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Title Page

JJ II

J I

Page 1 of 29

Go Back

Full Screen

Close

Quit

Applied Probability
Modeling of Data Networks;

1. Random measures and point processes; weak

convergence to PRM and Lévy processes.
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1. Outline of Lectures

1. Random measures and point processes; weak convergence to PRM
and Lévy processes.

2. Multivariate regular variation; the Poisson transform; stable pro-
cesses.

3. Introduction and survey of data network modeling. (Fairly non-
technical; some statistics.)

4. Some stylized applied probability network models: a renewal in-
put model.

5. Some (more) stylized applied probability network models: a large
time scale input model.

5.5 Some (more more) stylized applied probability network models:
Heavy traffic and heavy tails in GI/G/1.

Lectures primarily based on Resnick (2006).
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2. Introduction: Point processes and random mea-
sures.

2.1. Setup.

(Resnick, 2006, Chapter 3)
Setup for study of random measures, point processes and associated
topology yielding vague convergence.

• E: a nice space (lccb). Typically E is a finite dimensional Eu-
clidean space: Subset of compactified Rd or Rd

+.

• E : Borel σ-algebra.

• Space of all Radon measures on E:

M+(E) = {µ : µ is a non-negative measure on E and µ is Radon.}
(1)

Note a measure µ is called Radon, if

µ(K) < ∞, ∀K ∈ K(E) = compacta in E.

Thus, compact sets have finite µ-mass.
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• Subset of M+(E) consisting of non-negative integer valued mea-
sures; ie, point measures: Call m(·) ∈ M+(E) a point measure
if

m(·) =
∑

i

εxi
(·), xi ∈ E

where for A ∈ E

εxi
(A) =

{
1, if xi ∈ A,

0, if xi /∈ A.

So m(·) is Radon: m(K) < ∞, for K ∈ K(E). Call {xi} the
atoms or points and m is the function which counts how many
atoms fall in a set. Then

Mp(E) ⊂ M+(E) = { all Radon point measures.}

• Test functions: Those continuous functions which vanish on com-
plements of compact sets:

C+
K(E) = {f : E 7→ R+ : f is continuous with compact support.}
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2.2. Convergence and topology in M+(E).

• Convergence concept: Vague convergence in M+(E) or Mp(E):

Sppse µn ∈ M+(E), n ≥ 0. Then µn
v→ µ0, if for all f ∈ C+

K(E)
we have

µn(f) :=

∫
E
f(x)µn(dx) → µ0(f) :=

∫
E
f(x)µ0(dx), (n →∞).

• Topology specified by basis sets of the form

{µ ∈ M+(E) : µ(fi) ∈ (ai, bi), i = 1, . . . , d}
where fi ∈ C+

K(E) and 0 ≤ ai ≤ bi.

Unions of basis sets form the class of open sets constituting the
vague topology.

• Topology is metrizable as CSMS. There exists a metric

d(·, ·) = vague metric

specified as follows: there exists some sequence of functions

fi ∈ C+
K(E)

and for µ1, µ2 ∈ M+(E)

d(µ1, µ2) =
∞∑
i=1

|µ1(fi)− µ2(fi)| ∧ 1

2i
.
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• Interpret µ ∈ M+(E) as an object determined by components
indexed by C+

K(E):

µ = {µ(f), f ∈ C+
K(E)}

or
µ = {µ(fi), i ≥ 1}.

• Leads to compactness criterion: A subset M ⊂ M+(E) vaguely
relatively compact iff

sup
µεM

µ(f) < ∞, ∀f ∈ C+
K(E).
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2.3. Random elements.

• The open subsets of M+(E) generate the Borel σ-field:

M+(E) = Borel σ-field of subsets in M+(E).}

• Random element: So (
M+(E),M+(E)

)
is measurable space. A random measure is measurable map

(Ω,B) 7→
(
M+(E),M+(E)

)
and a point process is measurable map

(Ω,B) 7→
(
Mp(E),Mp(E)

)
.
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3. Weak convergence of random measures.

The following are usual and convenient methods of showing weak con-
vergence of random elements in M+(E).

• In M+(E), random measures {ηn(·), n ≥ 0} converge weakly

ηn ⇒ η0

iff for any family {hj}, with hj ∈ C+
K(E) we have

(ηn(hj), j ≥ 1) ⇒ (η0(hj), j ≥ 1) in R∞.

Nice:

– One assumes a sequence {hj} and prove R∞ convergence;

– This reduces to proving Rd-convergence for any fixed d.

– Often, in fact, this reduced to one dimensional convergence.

• Method of Laplace functionals: A convenient transform tech-
nique for manipulating distributions of point processes and ran-
dom measures.
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Definition. Let

η : (Ω,A, P) 7→ (M+(E),M+(E))

be a random measure. The Laplace functional of the random
measure η is the non-negative function Ψη : C+

K(E) 7→ R+

Ψη(f) =E exp{−η(f)} =

∫
Ω

exp{−η(ω, f)}dP(ω)

=

∫
M+(E)

exp{−µ(f)}P ◦ η−1(dµ).

Weak convergence of a sequence of random measures in M+(E)
equivalent to the Laplace functionals of the random measures con-
verging for each f ∈ C+

K(E). More detail: (Resnick, 1987, Section
3.5) or Kallenberg (1983), Neveu (1977).

Theorem 1 (Convergence criterion) Let {ηn, n ≥ 0} be ran-
dom elements of M+(E). Then

ηn ⇒ η0 in Mp(E),

iff

Ψηn(f) = Ee−ηn(f) → Ee−η0(f) = Ψη0(f), ∀f ∈ C+
K(E). (2)



Outline

Pt processes, RM’s

Weak convergence RM’s

PRM

Sample & PRM

Sums to Lévy
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So weak convergence is characterized by convergence of Laplace
functionals on C+

K(E).
1
2

Proof. Suppose ηn ⇒ η0 in M+(E). The map M+(E) 7→ [0,∞)
defined by

µ 7→ µ(f)

is continuous. The continuous mapping theorem gives

ηn(f) ⇒ η0(f) in R.

Thus
e−ηn(f) ⇒ e−η0(f),

and by Lebesgue’s dominated convergence theorem

Ee−ηn(f) → Ee−η0(f).

�
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4. Poisson random measure

Let N : (Ω,A) 7→ (Mp(E),Mp(E)) be a point process with state space
E, where Mp(E) is the Borel σ-algebra of subsets of Mp(E) generated
by open sets.

