# Multivariate Heavy Tails, Asymptotic Independence and Beyond 

Sidney Resnick<br>School of Operations Research and Industrial Engineering Rhodes Hall<br>Cornell University<br>Ithaca NY 14853 USA



Page 1 of 42
http://www.orie.cornell.edu/~sid
sir1@cornell.edu
April 21, 2005

```
Full Screen
```

Work with: K. Maulik, J. Heffernan, S. Marron, ...

## 1. Multidimensional Heavy Tails.

Consider a vector $\boldsymbol{X}=\left(X^{(1)}, \ldots, X^{(d)}\right)$ where

- The components may be dependent.
- The components are each univariate heavy tailed.

Heavy Tails- $\geq 2$ dim
Mult Reg Var
Asymptotic Indep
Hidden reg var (HRV)
Characterize HRV
Detecting HRV
Conditional models
Medical Care
Title Page

4

4

Page 2 of 42

Go Back

Full Screen

- Copula methods.


## Close

### 1.1. Example.

Internet traffic:
Consider

$$
\begin{aligned}
F & =\text { file size } \\
L & =\text { duration of transmission } \\
R & =\text { throughput }=F / L
\end{aligned}
$$

All three, are seen empirically to be heavy tailed.
Two studies:

- BU
- UNC

What is the dependence structure of $(F, R, L)$ ?
Since $F=L R$, the tail parameters ( $\alpha_{F}, \alpha_{R}, \alpha_{L}$ ) cannot be arbitrary.

Title Page
Detecting HRV
Conditional models
Medical Care

Note for BU measurements, we have the following empirical estimates:

| $\alpha$ | $\hat{\alpha}_{F}$ | $\hat{\alpha}_{R}$ | $\hat{\alpha}_{L}$ |
| :---: | :---: | :---: | :---: |
| estimated value | 1.15 | 1.13 | 1.4 |

Two theoretical possibilities:

- If $(L, R)$ have a joint distribution with multivariate regularly varying tail but are NOT asymptotically independent then (Maulik, Resnick, Rootzen (2002))

$$
\hat{\alpha}_{F}=\frac{\hat{\alpha}_{L} \hat{\alpha}_{R}}{\hat{\alpha}_{L}+\hat{\alpha}_{R}}=.625 \neq 1.15
$$

- If $(L, R)$ obey a form (not the EVT version) of asymptotic independence, (Maulik+Resnick+Rootzen; Heffernan+Resnick)

$$
t P\left[\left(L, \frac{R}{b(t)}\right) \in \cdot\right] \xrightarrow{v} G \times \alpha x^{-\alpha-1} d x
$$

Heavy Tails- $\geq 2$ dim
Mult Reg Var
Asymptotic Indep
Hidden reg var (HRV)
Characterize HRV
Detecting HRV
Conditional models
Medical Care
Title Page


4
Page 4 of 42

Go Back

Full Screen
and in our example

$$
\alpha_{F}=\alpha_{R} \bigwedge \alpha_{L}
$$

$$
1.15 \approx 1.13 \bigwedge 1.4
$$

## For two examples

- BU: Evidence seems to support some form of independence for $(R, L)$.
- UNC: Conclusions from Campos, Marron, Resnick, Jeffay (2005);
- Large values of $F$ tend to be independent of large values of $R$.
$\Rightarrow$ Large files do not seem to receive any special consideration when rates are assigned.

CORNELL

Asymptotic Indep


Page 5 of 42

Go Back

Full Screen

Close

## BuL vs BuR:

Data processed from the original 1995 Boston University data; 4161 file sizes ( F ) and download times ( L ) noted and transmission rates ( R ) inferred. The data consists of bivariate pairs (R,L).


Heavy Tails-> 2 dim
Mult Reg Var
Asymptotic Indep
Hidden reg var (HRV)
Characterize HRV
Detecting HRV
Conditional models
Medical Care
Title Page


Page 6 of 42

Go Back

Full Screen

## 2. Multivariate Regular Variation.

### 2.1. Standard Case

A fct $U: \mathbb{R}_{+}^{d} \mapsto \mathbb{R}_{+}$is mult reg varying if

$$
\frac{U(t \boldsymbol{x})}{U(t \boldsymbol{1})} \rightarrow \lambda(\boldsymbol{x}) \neq 0
$$

for $\boldsymbol{x} \geq \mathbf{0}, \boldsymbol{x} \neq \mathbf{0}$. Then $\exists \rho$ and

$$
\lambda(t \boldsymbol{x})=t^{\rho} \lambda(\boldsymbol{x}),
$$

and $U(t \mathbf{1}) \in R V_{\rho}$.
Usually there is a sequential equivalent version: $\exists b_{n} \rightarrow \infty$ such that

$$
\frac{U\left(b_{n} \boldsymbol{x}\right)}{n} \rightarrow \lambda(\boldsymbol{x}) .
$$

Application to distributions: For simplicity, let $\boldsymbol{Z}, \boldsymbol{Z}_{n}, n \geq 1$ be iid, range $=\mathbb{R}_{+}^{d}$ and common df $F$. A regularly varying tail means

$$
\frac{1-F(t \boldsymbol{x})}{1-F(t \mathbf{1})} \rightarrow \nu\left([\mathbf{0}, \boldsymbol{x}]^{c}\right)
$$

for some Radon measure $\nu$. However, it is awkward to deal with mult df's and better to deal with measures.

