > 80% of connections.

• This dominant input rate λhttp leads to fast growth.
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Other cases.

Scenario Slow: All streams satisfy slow growth, hence

λT F̄L(T )→ 0.

Conclusion: The cumulative traffic aggregated over the p streams
looks like stable Lévy motion:

A(T ·)− λµDT ·
aSlow(T )

⇒ Xα(·), Scenario Slow.
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7. Packet Level Modeling: Segmenting Sessions by
Peak Rate

Consider packet level modeling from data consisting of packet headers .
This is quite different from netflow data.

When a file is sent through the Internet:

1. The file is divided into packets.

2. Headers: Our data consists of (anonymized) packet headers . Pack-
ets numbered and labeled with

• Source and destination IP addresses

• Source and destination port numbers

• Packet size

• Internet protocol (TCP?, UDP?, . . . )

• Time stamp of arrival at sensor.

3. Stored and forwarded through routers.

4. Reassembled into the original file upon delivery.
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No information when connections are closed or when flows end. How
to construct sessions? Choose a rule such as (Sarvotham et al., 2005):

A session is a cluster of packets with same source and desti-
nation network addresses, such that the delay between any
two succesive packets in the cluster is less than a threshold
t(= 2s).

Modest goals:

• Use packet header data to model Internet transmissions.

• Amalgamate packets into higher order entities, or sessions, ac-
cording to a sensible rule. Such amalgamation should simplify
modeling and allow fluid or continuous type applied prob mod-
els?

– Amalgamation rule far from unique.

– Do you have enough manpower & computer power to explore
alternatives?

• Since the Internet behaves partly as a result of human stimu-
lation, hope somewhere in this mess of data there lurk Poisson
points. Identify such points. Hope the chosen amalgamation rule
is conducive to identification of Poisson points.
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• Teach a computer to mimic Internet sessions and hence end user
Internet behavior.

7.1. Sessions

[Sarvotham et al. (2005)] For this study:

A session is a cluster of packets with same source and des-
tination network addresses, such that the delay between any
two succesive packets in the cluster is less than a threshold
t(= 2s).

Other definitions possible.

7.2. Session descriptors:

For each session, compute the following descriptors:

• S : Number of bytes transmitted (size).

• D : Duration of the session.

• R = S/D : Average transfer rate.

• Γ: Starting time.

• For studying burstiness, some measure of peak rate.
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7.3. Sample public domain data set.

http://wand.cs.waikato.ac.nz/wits/

• TCP traffic (www, email, FTP)

• Traffic sent to a University of Auckland server on December 8,
1999, between 3 and 4 pm.

• Raw data: 1,177,497 packet headers.

• Harvest working data set of the form {(Si, Di, Ri,Γi) : 1 ≤ i ≤
44, 136}.

Originally used by Sarvotham et al. (2005) to study of sources of
burstiness: Burstiness is important in order to understand congestion
because of the sudden peak loads it introduces to the network; qos
concerns.

http://wand.cs.waikato.ac.nz/wits/
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Figure 1: Bytes per time (seconds) process.
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7.4. The alpha-beta split

Sarvotham et al. (2005)

Definition 1 (δ-maximum input) Pick δ > 0. Divide each session
into consecutive intervals of length δ (being sloppy at end). If a session
is thus divided into l subintervals, let

Bi = # bytes transmitted over the ith subinterval, i = 1, . . . , l.

The δ-maximum input of a session is defined as Mδ =
∨l
i=1Bi.

Definition 2 (Alpha-beta split) Choose a high threshold u. A ses-
sion with a δ-maximum input Mδ is called

• alpha, if Mδ ≥ u,

• beta, if Mδ < u.
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Empirical features

Sarvotham et al. (2005) found:

• Alpha-sessions are the major source of burstiness.

• In alpha-sessions: R ⊥⊥ S (sort of).

• In beta-sessions: R ⊥⊥ D (sort of).

• Split usually produces huge beta-group (≈ tens of thousands) vs.
tiny alpha-group (< 100).

• Implies segmented sessions have different distribution in each seg-
ment.

sort of = as measured by correlation.

Does further segmentation of the beta-group produce meaningful in-
formation?

Goals:

• Better description of dependence structure of (S,D,R) within seg-
ment

• Simulation model.
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7.5. Finer segmentation

Split the data into m groups of approximately equal size according to
the empirical quantiles of the burstiness predictor or covariate; need
new definition of peak rate (that actually computes peak rate/session).

Will use m = 10 and speak of the decile groups. Split into decile
groups.