Definition 1 N is a Poisson process with mean measure µ or syn-
onomously a Poisson random measure (PRM(µ)) if

1. For A ∈ E

P [N(A) = k] =

e−µ(A)(µ(A))k

k!
, if µ(A) < ∞

0, if µ(A) = ∞.

2. If A1, . . . , Ak are disjoint subsets of E in E, then N(A1), . . . , N(Ak)
are independent random variables.
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4.1. Properties.

• Transformation preserves Poisson-i-ness.

Proposition 1 Suppose

T : E 7→ E′

is a measurable mapping of one nice space E into another nice
space E′ such that

K ′ ∈ K(E′) is compact in E′

⇒
T−1K ′ := {e ∈ E : Te ∈ K ′} ∈ K(E).

If N is PRM(µ) on E then N ′ := N ◦T−1 is PRM(µ′) on E′ where
µ′ := µ ◦ T−1.

Proof. Poisson marginals and independence preserved. �
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Title Page

JJ II

J I

Page 13 of 29

Go Back

Full Screen

Close

Quit

• Augmentation preserves Poisson-i-ness.

Proposition 2 Suppose {Xn} are random elements of a nice space
E1 such that ∑

n

εXn

is PRM(µ). Suppose {Jn} are iid random elements of a second
nice space E2 with common probability distribution F and suppose
the Poisson process and the sequence {Jn} are defined on the same
probability space and are independent. Then the point process on
E1 × E2 ∑

n

ε(Xn,Jn)

is PRM with mean measure µ× F .
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• Laplace functional of PRM(µ). The Poisson process can be
identified by the characteristic form of its Laplace functional.

Theorem 2 (Laplace functional of PRM) The point process
N is PRM(µ) iff its Laplace functional is of the form

ΨN(f) = exp{−
∫

E
(1− e−f(x))µ(dx)}, f ∈ C+

K(E). (3)

Proof. Verify (3) by usual measure theory argument:

– Let f = λ1A; for λ > 0. Then

ΨN(f) = E exp{−λN(A)}

and (3) verified by direct calculation.

– Let

f =
k∑

i=1

λi1Ai

for λi > 0 and A1, . . . , Ak a partition. Then again verify (3)
by direct calculation.

– Finish with a limiting argument, approximating general f by
simple fn ↑ f . �



Outline

Pt processes, RM’s

Weak convergence RM’s

PRM

Sample & PRM

Sums to Lévy
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• Construction of PRM. Suppose N is PRM(µ) on a nice space
E, such that

µ(E) < ∞.

Represent N as Poissonized sum of masses: Define the pm F

F (dx) = µ(dx)/µ(E)

on E . Let

– {Xn, n ≥ 1} iid random elements of E, common distribution
F ;

– Let τ ⊥⊥ {Xn}, τ has Poisson distribution with parameter
µ(E);

– Define

N =

{∑τ
i=1 εXi

, if τ ≥ 1

0, if τ = 0.

Then N is PRM(µ).

Proof. Compute the Laplace functional. �
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5. Sample measures and PRM

Suppose that for each n ≥ 1 we have

{Xn,j, j ≥ 1}

is a sequence of iid random elements of (E, E). We call

n∑
j=1

εXn,j

an sample measure.
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Theorem 3 (Basic convergence) We have

n∑
j=1

εXn,j
⇒
∑

k

εjk
= PRM(µ) (4)

in Mp(E), iff

nP[Xn,1 ∈ ·] = E

(
n∑

j=1

εXn,j
(·)

)
v→ µ (5)

in M+(E). Furthermore (4) or (5) is equivalent to the version with a
”time” component:

n∑
j=1

ε( j
n

,Xn,j

) ⇒∑
k

ε(
tk,jk

) = PRM(LEB× µ) (6)

in Mp([0,∞)× E).
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Proof. Compute Laplace functionals of the sample measures and de-
cide when they converge: For f ∈ C+

K(E),

Ee−
Pn

j=1 εXn,j
(f) =Ee−

Pn
j=1 f(Xn,j) =

(
Ee−f(Xn,1)

)n
=

(
1− E(n(1− e−f(Xn,1)))

n

)n

=

(
1−

∫
E(1− e−f(x))nP [Xn,1 ∈ dx]

n

)n

and this converges to

exp{
∫

E
(1− e−f(x))µ(dx)},

the Laplace functional of PRM(µ), iff∫
E
(1− e−f(x))nP [Xn,1 ∈ dx] →

∫
E
(1− e−f(x))µ(dx).

and this last statement is equivalent to vague convergence in (5). �
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Corollary 1 (Variant of basic convergence) Suppose additionally
that 0 < an ↑ ∞. Then for a measure µ ∈ M+(E) we have

1

an

n∑
j=1

εXn,j
⇒ µ (7)

on M+(E) iff

n

an

P [Xn,1 ∈ · ] = E

(
1

an

n∑
j=1

εXn,j
(·)

)
v→ µ (8)

in M+(E).
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Proof. Similar to previous proof. Compute Laplace functional for the
quantity on the left side of (7):

Ee−
1

an

Pn
i=1 εXn,1

(f) =
(
Ee−

1
an

f(Xn,1)
)n

=

(
1−

∫
E

(
1− e−

1
an

f(x)
)
nP[Xn,1 ∈ dx]

n

)n

and this converges to e−µ(f), the Laplace functional of µ, iff∫
E
(1− e−

1
an

f(x))nP [Xn,1 ∈ dx] → µ(f). (9)

Since an →∞,∫
E
(1− e−f(x)/an)nP[Xn,1 ∈ dx] ≈

∫
E
f(x)

n

an

P [Xn,1 ∈ dx] → µ(f)

iff n

an

P [Xn,1 ∈ · ]
v→ µ.

�
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6. Weak convergence of partial sums to Lévy pro-
cesses

Result for d dimensions. Set E = [−∞, ∞] \ {0}. Denote random
vectors by X = (X(1), . . . , X(d)).

Theorem 4 Suppose for each n ≥ 1, that {Xn,j, j ≥ 1} are iid ran-
dom vectors such that

nP[Xn,1 ∈ ·]
v→ν(·) (10)

in M+(E), where ν is a Lévy measure and for each j = 1, . . . , d,

lim
ε↓0

lim sup
n→∞

nE
((

X
(j)
n,1

)2
1

[|X(j)
n,1|≤ε]

)
= 0. (11)

Define the partial sum process based on the nth array row:

Xn(t) :=

[nt]∑
k=1

(
Xnk − E

(
Xn,k1[ ‖Xn,k‖≤1]

))
, t ≥ 0.