Let

$$
\begin{aligned}
& \mathbb{E}=[0, \infty]^{d} \backslash\{\boldsymbol{0}\} \\
& \aleph=\{\boldsymbol{x} \in \mathbb{E}:\|\boldsymbol{x}\|=1\}, \\
& R=\|\boldsymbol{Z}\|, \quad \boldsymbol{\Theta}=\frac{\boldsymbol{Z}}{\|\boldsymbol{Z}\|} \in \aleph .
\end{aligned}
$$

The following are equivalent and define multivariate heavy tails or regularly varying tails.

Mult Reg Var
Asymptotic Indep
Hidden reg var (HRV)
Characterize HRV
Detecting HRV
Conditional models
Medical Care
Title Page
4


Page 8 of 42

```
Go Back
```

Full Screen

1. $\exists$ a Radon measure $\nu$ on $\mathbb{E}$ such that

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{1-F(t \boldsymbol{x})}{1-F(t \mathbf{1})} & =\lim _{t \rightarrow \infty} \frac{\mathbb{P}\left[\frac{\boldsymbol{Z}_{1}}{t} \in[\mathbf{0}, \boldsymbol{x}]^{c}\right]}{\mathbb{P}\left[\frac{\boldsymbol{Z}_{1}}{t} \in[\mathbf{0}, \mathbf{1}]^{c}\right]} \\
& =c \nu\left([\mathbf{0}, \boldsymbol{x}]^{c}\right)
\end{aligned}
$$

some $c>0$ and for all points $\boldsymbol{x} \in[\mathbf{0}, \boldsymbol{\infty}) \backslash\{\mathbf{0}\}$ which are continuity points of $\nu\left([\mathbf{0},]^{c}\right)$.
2. $\exists$ a function $b(t) \rightarrow \infty$ and a Radon measure $\nu$ on $\mathbb{E}$ such that in $M_{+}(\mathbb{E})$

$$
t \mathbb{P}\left[\frac{\boldsymbol{Z}_{1}}{b(t)} \in \cdot\right] \xrightarrow{v} \nu, \quad t \rightarrow \infty
$$

3. $\exists \mathrm{a} \mathrm{pm} S(\cdot)$ on $\aleph$ and $b(t) \rightarrow \infty$ such that

$$
t \mathbb{P}\left[\left(\frac{R_{1}}{b(t)}, \Theta_{1}\right) \in \cdot\right] \xrightarrow{v} c \nu_{\alpha} \times S
$$

in $M_{+}(((0, \infty] \times \aleph)$, where $c>0$ and

$$
\nu_{\alpha}(x, \infty]=x^{-\alpha}
$$

Page 9 of 42

```
Go Back
```

4. $\exists b_{n} \rightarrow \infty$ such that in $M_{p}(\mathbb{E})$

$$
\sum_{i=1}^{n} \epsilon_{\boldsymbol{Z}_{i} / b_{n}} \Rightarrow \operatorname{PRM}(\nu)
$$

5. $\exists$ a sequence $b_{n} \rightarrow \infty$ such that in
$M_{p}((0, \infty] \times \aleph)$

$$
\sum_{i=1}^{n} \epsilon_{\left(R_{i} / b_{n}, \Theta_{i}\right)} \Rightarrow \operatorname{PRM}\left(c \nu_{\alpha} \times S\right)
$$

These conditions imply that for any sequence $k=k(n) \rightarrow \infty$ such that $n / k \rightarrow \infty$ we have
6. In $M_{+}(\mathbb{E})$,

$$
\begin{align*}
& \frac{1}{k} \sum_{i=1}^{n} \epsilon_{\boldsymbol{Z}_{i} / b\left(\frac{n}{k}\right)} \Rightarrow \nu  \tag{*}\\
& \frac{1}{k} \sum_{i=1}^{n} \epsilon_{\left(R_{i} / b(n / k), \Theta_{i}\right)} \Rightarrow\left(c \nu_{\alpha} \times S\right) \tag{**}
\end{align*}
$$

and (6) is equivalent to any of (1)-(5), provided $k(\cdot)$ satisfies $k(n) \sim k(n+1)$.

Page 10 of 42

Go Back

Full Screen

$$
\frac{\left.\sum_{i=1}^{n} \epsilon_{\left(R_{i} / b(n / k), \Theta_{i}\right)}[1, \infty] \times \cdot\right)}{\sum_{i=1}^{n} \epsilon_{R_{i} / b(n / k)}[1, \infty]}
$$

```
Close
```


## But:

- This theoretical formulation is for the standard case.
- Problematic for applications. If we norm each component by the same $b(t) \Rightarrow$ marginal tails same; ie components on the same scale:

$$
\mathbb{P}\left[Z^{(i)}>x\right] \sim c_{i j} \mathbb{P}\left[Z^{(j)}>x\right], \quad c_{i j}>0, x \rightarrow \infty
$$

- Standard case almost never happens in practice.
- How to transform to the standard case in practice?