Features:

• Rather than a beta-group, we have 9 groups each with the peak
rate covariate in a given decile range.

• Claim the alpha-beta split masks further structure and it is infor-
mative to take into account the explicit level of the covariate.
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7.6. Peak rate

Definition 3 For a session with n packets:

B′i =# bytes in ith packet,

T ′i =interarrival time between ith and (i+ 1)st packet,

i = 1, . . . , n− 1. For k = 2, . . . , n, the peak rate of order k is

P (k) =
n−k+1∨
i=1

∑i+k−1
j=i B′j∑i+k−2
j=i T ′j

.

The P (k) is the maximum transfer rate using only k consecutive pack-
ets.
The peak rate is defined as

P∨ =
n∨
k=2

P (k).

[Makes sense empirically but would be difficult to work with analyti-
cally.]
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Outline

• Divide the 44,136 sessions into 10 groups according to the deciles
of P∨.

• Study the marginals of (S,D,R) in the 10 decile groups. (Heavy
tails?)

• Study dependence structure of (S,D) using EVT across the decile
groups.

• For our definition of peak rate, P∨, within a decile group, data
sessions are initiated according to a homogeneous Poisson process.

– Not true for other peak rate definitions of Sarvotham et al.
(2005).]
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8. Structure of (S,D,R).

8.1. Heavy tails

Definition 4 (Heavy tails) Call Y has heavy tailed if its cdf F sat-
isfies

F̄ (y) = y−1/γ`(y),

where ` is slowly varying and γ > 0.

Quickie summary:

• In each decile group, (S,D) jointly heavy tailed w/o asymptotic
independence.

Jointly heavy tailed means: ∃ scaling functions bS(t), bD(t)→∞
and a limit measure ν s.t.

tP [
( S

bS(t)
,
D

bD(t)

)
∈ A]→ ν(A)

for sets bounded away from (0, 0).

w/o asymptotic independence means

ν((0,∞]2) > 0.

• R is only heavy tailed for the highest decile group;
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• R does not appear to be even in a domain of attraction for any
of the 9 lower decile groups.

8.2. Estimation of γ’s

Definition 5 (Hill estimator) Let {X1, . . . , Xn} be iid (or station-
ary + mixing) with order statistics

X1:n ≤ · · · ≤ Xn:n.

The Hill estimator of γ > 0 is

γ̂k,n =
1

k

n∑
i=n−k+1

log
Xi:n

Xn−k:n

. (4)

Theorem 3 (Consistency of Hill) If the distribution is heavy tailed
+additional second order condition, as k →∞, n→∞, k/n→ 0:

√
k(γ̂k,n − γ)

d−→ N(0, γ2). (5)

Equivalent to peaks over threshold method and MLE.



Intro

Math modeling

Small time scale results

Large time scale modeling

Part II: Empirical

Cornell Data

Sessions

Distn Structure

Dependence

Finale

Title Page

JJ II

J I

Page 45 of 61

Go Back

Full Screen

Close

Quit

Figure 2: Size, duration and rate in the 10th decile group
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decile γS s.e. γD s.e. γR s.e.
1 0.56 0.056 0.60 0.028
2 0.55 0.061 0.47 0.023
3 0.62 0.044 0.63 0.034
4 0.62 0.036 0.62 0.029
5 0.61 0.035 0.55 0.029
6 0.69 0.040 0.55 0.028
7 0.88 0.042 0.73 0.037
8 0.77 0.045 0.71 0.033
9 0.70 0.037 0.69 0.032
10 0.73 0.034 0.68 0.032 0.58 0.027

Table 1: Summary of Hill estimates with asymptotic standard errors for the shape
parameter of S, D and R.

Conclude: It appears that marginal distributions vary by decile.
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9. Dependence structure of (S,D)

• Dependence structure varies by decile. Seen already in simple
scatter plots.

• Assess dependence by computing angular measures which give
favored directions for big values of (S,D).

– Standardize the pairs to have the same tails by ranks method .

Standardize means putting coordinates (S,D) on same
scale by non-linear monotone transformation so that
bS(t), bD(t) replaced by t, t.

– Threshold the resulting pairs and keep only those data pairs
outside a large circle.

– Convert to polar coordinates.

– Make density plot of θ-coordinate. The corresponding mea-
sure is S(dθ), called the angular or spectral measure. So

S(dθ) =prob standardized point far away from (0,0)

is in direction dθ.
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Simple scatter plot.