Then (10) and (11) imply

Xn ⇒ X0,

in D([0,∞), Rd), where X0(·) is a Lévy jump process with Lévy mea-
sure ν.
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Proof from Resnick and Greenwood (1979), Resnick (2006). Proof in
several steps:

Step 1: Basic convergence, Theorem 3, and (10) imply

∞∑
k=1

ε( k
n

,Xn,k) ⇒
∑

k

ε(tk,jk) = PRM(LEB× ν) (12)

in Mp([0,∞)× E).

Step 2: Two continuity assertions:

(i) With respect to the distribution of PRM (LEB × ν), the restric-
tion map Mp([0,∞) × E) 7→ Mp([0,∞) × {x : ‖x‖ > ε}) defined
by

m 7→ m|[0,∞)×{x:‖x‖>ε}

is almost surely continuous.

(ii) On Mp([0,∞] × {x : ‖x‖ > ε}) the summation functional from
Mp([0,∞)× {x : ‖x‖ > ε}) 7→ D([0, T ], Rd) defined by∑

k

ε(τk,Jk) →
∑

τk≤(·)

Jk

is almost surely continuous with respect to the distribution of
PRM(LEB× ν).
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Step 3: From first continuity assertion in Step 2, the convergence
statement in Step 1, and continuous mapping Theorem we get the
restricted convergence∑

k

1[ ‖Xn,k‖>ε]ε( k
n

,Xn,k) ⇒
∑

k

1[ ‖jk‖>ε]ε(tk,jk) (13)

in Mp([0,∞) × {x : ‖x‖ > ε}). From the second continuity assertion
in Step 2, we get from (13)

[n·]∑
k=1

Xn,k1[ ‖Xn,k‖>ε] ⇒
∑

tk≤(·)

jk1[ ‖jk‖>ε] (14)

in D([0, T ], Rd). Similarly we get

[n·]∑
k=1

Xn,k1[ε<‖Xn,k‖≤1] ⇒
∑

tk≤(·)

jk1[ε<‖jk‖≤1]. (15)

Step 4. In (15), take expectations and apply (10) to get

[n·]E
(
Xn,11[ε<‖Xn,1‖≤1]

)
→ (·)

∫
{x:ε<‖x‖≤1}

xν(dx) (16)
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in D([0, T ], Rd). To justify this, observe first for any t > 0 that

[nt]E
(
Xn,11[ε<‖Xn,1‖≤1]

)
=

[nt]

n

∫
{x:‖x‖∈(ε,1]}

xnP[Xn,1 ∈ dx]

→t

∫
{x:‖x‖∈(ε,1]}

xν(dx)

since nP[Xn,1 ∈ ·] v→ ν(·). Convergence is locally uniform in t and
hence convergence takes place in D([0, T ], Rd).

Step 5. Difference (14)–(16). The result is

X(ε)
n (·) =

[n·]∑
k=1

Xn,k1[ ‖Xn,k‖>ε] − [n·]E
(
Xn,11[ε<‖Xn,1‖≤1]

)
⇒ X

(ε)
0 (·) :=

∑
tk≤·

jk1[ ‖jk‖>ε] − (·)
∫{

x: ‖x‖∈(ε,1]
} xν(dx).

(17)

From the Itô representation of a Lévy process, for almost all ω, as
ε ↓ 0,

X
(ε)
0 (·) → X0(·),

locally uniformly in t. Let d(·, ·) be the Skorohod metric on D[0,∞).
Local uniform convergence ⇒ implies Skorohod convergence, so

d
(
X

(ε)
0 (·), X0(·)

)
→ 0
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almost surely as ε ↓ 0. Almost sure convergence ⇒ weak convergence,
so

X
(ε)
0 (·) ⇒ X0(·).

in D([0,∞), Rd).

Step 6. By Converging Together Theorem suffices to show

lim
ε↓0

lim sup
n→∞

P[d(X(ε)
n , Xn) > δ] = 0.

Convergence in D([0,∞), Rd), if Skorohod convergence in D([0, T ], Rd)
for any T . Skorohod metric on D([0, T ], Rd) bounded above by the
uniform metric on D([0, T ], Rd). Suffices to show

lim
ε↓0

lim sup
n→∞

P[ sup
0≤t≤T

‖X(ε)
n (t)−Xn(t)‖ > δ] = 0,

for any δ > 0. Recalling definitions of X(ε)
n and Xn:

‖X(ε)
n (t)−Xn(t)‖ =

∥∥ [nt]∑
k=1

Xn,k1[ ‖Xn,k‖≤ε] − [nt]E
(
Xn,11[ ‖Xn,1‖≤ε]

)∥∥
=
∥∥ [nt]∑

k=1

(
Xn,k1[ ‖Xn,k‖≤ε] − E

(
Xn,k1[ ‖Xn,k‖≤ε]

))∥∥
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and so

P[ sup
0≤t≤T

‖X(ε)
n (t)−Xn(t)‖ > δ]

≤P
[

sup
0≤t≤T

∥∥ [nt]∑
k=1

(
Xn,k1[ ‖Xn,k‖≤ε] − E

(
Xn,k1[ ‖Xn,k‖≤ε]

))∥∥ > δ
]

=P
[

sup
0≤j≤nT

∥∥ j∑
k=1

(
Xn,k1[ ‖Xn,k‖≤ε] − E

(
Xn,k1[ ‖Xn,k‖≤ε]

))∥∥ > δ
]
.

Now use the fact that ‖x‖ ≤ d ∨d
i=1 |x(i)| and we get the bound

≤
d∑

i=1

P
[

sup
0≤j≤nT

∣∣ j∑
k=1

(
X

(i)
n,k1[ ‖Xn,k‖≤ε] − E

(
X

(i)
n,k1[ ‖Xn,k‖≤ε]

))∣∣ > δ

d

]
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and by Kolmogorov’s inequality this has upper bound

≤(δ/d)−2

d∑
i=1

Var
([nT ]∑

k=1

X
(i)
n,k1[ ‖Xn,k‖≤ε]

)
=(δ/d)−2

d∑
i=1

[nT ]Var
(
X

(i)
n,11[ ‖Xn,1‖≤ε]

)
≤(δ/d)−2

d∑
i=1

[nT ]E
((

X
(i)
n,1

)2
1

[ |X(i)
n,1|≤ε]

)
.

Taking limε↓0 lim supn→∞, we easily get 0 by (11). �
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1. Multivariate regular variation of functions

Basic when studying models built from iid objects.

1.1. Regular variation of functions.

• C ⊂ Rd is a cone; ie,

x ∈ C ⇒ tx ∈ C, ∀ t > 0.