Heavy Tails $-\geq 2$ dim
Mult Reg Var
Asymptotic Indep
Hidden reg var (HRV)
Characterize HRV
Detecting HRV
Conditional models
Medical Care
Title Page

44

4

Page 11 of 42

Go Back

Full Screen

## The ranks method:

Given $d$-dimensional random vectors $\left\{\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right\}$ where

$$
\boldsymbol{X}_{i}=\left(X_{i}^{(1)}, \ldots, X_{i}^{(d)}\right), \quad i=1, \ldots, n,
$$

define the (anti)-ranks for each component: Comparing the
$j$ th components, $X_{1}^{(j)}, \ldots, X_{n}^{(j)}$, the anti-rank of $X_{\mathbf{i}}^{(\mathrm{j})}$ is

$$
\begin{aligned}
r_{\mathbf{i}}^{(\mathrm{j})} & =\sum_{l=1}^{n} 1_{\left[X_{l}\right.}^{(\mathrm{j})_{\geq X_{\mathbf{i}}}(\mathrm{j})_{]}} \\
& =\# \text { jth components } \geq X_{i}^{(j)} .
\end{aligned}
$$

Replace each $\boldsymbol{X}_{i}$ by

$$
\boldsymbol{X}_{i} \mapsto\left(1 / r_{i}^{(j)}, j=1, \ldots, d\right)
$$

## Rank method-UNC

Steps:

- Transform ( $\mathrm{F}, \mathrm{R}$ ) data using rank method.
- Convert to polar coordinates.
- Keep 2000 pairs with biggest radius vector.
- Compute density estimate for angular measure $S$.

Plot: Density estimates with various amounts of smoothing+jitter plot (green) of angles.

Full disclosure: These types of plots can be rather sensitive to choice of threshold.

Heavy Tails $-\geq 2$ dim
Mult Reg Var
Asymptotic Indep
Hidden reg var (HRV)
Characterize HRV
Detecting HRV
Conditional models
Medical Care
Title Page

44


Page 13 of 42

Go Back

Full Screen


Heavy Tails $-\geq 2$ dim

## Mult Reg Var

## Asymptotic Indep

Hidden reg var (HRV)
Characterize HRV
Detecting HRV
Conditional models
Medical Care
Title Page


Page 14 of 42

Go Back

Full Screen

Close

### 2.2. Simplifying assumptions

For theory, proceed assuming

- Standard case.
- One dimensional marginals $F_{(i)}, i=1, \ldots, d$ are the same.
- $d=2$ (just for ease of explanation).

Mult Reg Var
Asymptotic Indep


## 3. Significance of limit measure

The limit measure $\nu$ controls the (asymptotic) dependence structure: The distribution $F$ of $\boldsymbol{Z}_{1}$ possesses asymptotic independence if either

1. $\nu((\mathbf{0}, \boldsymbol{\infty}))=0$ so that $\nu$ concentrates on the axes;

## OR

2. $S$ concentrates on $\{(1,0),(0,1)\}$.

This definition designed to yield

- As $n \rightarrow \infty$

$$
\bigvee_{i=1}^{n} \frac{\boldsymbol{Z}_{i}}{b_{n}} \Rightarrow\left(Y^{(1)}, Y^{(2)}\right)
$$

where $\left(Y^{(1)}, Y^{(2)}\right)$, are independent Frechet distributed.

- Probability of 2 components being simultaneously large is negligible: For $d=2$ :

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left[Z^{(2)}>t \mid Z^{(1)}>t\right] \rightarrow 0
$$

```
Go Back
```


### 3.1. Why asymptotic independence creates problems.

- Estimators of various parameters may behave badly under asymptotic independence; eg, estimator of the spectral measure $S$. Estimators may be asymptotically normal with an asymptotic variance of 0 (oops!).
- Estimators of probabilities given by asymptotic theory may be uninformative.

Heavy Tails $-\geq 2$ dim
Mult Reg Var
Asymptotic Indep
Hidden reg var (HRV)
Characterize HRV
Detecting HRV
Conditional models
Medical Care
Title Page

Scenario: Estimate the probability of simultaneous non-compliance.
Supppose $\boldsymbol{Z}=\left(Z^{(1)}, Z^{(2)}\right)=$ concentrations of different pollutants. Environmental agencies set critical levels $\boldsymbol{t}_{0}=\left(t_{0}^{(1)}, t_{0}^{(2)}\right)$ which not be exceeded. Imagine simultaneous non-compliance creates a health hazard. Worry about

$$
[\text { health hazard }]=\left[\boldsymbol{Z}>\boldsymbol{t}_{0}\right]=\left[Z^{(j)}>t_{0}^{(j)} ; j=1,2\right] .
$$