Figure 3: S vs. D for (left) 1st P∨ decile and (right) 6th P∨ decile.
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Alpha-beta-like split; angular measures (S,D)

Figure 4: Non-parametric estimates of the spectral density of S for (left) a beta
aggregate of 9 deciles and (right) an alpha group.
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Finer split: plots reasonably symmetric, unimodal

Figure 5: Non-parametric estimates of the spectral density of S from left to right
and top to bottom: 1st to 9th decile groups.



Intro

Math modeling

Small time scale results

Large time scale modeling

Part II: Empirical

Cornell Data

Sessions

Distn Structure

Dependence

Finale

Title Page

JJ II

J I

Page 51 of 61

Go Back

Full Screen

Close

Quit

Comments

• Seek to relate the explicit level of P∨ with the dependence struc-
ture of (S,D).

Seek global model: Hope the spectral measure S can be approx-
imated by some Sψ from a parametric family of densities hψ(θ)
where a (generalized linear) model links g(ψ) ∼ decile group. So

session −→ peak rate P∨
glm−→ ψ −→ hψ(θ)

−→ simulated standardized (S,D) −→ simulated (S,D).

• Using QQ plots and sample acf’s can check

within decile groups, session initiation times look Pois-
son.

This is not true across the whole data set–only when the data is
segmented by decile group; also not true with other definitions of
peak rate.
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9.1. Global model: Toward a parametric model for the spectral
density S

Logistic model:

hψ(t) =
1

2

(
1

ψ
− 1

)
t−1−1/ψ(1− t)−1−1/ψ[t−1/ψ + (1− t)−1/ψ]ψ−2, (6)

=h(t), 0 ≤ t ≤ 1,

with ψ ∈ (0, 1).

Features:

• Symmetric.

• For ψ < 0.5 : h is unimodal and as ψ → 0 we obtain perfect
dependence.

• For ψ > 0.5 : h is bimodal and as ψ → 1 we obtain asymptotic
independence.

This allows us to quantify the effect of P∨ on the dependence between
S and D.
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Parametric vs non-parametric density estimates.

Figure 6: Parametric estimates of the spectral density S superimposed to non-
parametric counterparts, from left to right and top to bottom: 1st to 9th decile
groups.
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Dependence of (S,D) as a function of P∨

Fit a global trend logistic model where

g−1(ψ) = β0 + β1 log(P∨).

After some experimenting choose link function g

g(x) =
1/2

1 + e−x
.
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Sketch of simulation of heterogeneous traffic:

1. In the existing data set, each session has an associated P∨. Form
the EDF. Get a bootstrap sample of P∨ from this EDF and divide
into m = 10 samples according to the quantiles.

2. For each group, simulate the starting times of the sessions via
homogeneous Poisson process.

3. For each P∨j , compute the corresponding value of ψj from the
GLM and use it to simulate an angle Θj from the logistic distri-
bution.

4. Simulate the radius component Nj; use Pareto for the heavy tail.

5. Transform to Cartesian coordinates and then invert using fitted
marginal distributions to get back to the original scale where
(Sj, Dj) do not have same tails.Compute Rj = Sj/Dj.
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What about R?

• Except for highest decile, R is not in a domain of attraction and
not heavy tailed.

• We have evidence that

R− β(t)

α(t)

∣∣∣S > t⇒ G(·)

for α(t) > 0 and G a pm.

Allows application of an emerging theory of conditional extreme
values (CEV).

• Evidence that R|D cannot be modeled. How come?

Credit:

López-Oliveros and Resnick (2011) + ideas of Jan Heffernan.
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10. Final thoughts

• Consistency issues for (S,D,R) where S/D = R. Why are the
models

– (S,D) jointly heavy tailed and

– R|S > t has a limiting type

consistent.

Need theory to match empirical observation.

• Conditional on (deciles of) peak rate, sessions arrive according to
a homogeneous Poisson. Use this theoretically? Overall traffic is
a mixture?

• Sessions are better behaved after conditioning on peak rate. But
peak rate is difficult to analyze based on packet level models.

• Segmentation of sessions by application: HTTP, mail, streaming,
ftp, ssh, . . . .

– Difficult to map application on ports so difficult to identify
applications. Many applications use port 80 which is suppos-
edly reserved for HTTP.
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– As opposed to 1999 data set used for peak rate study, a 2011
data set from CAIDA shows signifcant censoring in 1 hour
collection interval.

– Port 25 ↔ mail easiest to study; eg arrivals of sessions form
Poisson process in between Poisson interruptions.
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