Examples:

C =(0,∞], (d = 1), [0,∞]d \ {0}, (0,∞]d

=[−∞,∞]d \ {0} [−∞,∞]d \ {−∞} [0,∞]× (0,∞] (d = 2).

• A function h : C 7→ (0,∞) is monotone if it is either

– non-decreasing

– non-increasing

in each component.

h non-decreasing, ⇔ x, y ∈ C and x ≤ y ⇒ h(x) ≤ h(y).
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Definition 1 Sppse h ≥ 0 is measurable function defined on C. Sppse
1 = (1, . . . , 1) ∈ C. Call h multivariate regularly varying with limit
function λ provided:

• λ(x) > 0 for x ∈ C; and

• for all x ∈ C we have

lim
t→∞

h(tx)

h(t1)
= λ(x). (1)

Properties

Scaling arguments give the following properties:

1. For d = 1, C = (0,∞) this says

lim
t→∞

h(tx)

h(t)
= λ(x), x > 0,

and a scaling argument shows

λ(x) = xρ, for some ρ ∈ R,

since
λ(xy) = λ(x)λ(y), x > 0, y > 0.
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2. For d > 1, fix x ∈ C and

U(t) = h(tx)

is one dimensional regularly varying so For any s > 0

lim
t→∞

U(ts)

U(t)
= lim

t→∞

h(tsx)

h(tx)
= lim

t→∞

h(tsx)

h(t1)
/
h(tx)

h(t1)
=

λ(sx)

λ(x)
,

and conclude for some ρ(x) ∈ R that U ∈ RVρ(x) and

λ(sx)

λ(x)
= sρ(x).

3. Can check that ρ(x) does not depend on x so limit function sat-
isfies homogeneity

λ(sx) = sρλ(x).
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2. Regular variation and measures

2.1. d = 1, C = (0,∞].

Suppose Z ≥ 0 is a random variable with distribution function F .
Regular variation of 1− F has the following equivalences:

(i) F̄ ∈ RV−α, α > 0.

(ii) There exists a sequence {bn}, with bn →∞ such that

lim
n→∞

nF̄ (bnx) = x−α, x > 0.

(iii) There exists a sequence {bn} with bn →∞ such that

µn(·) := nP
[

Z

bn

∈ ·
]

v→ να(·) (2)

in M+(0,∞], where να(x,∞] = x−α.

To generalize (i) or (ii) to higher dimensions can be done but dealing
with distribution functions in higher dimensions is awkward. However,
(iii) generalizes nicely.
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2.2. d > 1, C = [0, ∞] \ {0}.

Equivalences for regular variation of probability measures on C =
[0, ∞] \ {0}. In each, we understand the phrase Radon measure to
mean a Radon measure which is not identically zero and which is not
degenerate at a point.

Theorem 1 Repeated use of the symbols ν, b(·), {bn} from statement
to statement, does not require these objects to be exactly the same in
different statements.

1. There exists a Radon measure ν on C such that

lim
t→∞

1− F (tx)

1− F (t1)
= lim

t→∞

P
[

Z
t
∈ [0,x]c

]
P
[

Z
t
∈ [0,1]c

] = ν
(
[0,x]c

)
, (3)

for all points x ∈ [0, ∞) \ {0} which are continuity points of the
function ν([0, ·]c).

2. There exists a function b(t) → ∞ and a Radon measure ν on C
called the limit measure, such that in M+(C)

tP
[ Z

b(t)
∈ ·
] v→ ν, t →∞. (4)
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3. There exists a sequence bn → ∞ and a Radon measure ν on C
such that in M+(C)

nP
[Z
bn

∈ ·
] v→ ν, n →∞. (5)

4. Polar coordinate version: Define

(R,Θ) = (‖Z‖, Z

‖Z‖

and
ℵ+ = {x ∈ C : ‖x‖ = 1}.

There exists a probability measure S(·) on ℵ+ called the angu-
lar measure, and a function b(t) → ∞ such that for (R,Θ) =(
‖Z‖, Z

‖Z‖

)
we have

tP[
( R

b(t)
,Θ
)
∈ ·] v→ cνα × S (6)

in M+

(
(0,∞]× ℵ+

)
, for some c > 0.
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5. There exists a probability measure S(·) on ℵ+ and a sequence bn →
∞ such that for (R,Θ) =

(
‖Z‖, Z

‖Z‖

)
we have

nP[
(R

bn

,Θ
)
∈ ·] v→ cνα × S (7)

in M+

(
(0,∞]× ℵ+

)
, for some c > 0.

Remark 1 • Regular variation for functions: limit function scales;
i.e., it is homogeneous.

• Regular variation for measures: the homogeneity property in Carte-
sian coordinates translates into a product measure in polar coor-
dinates.
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3. Regular variation and the Poisson random measure

Multivariate regular variation additionally equivalent to induced sam-
ple measures weakly converging to Poisson random measure limits.

Theorem 2 Suppose {Z, Z1, Z2, . . . } are iid; after transformation
with polar coordinates the sequence is {(R,Θ), (R1,Θ1), (R2,Θ2), . . . }.
Any of the equivalences in Theorem 1, are also equivalent to

6. There exists bn →∞ such that

n∑
i=1

εZi/bn ⇒ PRM(ν), (8)

in Mp(E).

7. There exists a sequence bn →∞ such that

n∑
i=1

ε(Ri/bn,Θi) ⇒ PRM(cνα × S) (9)

in Mp((0,∞]× ℵ+).

These conditions imply that for any sequence k = k(n) →∞ such that
n/k →∞ we have
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8. In M+

(
E
)

1

k

n∑
i=1

εZi/b(n
k ) ⇒ ν (10)

and

9. In M+

(
(0,∞]× ℵ+

)
1

k

n∑
i=1

ε(Ri/b(n
k ),Θi) ⇒ cνα × S (11)

and 8 or 9 is equivalent to any of 1–7, provided k(·) satisfies k(n) ∼
k(n + 1).

3.1. Variant with time coordinate

The result with a time coordinate needed for proving weak convergence
of partial sum processes or maximal processes in the space D[0,∞).
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Theorem 3 Suppose {Z, Z1, Z2, . . . } are iid random elements of [0, ∞).
Then multivariate regular variation of the distribution of Z in C =
[0, ∞] \ {0}

nP[
Z

bn

∈ ·] v→ ν

is also equivalent to∑
j

ε( j
n

,Zj/bn) ⇒ PRM(LEB× ν) (12)

in M+([0,∞)× C).
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4. Weak convergence of partial sums to stable pro-
cesses

We can specialize the result for convergence of sums to Lévy processes.
Assume, for simplicity, d = 1 and

C = [−∞,∞] \ {0}.