Assume only regular variation with unequal components. Then for the probability of non-compliance, we estimate

$$
\begin{aligned}
P\left[Z^{(1)}>t_{0}^{(1)}, Z^{(2)}>t_{0}^{(2)}\right] & =P\left[\frac{Z^{(j)}}{b^{(j)}\left(\frac{n}{k}\right)}>\frac{t_{0}^{(j)}}{b^{(j)}\left(\frac{n}{k}\right)} ; j=1,2\right] \\
& \approx \frac{k}{n} \nu\left(\left(\left(\frac{t_{0}^{(1)}}{b^{(1)}\left(\frac{n}{k}\right)}, \frac{t_{0}^{(2)}}{b^{(2)}\left(\frac{n}{k}\right)}\right), \infty\right]\right)=0
\end{aligned}
$$

## 4. Hidden Regular Variation.

## A submodel of asymptotic independence.

The random vector $\boldsymbol{Z}$ has a distribution possessing hidden regular variation if

1. Regular variation on the big cone $\mathbb{E}=[0, \infty]^{2} \backslash\{\mathbf{0}\}$ :

$$
t \mathbb{P}\left[\frac{\boldsymbol{Z}}{b(t)} \in \cdot\right] \xrightarrow{v} \nu
$$

AND
2. Regular variation on the small cone $(0, \infty]^{2}: \exists$ a non-decreasing function $b^{*}(t) \uparrow \infty$ such that

$$
b(t) / b^{*}(t) \rightarrow \infty
$$

and $\exists$ a measure $\nu^{*} \neq 0$ which is Radon on $\mathbb{E}^{0}=(0, \infty]^{2}$ and such
Heavy Tails $-\geq 2$ dim
Mult Reg Var
Asymptotic Indep
Hidden reg var (HRV)
Characterize HRV
Detecting HRV
Conditional models
Medical Care
Title Page
44
4

Page 19 of 42

Go Back

Full Screen
on the cone $\mathbb{E}^{0}$.
Then there exists $\alpha^{*} \geq \alpha$ such that $b^{*} \in R V_{1 / \alpha^{*}}$.

```
Close
```

```
Close
```


## Consequences:

- With the right formulation,

$$
\begin{aligned}
& \text { Second order regular variation }+ \text { asy indep } \\
& \quad \Rightarrow \text { hidden regular variation } \\
& \quad \Rightarrow \text { asymptotic independence. }
\end{aligned}
$$

- Means for every $s \geq 0, s \neq 0, \bigvee_{i=1}^{d} s^{(i)} Z^{(i)}$ has distribution with a regularly varying tail of index $\alpha$ and for every $\boldsymbol{a} \geq \mathbf{0}, \boldsymbol{a} \neq \mathbf{0}$, $\bigwedge_{i=1}^{d} a^{(i)} Z^{(i)}$ has a regularly varying distribution tail of index $\alpha^{*}$.
- In particular, hidden regular variation means both $Z^{(1)} \vee Z^{(2)}$ and $Z^{(1)} \wedge Z^{(2)}$ have regularly varying tail probabilities with indices $\alpha$ and $\alpha^{*}$. Note

$$
\eta=1 / \alpha_{*}=\text { coefficient of tail dependence }
$$

(Ledford and Tawn $(1996,1997))$.

- Define on $\aleph \cap \mathbb{E}^{0}$

$$
S^{*}(\Lambda)=\nu^{*}\left\{\boldsymbol{x} \in \mathbb{E}^{0}:|\boldsymbol{x}| \geq 1, \frac{\boldsymbol{x}}{|\boldsymbol{x}|} \in \Lambda\right\}
$$

Go Back

Full Screen

```
Close
```

```
Close
```

called the hidden angular measure.

## Sub-model (cont)-Two Examples:

Example 1: $d=2$; independent random quantities $B, \boldsymbol{Y}, \boldsymbol{U}$ with

$$
P[B=0]=P[B=1]=1 / 2
$$

and $\boldsymbol{Y}=\left(Y^{(1)}, Y^{(1)}\right)$ is iid with

$$
P\left[Y^{(1)}>x\right] \in R V_{-1}
$$

and

$$
b(t)=\left(\frac{1}{P\left[Y^{(1)}>\cdot\right]}\right)^{\leftarrow}(t) \in R V_{1} .
$$

Let $\boldsymbol{U}$ have multivariate regularly varying distribution on $\mathbb{E}$ and

$$
\exists \alpha^{*}>1, b^{*}(t) \in R V_{1 / \alpha^{*}}, \nu^{*} \not \equiv 0
$$

$$
t P\left[\frac{\boldsymbol{U}}{b^{*}(t)} \in \cdot\right] \rightarrow \nu^{*} \neq 0
$$

Define

$$
\boldsymbol{Z}=B \boldsymbol{Y}+(1-B) \boldsymbol{U}
$$

which has hidden regular variation, and the property

$$
S^{*}\left(\aleph^{0}\right):=\nu^{*}\left\{\boldsymbol{x} \in \mathbb{E}^{0}:\|\boldsymbol{x}\|>1\right\}<\infty .
$$