Regular variation of the tail probabilities on the cone R \ {0},

tP[
Z1

b(t)
∈ · ] v→ ν(·),

is equivalent to

lim
x→∞

P[Z1 > x]

P[|Z1| > x]
= px−α, lim

x→∞

P[Z1 ≤ −x]

P[|Z1| > x]
= qx−α,

and

P[|Z1| > x] ∈ RV−α.
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Corollary 1 Consider the special case where {Zn, n ≥ 1} are iid ran-
dom variables on R and set Xn,j = Zj/bn for some bn →∞. Define ν
for x > 0 and 0 < α < 2 by

ν((x,∞]) = px−α, ν((−∞,−x]) = qx−α, (13)

where 0 ≤ p ≤ 1 and q = 1− p. Then

[n·]∑
j=1

Zj

b(n)
− [n·]E

( Z1

b(n)
1

[| Z1
b(n)

|≤1]

)
⇒ Xα(·), (14)

in D[0,∞), where the limit is α-stable Lévy motion with Lévy measure
ν, iff

nP[
Z1

bn

∈ ·] v→ ν, (15)

in M+(C).
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Proof sufficiency. Given regular variation, plug into the result about
convergence of sums to a Lévy process. We only need to check the
truncated 2nd moment condition

lim
ε↓0

lim sup
n→∞

nE
((

Xn,1

)2
1[ |Xn,1|≤ε]

)
= 0,

where

Xn,1 =
Z1

b(n)
.

We have by Karamata’s theorem,

nE

(( Z1

b(n)

)2

1[
| Z1
b(n)

|≤ε
])→

∫
[ |x|≤ε ]

x2ν(dx), (n →∞)

=
pαε2−α

2− α
+

qαε2−α

2− α
= ( const )ε2−α

and as ε → 0, we have ε2−α → 0 as required for the partial sum process
to converge to the Lévy process.
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1. Introduction

Does data network traffic behave statistically
like telephone network traffic?

Action:

• Stop assuming the two types of networks behave the same.

• Start checking.

Initially at Bellcore (now Telcordia) and later at AT&T Labs-Research,
high resolution measurements (data) were collected. Usually the data
consisted of counts of bits, bytes, packets etc per unit time (eg mil-
lisecond). This could then be aggregated to coarser time scales. For
example

• . . . • . . .

• 10 seconds • 1 second

• 10 milliseconds • 1 millisecond
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Significant examples:

• LAN’s and WAN’s

– Willinger et al. (1997)

– Duffy et al. (1993)

– Leland et al. (1993)

– Willinger et al. (1995)

• WWW traffic

– Crovella and Bestavros (1996),

– Crovella and Bestavros (1997).

Measurements on data networks exhibit features surprising by the stan-
dards of classical queueing and telephone network models. These are
called

• invariants

which is to networks what

• stylized facts

are to finance.
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2. Stylized facts

1. Heavy tails abound for such things as

• file sizes,

• transmission rates,

• durations (file transfers, connection lengths).

(See Arlitt and Williamson (1996), Leland et al. (1994), Maulik
et al. (2002), Resnick and Rootzén (2000), Resnick (2003), Will-
inger and Paxson (1998), Willinger et al. (1998), Willinger (1998).)

Note: a random variable X has a heavy tail if

P [X > x] ≈ x−α, α > 0, x large.

• Tail exhibits power law decay.

• Limited moments:

E(|X|α+δ) = ∞, δ > 0.

• If 1 < α < 2, no variance!
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2. The number of bits or packets per slot exhibits long range dependence
across time slots (eg, Leland et al. (1993), Willinger et al. (1995).
There is also a perception of self-similarity as the width of the
time slot varies across a range of time scales exceeding a typical
round trip time.

Note: A stationary process {Xn} possesses long range dependence
if dependence between variables decays slowly as the gap between
the variables increases:

|Corr(X0, Xh)| ≤ (const)h−β, 0 < β < 1.

3. Network traffic is bursty with rare but influential periods of very
high transmission rates punctuating typical periods of modest ac-
tivity.

• Bursty is a somewhat ill defined concept associated with heavy
tailed transmissions rates.

• Introduces peak loads to the network.

• Associated with large files transmitted over fast links.

• Not associated with the truism: Traffic at a heavily loaded
link is normally distributed .
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3. Broad Issues (BI’s)

BI-1 Role of statistics and applied probability:

• Statistics: Empirically identify phenomena and properties of
the data so as to better understand what network data in the
wild should look like. NOT prediction typically.

– Examples: Identify presence of heavy tails, long range
dependence, self-similarity;

– Understand different statistical properties of various ap-
plications and protocols (ftp, http, mail, streaming au-
dio).

• Applied probability: Build models which explain relations and
explain empirically observed phenomena.

– Example: Sizes of files stored on a server follows Pareto
power law tail which causes long range dependence.

Pardigm: Heavy tails cause long range dependence.

– Build models of end user behavior which allow construc-
tion of simulation tools to study effect of tweaking proto-
cols.
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BI-2 Problem of time scales: Can Applied Math, Applied Prob &
Statistics make contributions to data network analysis and plan-
ning in Internet time.

• Developers have short attention spans and little patience with
outsider’s toys.

• Two year time horizon to write a PhD thesis and really un-
derstand something is ridiculously long time horizon.

• Pessimists view: the best the mathy community can hope for
is to cause paradigm shifts with explanations which may lag
behind developments.

• Take the money and run mentality. (“Anyone who gets a PhD
does not understand economics .”) Long development time for
a project means other people are earning.
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4. An approach to modeling: Infinite source Poisson
model–A fluid model

Suppose sessions characterized by

• Session initiation times are {Γk} where

{Γk} ∼ homogeneous Poisson on (−∞,∞), rate λ.

• Sequence of iid marks independent of {Γk}: Each Poisson point
Γk receives a mark which characterizes input characteristics:

(Fk, Lk, Rk) = (file, duration, rate ),

where
Fk = LkRk.

All three quantities are seen empirically to be marginally heavy
tailed:

P [F > x] ∼x−αF

P [L > x] ∼x−αL

P [R > x] ∼x−αR ,

with (usually) 1 < αF , αR, αL < 2.
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Examples of mark (Fk, Lk, Rk) structures:

– Early simple models assumed constant input rates,

Rk = 1

so that total input rate at time t is

M(t) = # active sources at time t.

– Random but constant rates Rk during the transmission inter-
val. (Can even make rate time varying.)