Example 2: $d=2$, define

$$
\nu^{*}([\boldsymbol{x}, \infty])=\left(x^{(1)} x^{(2)}\right)^{-1}
$$

Define $\boldsymbol{Z}=\left(Z^{(1)}, Z^{(2)}\right)$ iid and Pareto distributed with

$$
P\left[Z^{(1)}>x\right]=x^{-1}, \quad x>1, i=1,2 .
$$

Set

$$
b(t)=t, \quad b^{*}(t)=\sqrt{t}
$$

so that $b(t) / b^{*}(t) \rightarrow \infty$. Then on $\mathbb{E}$

$$
t P\left[\frac{\boldsymbol{Z}}{b(t)} \in \cdot\right] \rightarrow^{v} \nu
$$

Medical Care
Title Page
$\nu\left(\mathbb{E}^{0}\right)=0$, and on $\mathbb{E}^{0}$

$$
t P\left[\frac{\boldsymbol{Z}}{b^{*}(t)} \in \cdot\right] \rightarrow^{v} \nu^{*}
$$

and
Go Back

$$
S^{*}\left(\aleph^{0}\right):=\nu^{*}\left\{\boldsymbol{x} \in \mathbb{E}^{0}:\|\boldsymbol{x}\|>1\right\}=\infty
$$

How dense are these 2 examples?
Need for a concept of multivariate tail equivalence: Sppse

$$
\mathbf{0} \leq \boldsymbol{Y} \sim F ; \quad \mathbf{0} \leq \boldsymbol{Z} \sim G
$$

Say $F, G$ (or $\boldsymbol{Y}$ and $\boldsymbol{Z}$ ) are tail equivalent on cone $\mathbb{C}$ if there exists $b(t) \uparrow \infty$ such that

$$
t P[\boldsymbol{Y} / b(t) \in \cdot]=t F(b(t) \cdot) \xrightarrow{v} \nu
$$

and

$$
t P[\boldsymbol{Z} / b(t) \in \cdot]=t G(b(t) \cdot) \xrightarrow{v} c \nu
$$

for $c>0$, Radon $\nu \neq 0$ on $\mathbb{C}$.
Write

$$
\boldsymbol{Y} \stackrel{t e(\mathbb{C})}{\sim} \boldsymbol{Z}
$$

Heavy Tails $-\geq 2$ dim Mult Reg Var

Asymptotic Indep
Hidden reg var (HRV)
Characterize HRV
Detecting HRV
Conditional models
Medical Care
Title Page


## 5. Characterizations.

## Mixture Characterization; $S^{*}$ is Finite

Assume finite hidden angular measure: Sppse $\boldsymbol{Z} \sim F$ is multivariate regularly varying on

$$
\begin{array}{lll}
\mathbb{E}:=[\mathbf{0}, \boldsymbol{\infty}]^{d} \backslash\{\mathbf{0}\}, & \text { scaling } b(t), & \\
\mathbb{E}_{0}:=(\mathbf{0}, \boldsymbol{\infty}]^{d}, & \text { scaling } b^{*}(t), & b(t) / b^{*}(t) \rightarrow \infty, \\
b \in R V_{1 / \alpha}, & b^{*} \in R V_{1 / \alpha^{*}}, & \alpha \leq \alpha^{*} .
\end{array}
$$

Then $F$ is tail equivalent on both the cones $\mathbb{E}$ and $\mathbb{E}_{0}$ to a mixture distribution

$$
\boldsymbol{Z} \stackrel{t e(\mathbb{C})}{\sim} 1_{[I=0]} \boldsymbol{V}+\sum_{i=1}^{d} 1_{[I=i]} X_{i} \boldsymbol{e}_{i}
$$

Here $\boldsymbol{e}_{i} ; i=1, \ldots, d$ are the usual basis vectors.

Heavy Tails $-\geq 2$ dim

## Mult Reg Var

Asymptotic Indep

Remarks on the characterization:

$$
\boldsymbol{Z} \stackrel{t e(\mathbb{C})}{\sim} 1_{[I=0]} \boldsymbol{V}+\sum_{i=1}^{d} 1_{[I=i]} X_{i} \boldsymbol{e}_{i} .
$$

- $\sum_{i=1}^{d} 1_{[I=i]} X_{i} \boldsymbol{e}_{i}$ concentrates on the axes, has no hidden regular variation, and the marginal distributions (of the $X_{i}$ ) have scaling function $b(t)$,
- $\boldsymbol{V}$ mult reg varying on $\mathbb{E}$ (not $\mathbb{E}_{0}$-this is the effect of finite $\nu^{*}$ ) with scaling function $b^{*}(t)$; tails of $\boldsymbol{V}$ are lighter than those of the completely asymptotically independent distribution $\sum_{i=1}^{d} 1_{[I=i]} X_{i} \boldsymbol{e}_{i}$.
- Conversely: if $F$ tail equivalent to a mixture as above, $b(t) / b^{*}(t) \rightarrow$ $\infty$, then $F$ is multivariate reg varying on $\mathbb{E}$ and $\mathbb{E}_{0}$ with finite hidden angular measure and with scaling functions $b, b^{*}$.

CORNELL

Heavy Tails $-\geq 2$ dim
Mult Reg Var
Asymptotic Indep

```
Go Back
```


## Mixture Characterization; $S^{*}$ is Infinite

Assume infinite hidden angular measure. Sppse $\boldsymbol{Z} \sim F$ mult regularly
varying on

$$
\begin{array}{lll}
\mathbb{E}:=[\mathbf{0}, \boldsymbol{\infty}]^{d} \backslash\{\mathbf{0}\}, & \text { scaling } b(t), & \\
\mathbb{E}_{0}:=(\mathbf{0}, \boldsymbol{\infty}]^{d}, & \text { scaling } b^{*}(t), & b(t) / b^{*}(t) \rightarrow \infty, \\
b \in R V_{1 / \alpha}, & b^{*} \in R V_{1 / \alpha^{*}}, & \alpha \leq \alpha^{*} .
\end{array}
$$

Then $F$ is tail equivalent on both the cones $\mathbb{E}$ and $\mathbb{E}_{0}$ to a mixture distribution

$$
\boldsymbol{Z}=1_{[I=0]} \boldsymbol{V}+\sum_{i=1}^{d} 1_{[I=i]} X_{i} \boldsymbol{e}_{i} .
$$

Heavy Tails $-\geq 2$ dim
Mult Reg Var
Asymptotic Indep

Remarks and notes on the infinite case:

- $\boldsymbol{V}$ is only guaranteed to be reg varying on $\mathbb{E}_{0}$; index is $\alpha^{*}$.
- If the reg variation of $\boldsymbol{V}$ can be extended to $\mathbb{E}$, then the 1-dim marginals have heavier tails of index $\leq \alpha^{*}$.

Go Back

- BUT: do not have a useful criterion for when reg var on $\mathbb{E}_{0}$ can be extended to $\mathbb{E}$.


## 6. Can We Detect Hidden Regular Variation?

## Example 1: Simulation.

5000 pairs of iid Pareto, $\alpha=1 ; \alpha_{*}=2$. Hillplot for rank transformed data taking minima of components.


Detecting HRV
Conditional models
Medical Care

```
Title Page
```


$\begin{array}{llllllll}15 & 9416 & 22340 & 36439 & 50538 & 64637 & 78736 & 92835\end{array}$
Order Statistics

Go Back

Full Screen

## Example 2: UNC Wed (F,R).

QQ plot of rank transformed data using 1000 upper order statistics for UNC Wed ( $\mathrm{F}, \mathrm{R}$ ); $\alpha=1$ and $\hat{\alpha}_{*}=1.6$.

## Asymptotic Indep



## Characterize HRV

Detecting HRV
Conditional models
Medical Care
Title Page


Page 28 of 42

Go Back

Full Screen

### 6.1. Estimating $\nu^{*}$.

The hidden measure $\nu^{*}$ has a spectral measure $S^{*}$ defined on $\aleph_{0}$, the unit sphere in $\mathbb{E}_{0}$ :

$$
S^{*}(\Lambda):=\nu^{*}\left\{\boldsymbol{x} \in \mathbb{E}_{0}:\|\boldsymbol{x}\|>1, \frac{\boldsymbol{x}}{\|\boldsymbol{x}\|} \in \Lambda\right\} .
$$

$S^{*}$ may not necessarily be finite.
We estimate $S^{*}$ rather than $\nu^{*}$.

Heavy Tails $-\geq 2$ dim
Mult Reg Var
Asymptotic Indep

Characterize HRV
Detecting HRV
Conditional models
Medical Care
Title Page


Estimation procedure (Heffernan \& Resnick) for estimating $\nu^{*}$ :

1. Replace the heavy tailed multivariate sample $\boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{n}$ by the $n$ vectors of reciprocals of anti-ranks $1 / \mathbf{r}_{1}, \ldots, 1 / \mathbf{r}_{n}$, where

$$
r_{i}^{(j)}=\sum_{l=1}^{n} 1_{\left[Z_{l}^{(j)} \geq Z_{i}^{(j)}\right]} ; \quad j=1, \ldots, d ; i=1, \ldots, n .
$$

2. Compute normalizing factors

$$
m_{i}=\bigwedge_{j=1}^{d} \frac{1}{r_{i}^{(j)}} ; \quad i=1, \ldots, n
$$

and their order statistics

$$
m_{(1)} \geq \cdots \geq m_{(n)}
$$

3. Compute the polar coordinates $\left\{\left(R_{i}, \boldsymbol{\Theta}_{i}\right) ; i=1, \ldots, n\right\}$ of

$$
\left\{\left(1 / r_{i}^{(j)} ; j=1, \ldots, d\right) ; i=1, \ldots, n\right\}
$$

Go Back

Full Screen
4. Estimate $S^{*}$ using the $\boldsymbol{\Theta}_{i}$ corresponding to $R_{i} \geq m_{(k)}$.