– What is the distribution of the triple (Fk, Lk, Rk)?

∗ Can depend on application protocol.

∗ Can depend on how data is segmented and how sessions
defined from connection level data of packet headers.

∗ Different distributional assumptions lead to radically dif-
ferent model predictions.
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• Fluid input models for cumulative input in time (a, b]:

A(a, b] = work inputted in time interval(a, b].

– Process approximation to cumulative input.

∗ Large time scale approximation

d− lim
T→∞

A(0, T t]− b(T )

a(T )
= X(t),

where possible limits include (Mikosch et al., 2002)

· fractional Brownian motion (Gauss marginals, lrd)

· stable Lévy motion (heavy tailed marginals, sii, ss)

· BUT: not easy to find agreement with these approxi-
mate models and data (Guerin et al., 2003)

∗ Small time scale approximations: Block time into small
time slots (kδ, (k + 1)δ] and consider as δ → 0

{A(kδ, (k + 1)δ], k ∈ N}.

depending on the interaction of input rates and tails. Will
need λ = λ(δ) ↑ ∞ (a la heavy traffic limit theorems).
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· Small time scale approximation results dependent on
distributional assumptions on (F, L, R). Either

D-limit is approximately highly correlated

normal random variables or

D-limit is approximately highly dependent

stable infinite variance random variables.

· Compute dependence measure across different slots.
Models predict lrd for {A(kδ, (k+1)δ], k ∈ N} (D’Auria
and Resnick, 2006a,b).
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5. Summary: Stylized facts and small time scale ap-
proximation

Stylized Facts F ⊥⊥ R Model L ⊥⊥ R Model

1. Heavy tails Built in Built in

2. P [A(0, δ] > x] ∼ x−(αR+αF ), x−αR ,
fixed δ; x →∞ fixed δ; x →∞

3. LRD across slots Cov(k) ∼ cḠ(0)(k); EDM(k) ∼ cF̄
(0)
L (k);

fixed δ; k →∞ fixed δ; k →∞

4. Cum traffic/slot
(A(0, δ]− (ctering(δ))

a(δ)

(A(0, δ]− (ctering(δ))

b(δ)

is N(0, 1)?
d
≈ N(0, 1)

d
≈ XαR

(·)
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6. Some Technical Points

Tech Pt 1: Identify in the connection level data Poisson time
points from packet headers and validate the choice.

• Quick & dirty (Q&D) solution: Check if interpoint distances
are iid (sample acf almost 0) and exponentially distributed
(qq-plots).

• Q&D Rules of Thumb:

– Behavior of lots of humans acting independently is often
well modelled by a Poisson process.

– Starting times of machine triggered downloads cannot be
modelled as Poisson process.

Example: UCB: Inter-arrival times of requests in http sessions via
modem.
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Tech Pt 2: Heavy tails: A rv X has a heavy (right) tail if

P [X > x] ∼ x−α, x →∞.

Notes

• 0 < α < 1: Very heavy: mean & variance infinite.

• 1 < α < 2: Heavy: Frequent case where mean finite but
variance is infinite.

• α > 2: Heavy with finite variance: Typical of financial data.

• For large x,

P [log X > x] ∼ e−αx, x →∞.

So inference can be based on exponential density and thresh-
olding techniques to account for the distribution following this
law only for large x.

• For many purposes, do not need to know the whole distribu-
tion but just the tail.

Example: BU data: Influential study from mid ’90’s: File sizes
downloaded in a web session.
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Figure: Sizes of www downloads; BU experiment: QQ-plot and
Hill plot.
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Tech Pt 3. Checking for independence.

• Q&D method 1: Standard time series method checks if sam-
ple correlation function

ρ̂(h) =

∑n−h
i=1 (Xi − X̄)(Xi+h − X̄)∑n

i=1(Xi − X̄)2
, h = 1, 2, . . . ,

is close to identically 0.

How to put meaning to phrase close to 0? If

– If finite variances, Bartlett’s formula provides asymptotic
normal theory.

– If heavy tailed, Davis and Resnick formula provides asymp-
totic distributions for ρ̂(h).

• Q&D method 2: If data heavy tailed, take a function of the
data (say the log) to get lighter tail and test. (But this may
obscure the importance of large values.)

• Q&D method 3: Subset method. Split data into (say) 2 sub-
sets. Plot acf of each half separately. If iid, pics should look
same.
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Example: UNC connection data. Data contains 173604 con-
nection vectors ordered by the connection initiation times. Clus-
ters are obtained by considering only the connection start times
ordered as they appeared in time on the UNC link and arbitrarily
using a time threshold of 5 milliseconds to separate clusters. This
yields 16417 clusters.

Do the cluster heads look Poisson?
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Tech Pt 4. Is the data stationary? Usually not and there are, for
example, diurnal cycles. (There is only so much Red Bull (Jolt,
Coke, . . . ) that a human can consume.)

• Q&D Coping Method: Take a slab of the copius data which
looks stationary.

• Usually there is too much data. (!!??)

• Rule of thumb: don’t take more than 4 hours. Depending on
the data, it can be a couple of minutes; eg connection data.

• Should we try to model the cycles?
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Tech Pt 5. Long range dependence. A stationary L2 sequence
{ξn, n ≥ 1} has long-range dependence if

Cov(ξn, ξn+h) ∼ h−β, h →∞

for 0 < β < 1.

How to test? Q&D method: The sample acf should not → 0
quickly as the lag increases.

EXAMPLE: CompanyX–packet counts per unit time on Compa-
nyX’s WAN (including trans-Atlantic traffic).
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7. How do heavy tails cause long range depen-
dence?

Assume infinite source Poisson model with

Rk = 1 ⇒ Fk = Lk.

1 < αL < 2.

Recall

M(t) = # active sources at time t,

= total input rate at time t,

= analogue of packet count per unit time.

Background and warmup:

For each fixed t, M(t) is a Poisson random variable.

Why? When 1 < αL < 2, M(·) has a stationary version. Assume∑
k

εΓk
= PRM(λdt)

on R. Then

ξ :=
∑

k

ε(Γk,Lk) = PRM(λdt× FL)
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on R× [0,∞) and

M(t) =
∑

k

1[Γk≤t<Γk+Lk]

=ξ({(s, l) : s ≤ t < s + l} = ξ(B)

t

B

s

l

is Poisson with mean

E
(
ξ({(s, l) : s ≤ t < s + l}

)
=

∫ t

s=−∞
F̄L(t− s)λds = λµL
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The process {M(t), t ∈ R} is stationary with covariance function

Cov(M(t), M(t + s))

=Cov
(
ξ(A1) + ξ(A2), ξ(A2) + ξ(A3)

)
and because ξ(A1) ⊥⊥ ξ(A3), this is

t      t+s

A1

A3

A2

=Cov
(
ξ(A2), ξ(A2)

)
=Var

(
ξ(A2)

)
=E

(
ξ(A2)

)
=

∫ t

u=−∞
λdu F̄L(t + s− u)

=λ

∫ ∞

s

F̄L(v)dv

=λsF̄L(s) · c = c′s−(α−1)`(s).