## Details:

- If $\nu^{*}$ is infinite, let $\aleph_{0}(K)$ be compact subset of $\aleph_{0}$.
- For $d=2$ where $\aleph$ can be parameterized as $\aleph=[0, \pi / 2]$ and $\aleph_{0}=(0, \pi / 2)$, set $\aleph_{0}(K)=[\delta, \pi / 2-\delta]$ for some small $\delta>0$.
- Then

$$
\frac{\sum_{i=1}^{n} 1_{\left[R_{i} \geq m_{(k)}, \boldsymbol{\Theta}_{i} \in \aleph_{0}(K)\right]} \epsilon_{\boldsymbol{\Theta}_{i}}}{\sum_{i=1}^{n} 1_{\left[R_{i} \geq m_{(k)}, \boldsymbol{\Theta}_{i} \in \aleph_{0}(K)\right]}} \Rightarrow S_{0}\left(\cdot \bigcap \aleph_{0}(K)\right) .
$$

- If $\nu^{*}$ is finite, we can replace $\aleph_{0}(K)$ with $\aleph_{0}$.

Heavy Tails $-\geq 2$ dim Mult Reg Var

Asymptotic Indep
Hidden reg var (HRV)
Characterize HRV
Detecting HRV
Conditional models
Medical Care
Title Page


## Example.

UNC ( $\mathrm{F}, \mathrm{R}$ ), April 26. Asymptotic independence present. Since $S^{*}$ may be infinite, we restricted estimation to the angular interval interval $[0.1,0.9]$ instead of all of $[0,1]$. All plots show the hidden measure to be bimodal with peaks around 0.2 and 0.85 .


Heavy Tails $-\geq 2$ dim Mult Reg Var

Asymptotic Indep

Characterize HRV
Detecting HRV
Conditional models
Medical Care
Title Page



Page 32 of 42

Go Back

## 7. Conditional models.

Other form of asymptotic independence (Maulik, Resnick, Rootzen):

$$
\begin{equation*}
n P\left[\left(X, \frac{Y}{b(n)}\right) \in \cdot\right] \xrightarrow{v} G \times \nu_{\alpha} \tag{1}
\end{equation*}
$$

on $[0, \infty] \times(0, \infty]$ where $G$ is a pm on $[0, \infty)$ and

$$
\nu_{\alpha}(x, \infty]=x^{-\alpha}, x>0 .
$$

Equivalent: $Y$ has a regularly varying tail and

$$
P[X \leq x \mid Y>t] \xrightarrow{t \rightarrow \infty} G(x) .
$$

Heffernan \& Tawn models:

4

where $\mu$ satisfies non-degeneracy assumptions.

### 7.1. Basic Convergence

Assume 2 dimensions and

$$
\begin{equation*}
t P\left[\left(\frac{X-\beta(t)}{\alpha(t)}, \frac{Y-b(t)}{a(t)}\right) \in \cdot\right] \xrightarrow{v} \mu(\cdot), \tag{2}
\end{equation*}
$$

in $M_{+}([-\infty, \infty] \times(-\infty, \infty])$, and non-degeneracy assumptions:

1. for each fixed $y, \mu((-\infty, x] \times(y, \infty])$ is not a degenerate distribution function in $x$;
2. for each fixed $x, \mu((-\infty, x] \times(y, \infty])$ is not a degenerate distribution function in $y$,

## Observations:

- The Basic Convergence (2) implies

$$
\left.t P\left[\frac{Y-b(t)}{a(t)}\right) \in \cdot\right] \xrightarrow{v} \mu([-\infty, \infty] \times(\cdot))
$$




Page 34 of 42

```
Go Back
```

- The Basic Convergence (2) implies the conditioned limit

$$
t P\left[\left.\frac{X-\beta(t)}{\alpha(t)} \leq x \right\rvert\, Y>b(t)\right] \rightarrow \mu([-\infty, x] \times(0, \infty])
$$

- WLOG can assume $Y$ is heavy tailed and reduce the basic convergence to standard form:

$$
\begin{equation*}
t P\left[\left[\left(\frac{X-\beta(t)}{\alpha(t)}, \frac{Y}{t}\right) \in \cdot\right] \xrightarrow{v} \mu\right. \tag{3}
\end{equation*}
$$

in $M_{+}([-\infty, \infty] \times(0, \infty])($ with a modified $\mu)$.

- Suppose $(X, Y)$ are regularly varying on $[0, \infty]^{2} \backslash\{\mathbf{0}\}$.
- With no asymptotic independence, Basic Convergence automatically holds.
- With asymptotic independence, Basic Convergence is an extra assumption.

Characterize HRV
Detecting HRV
Conditional models
Medical Care
Title Page


### 7.2. More reduction.

More remarks:

- A convergence to types argument implies variation properties of $\alpha(\cdot)$ and $\beta(\cdot)$ : Suppose $(X, Y)$ satisfy the standard form condition (3). $\exists$ two functions $\psi_{1}(\cdot), \psi_{2}(\cdot)$, such that for all $c>0$,

$$
\lim _{t \rightarrow \infty} \frac{\alpha(t c)}{\alpha(t)}=\psi_{1}(c), \quad \lim _{t \rightarrow \infty} \frac{\beta(t c)-\beta(t)}{\alpha(t)} \rightarrow \psi_{2}(c) .
$$

locally uniformly.