The slow decay of the covariance as a function of the lag s char-
acterizes long range dependence. �
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1. Introduction: Very Heavy Tails.

Attempts to explain network self-similarity focus on heavy tailed trans-
mission times of sources sending data to one or more servers:

P [On-period duration > x] ≈ x−β.

Reasons for assuming 1 < β < 2:

• (Applied) Willinger et al (Bellcore) analyzed 700+ source destina-
tion pairs, and estimated the tail parameter of on-periods. Value
usually in the range (1, 2).

• (Theoretical) Mathematical analysis has been based on renewal
theory. Without a finite mean, stationary versions of renewal
processes do not exist and (uncontrolled) buffer content stochastic
processes would not be stable.

BUT

Need for the case 0 < β < 1:

• BU study (Crovella, Bestavros, . . . ) of file sizes downloaded in
www session over 4 months in 2 labs. In November, 1994 in room
272: β ≈ .66.

• Calgary study of file lengths downloaded from various servers
found β’s in the range of 0.4 to 0.6.
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1.1. Summary of the difficulties with the case 0 < β < 1.

• Models will not be stable in the conventional senses; normalization
necessary to keep control.

• Models will not have stationary versions.

• Some common performance measures which are expressed in terms
of moments, may not be applicable.

• Nervousness about models where moments do not exist.

• Confusion between concepts of unbounded support and infinite
moments. (Normal, exponential, gamma, weibull, . . . have un-
bounded support.)
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2. Infinite source Poisson model=M/G/∞ input model

Notation and concepts:

{Γn, n ≥ 1} = times of session initiations; homogeneous Poisson

points on [0,∞) with rate λ.

{Ln} = session durations; iid non-negative rv’s

with common distribution FL(x) satisfying

F̄L(x) ∼ x−β`(x), 0 < β < 1;

m(t) =

∫ t

0

F̄L(s)ds ∼ ct1−β`(t) ↑ ∞; truncated mean function,

M(t) = number of active sessions at t,

=
∞∑

n=1

1[Γn≤t<Γn+Ln]; E(M(t)) = m(t);

=# of servers in M/G/∞ telephone model.

A(t) =

∫ t

0

M(s)ds,

= cumulative work inputted in [0, t] assuming unit rate input.
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r = server work rate,

X(t) = content process,

dX(t) = dA(t)− r1[X(t)>0]dt

τ(γ) = inf{t > 0 : X(t) ≥ γ}
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3. Sessions initiated at renewal times. (Mikosch)

See Mikosch and Resnick (2006).

3.1. The model.

{Sn, n ≥ 1} = times of session initiations; ordinary renewal process;

S0 = 0, Sn =
n∑

i=1

Xi; {Xn} iid;

Xi ∼ FX(x); F̄X(x) = 1− FX(x) ∈ RV−α

{Ln} = session durations; iid non-negative rv’s

with common distribution FL(x) satisfying

F̄L(x) ∈ RV−β,

{Ln}⊥⊥{Sn}.
M(t) = number of active sessions at t,

=
∞∑

n=1

1[Sn≤t<Sn+Ln]

A(t) =

∫ t

0

M(s)ds,

= cumulative work inputted in [0, t], assuming unit rate input.
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3.2. Cases.

1. Comparable tails: β = α and F̄X(x) ∼ c F̄L(x), c > 0, as
x →∞.

(a) The distribution tails of X1 and L1 are essentially the same.

(b) For simplicity, we assume c = 1.

(c) Kind of stability for M which converges weakly w/o normal-
ization.

2. FL heavier-tailed:

(a) 0 < β < α < 1 or, if β = α, then F̄X(x)/F̄L(x) → 0 as
x →∞ so that the distribution tail of X1 is lighter than the
distribution tail of L1.

(b) 0 = β < α < 1 so that the distribution tail of L1 is slowly
varying and thus again heavier than that of X1.

(a) Implies buildup in the M process.

3. FX heavier-tailed: β > α so that the distribution tail of X1 is
heavier than the distribution tail of L1.

• Renewal epochs sparse relative to session lengths.

• Of less interest.
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Figure 2: Paths of M ; α = β = 0.9 (left); α = β = 0.6 (right).
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Figure 3: Paths of M ; (α, β) = (0.9, 0.2) (left); (α, β) = (0.9, 0.4) (right).
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3.3. Warm-up: Mean value analysis for α, β < 1.

Obtain asymptotic behavior of E
(
M(t)

)
from Karamata’s Tauberian

theorem. Let

U(x) =
∞∑

n=0

F n∗
X (x), x > 0, = renewal function.

Since 0 < α < 1, well known (eg Feller, 1971); as x →∞,

U(x) ∼
(
Γ(1− α) Γ(1 + α) F̄X(x)

)−1 ∼ c(α) xα/`F (x).

Therefore ( t →∞),

EM(t) =

∫ t

0

U(dx) F̄L(t− x) =

∫ 1

0

F̄L(t(1− s))

F̄L(t)

U(tds)

U(t)

(
F̄L(t)U(t)

)
∼c(α)

∫ 1

0

(1− s)−βαsα−1ds
F̄L(t)

F̄X(t)
= c′(α)

F̄L(t)

F̄X(t)
.
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EM(t) ∼ c′(α)
F̄L(t)

F̄X(t)
, (t →∞).

Conclusions

• Case (1): Comparable tails.

E
(
M(t)

)
converges to a constant.

• Case (2): FL is more heavy-tailed than F .

EM(t) →∞.

• Case (3): FX is more heavy-tailed than FL.

EM(t) → 0.

and hence
M(t)

L1→ 0.

so Case (3) may be of lesser interest. (Renewals are sparse relative
to event durations that at any time there is not likely to be an
event in progress.)
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3.4. Summary of results.

Table 1: Limiting behavior of M(t) as t →∞.

Conditions Limit behavior of M(t)
as t →∞

0 < α < 1 M(t) ⇒ random limit.
F̄X ∼ F̄L

0 ≤ β < α < 1
or 0 < α = β < 1 and F̄X = o(F̄L) F̄X(t)

F̄L(t)
M(t) ⇒ random limit.