- $\exists$ important cases where $\psi_{2} \equiv 0$ (bivariate normal).

Heavy Tails $-\geq 2$ dim

Asymptotic Indep


- Can sometimes also standardize the $X$ variable so that

$$
\begin{equation*}
t P\left[\frac{\beta^{\leftarrow}(X)}{t} \leq x, \frac{Y}{t}>y\right] \rightarrow \mu\left(\left[-\infty, \psi_{2}(x)\right] \times(y, \infty]\right) . \tag{4}
\end{equation*}
$$

When?? Short version: When $\mu$ is not a product measure.
$-\mu=H \times \nu_{1}$ iff $\psi_{1} \equiv 1\left(\alpha(\cdot)\right.$ is sv) and $\psi_{2} \equiv 0$.

- If $\beta(t) \geq 0$ and $\beta^{\leftarrow}$ is non-decreasing on the range of $X$, then (4) is possible iff $\mu$ is NOT a product.
- A transformation of $X$ allows one to bring the problem to the previous case.
- If we have $X \geq 0$ and both regular variation on $C_{2}=[0, \infty]^{2} \backslash\{0\}$

$$
t P\left[\left(\frac{X}{a^{\prime}(t)}, \frac{Y}{t}\right) \in \cdot\right] \xrightarrow{v} \nu_{*}
$$

and (4):

$$
t P\left[\frac{\beta \leftarrow(X)}{t} \leq x, \frac{Y}{t}>y\right] \rightarrow \mu\left(\left[-\infty, \psi_{2}(x)\right] \times(y, \infty]\right)
$$

Page 37 of 42

Go Back

Full Screen
on $C_{1}=[0, \infty] \times(0, \infty]$, then we have a form of hidden regular variation since

$$
C_{1} \subset C_{2}
$$

### 7.3. Form of the limit.

Assume $\mu$ is not a product and can standardize $X$
$t P\left[\frac{\beta^{\leftarrow}(X)}{t} \leq x, \frac{Y}{t}>y\right] \rightarrow \mu\left(\left[0, \psi_{2}(x)\right] \times(y, \infty]\right)=\mu_{*}([0, x] \times(y, \infty])$
on $C_{1}=[0, \infty] \times(0, \infty]$. This is standard regular variation on the cone $C_{1}$ so

$$
\mu_{*}(c \Lambda)=c^{-1} \mu_{*}(\Lambda) .
$$

$\exists$ spectral form: Let

$$
\|(x, y)\|=x+y, \quad \aleph=\{(w, 1-w): 0 \leq w<1\}
$$

Heavy Tails $-\geq 2$ dim

Asymptotic Indep
Hidden reg var (HRV)
Characterize HRV
Detecting HRV
Conditional models
Medical Care
Title Page
and

$$
\mu_{*}\left\{\boldsymbol{x}:\|\boldsymbol{x}\|>r, \frac{\boldsymbol{x}}{\|\boldsymbol{x}\|} \in A\right\}=r^{-1} S(A)
$$

where $S$ is a measure on $[0,1)$.
Conclude: Can write $\mu_{*}[0, x] \times(y, \infty]$ as function of $S$ and get charac-

### 7.4. Random norming.

When both variables can be standardized

$$
t P\left[\left(\frac{\beta^{\leftarrow}(X)}{Y}, \frac{Y}{t}\right) \in \cdot\right] \rightarrow G \times \nu_{1}
$$

in $M_{+}([0, \infty] \times(0, \infty])$ where

$$
\nu_{1}(x, \infty]=x^{-1}, \quad G(x)=\int_{\left[0, \frac{x}{1+x}\right]}(1-w) S(d w) .
$$

Heavy Tails $-\geq 2$ dim

## Mult Reg Var

## Asymptotic Indep



## 8. Medical Care in Copenhagen

What to expect if you have a knee problem in Copenhagen:

Heavy Tails $-\geq 2$ dim
Mult Reg Var
Asymptotic Indep
Hidden reg var (HRV)
Characterize HRV
Detecting HRV
Conditional models
Medical Care

Title Page

44


Page 40 of 42

Go Back

Full Screen


Heavy Tails- $\geq 2$ dim
Mult Reg Var
Asymptotic Indep
Hidden reg var (HRV)
Characterize HRV
Detecting HRV
Conditional models
Medical Care
Title Page


Page 41 of 42

Go Back

Full Screen

## Close

## Contents

| Heavy Tails- $\geq 2$ dim |
| :--- |
| Mult Reg Var |
| Asymptotic Indep |
| Hidden reg var (HRV) |
| Characterize HRV |
| Detecting HRV |
| Conditional models |
| Medical Care |

Cornell

Title Page


Page 42 of 42