0 < β < 1 M(t)
tF̄L(t)

⇒ constant

E(X1) < ∞ M(t)− random centering√
tF̄L(t)

⇒ Gaussian rv

0 < β ≤ α = 1 M(t)
tF̄L(t)µ(t)

⇒ constant
E(X1) = ∞ µ(t)= truncated 1st moment X
E(X1) < ∞ Stationary version of
E(L1) < ∞ M(·) exists

Focus on the first 2 rows corresponding to α, β < 1.
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3.5. Renewal: α, β < 1, comparable tails.

A kind of stability exists for this case since fidi’s of M(t·) converge in
distribution to a limit.

3.5.1. Preliminaries

Define

N(x) =
∞∑

n=0

1[Sn≤x] = inf{n : Sn > x} = S←(x), x ≥ 0.

= renewal counting function.∑
k

ε(tk,jk) =N∞ = PRM(Leb× να) on [0,∞)× (0,∞] := E

να(x,∞] = x−α

Xα(t) =
∑
tk≤t

jk, t ≥ 0,

=non-decreasing α-stable Lévy motion with Lévy measure να.

b(t) ∼
(

1

1− FX

)←
(t) , t →∞, tF̄X(b(t)) ∼ 1;

= quantile function of FX
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X(s)(t) =
S[st]

b(s)
⇒ Xα(t), (s →∞),

= renewal epochs are asymptotically stable.

(X(s))← ⇒X←α , F̄X(s)N(s·) ⇒ X←α (·)

or, setting u−1 = F̄X(s),

1

u
N(b(u)·) ⇒ X←α (·), u →∞,

1

u

∞∑
n=0

ε Sn
b(u)

⇒ X←α in M+[0,∞).

Have not yet referenced L.
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3.6. Comparable tails; α, β < 1.

Define the time change map by

T : D↑[0,∞)×M+(E) 7→ M+

(
E), (E = [0,∞)× (0,∞])

by
T (x, m) = m̃

where m̃ is defined by

m̃(f) =

∫∫
f(x(u), v) m(du, dv) , f ∈ C+

K(E) .

If m is a point measure with representation m =
∑

k ε(τk,yk), then

T (x, m) =
∑

k

ε(x(τk),yk) .
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Steps for analysis: F̄L ∼ F̄X ; α = β.

1. in Mp(E), as s →∞, regular variation of F̄L equiv to
∞∑

k=0

ε
( k

s
,

Lk
b(s)

)
⇒ N∞ = PRM(Leb× να).

2. Since {Sk} is independent of {Lk}, get joint convergence in
D[0,∞)×Mp(E),(S[s·]

b(s)
,

∞∑
k=0

ε
( k

s
,

Lk
b(s)

)

)
⇒
(
Xα, N∞

)
.

3. Apply the a.s. continuous function T :

T
(S[s·]

b(s)
,
∞∑

k=0

ε
( k

s
,

Lk
b(s)

)

)
=
∞∑

k=0

ε
(

S[sk/s]
b(s)

,
Lk
b(s)

)
=

∞∑
k=0

ε
(

Sk
b(s)

,
Lk
b(s)

)
⇒T

(
Xα, N∞

)
.

4. Evaluate on {(u, v) : u ≤ t ≤ u + v} to get result for M : The
fidi’s of M(t) satisfy as s →∞,

M(s t) =
∞∑

k=0

1
[
Sk
s
≤t<

Sk+Lk
s

]
⇒ M∞(t) =

∑
k

1[Xα(tk)≤t<Xα(tk)+jk] .
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3.7. Case 2: F̄L heavier; α, β < 1.

Ingredients for analysis:

1. Recall b(t) is the quantile function of FX and satisfies

sF̄X(b(s)) → 1, (s →∞).

2. Since F̄L ∈ RV−β,

s F̄X(b(s))

F̄L(b(s))
FL(b(s)·) v→ νβ.

in M+(0,∞], where
v→ denotes vague convergence.

3. Equivalent to previous convergence is (variant of basic conver-
gence)

F̄X(b(s))

F̄L(b(s))

[s]∑
k=0

ε Lk
b(s)

⇒ νβ .

4. Extend by adding time component:

F̄X(b(s))

F̄L(b(s)

∞∑
k=0

ε
( k

s
,

Lk
b(s)

)
⇒ Leb× νβ .
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5. Augment using independence of {Ln} and {Sn}:(
S[s·]

b(s)
,
F̄X(b(s))

F̄L(b(s))

∞∑
k=0

ε
( k

s
,

Lk
b(s)

)

)
⇒ (Xα , Leb× νβ) .

6. Apply the a.s. continuous map T ; evaluate the result on the
correct region to get result for M : The fidi’ s of M satisfy

F̄X(s)

F̄L(s)
M(s t) ⇒

∫ t

0

(t− u)−β dX←α (u). s →∞.
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4. Cumulative work process.

Sample results for workload process

A(t) =

∫ t

0

M(s)ds.

4.1. The case µX < ∞, β ∈ (1, 2)

Define the quantile function of FL:

σ(t) ∼
(

1

1− FL

)←
(t) , t →∞.

Assume either F̄X ∈ RV−α, 1 < α ≤ 2 or σ2
X < ∞.

1. Suppose F̄X ∈ RV−α and either

(a) α > β or

(b) α = β and F̄X(x) = o(F̄L(x)) or

(c) σ2
X < ∞.

Set
As(u) = σ(s)−1

(
A(su)− suµL/µX

)
, u ≥ 0.

Then (s →∞),

As(·) ⇒ µ
−1/β
X Xβ(·) , (1)
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where Xβ is a β-stable spectrally positive Lévy motion on [0,∞).

2. If F̄X ∈ RV−α, α = β and F̄X(x) ∼ c F̄L(x), then (1) holds, where
Xβ is β-stable Lévy motion with a skewness parameter.

3. If F̄X ∈ RV−α and α < β or α = β and F̄L(x) = o(F̄X(x)), then,
as s →∞

(b(s))−1 [A(· s)− s (·) µL/µX ] ⇒ µ
−1/α
X Xα(·) ,

where Xα is spectrally negative α-stable Lévy motion.

4.2. α, β < 1.

Case (2) assumptions hold: 0 ≤ β ≤ α < 1 and if α = β, then
F̄X(s)/F̄L(s) → 0, as s →∞. Then

F̄X(s)

sF̄L(s)
A(st) ⇒

∫ t

0

(t− u)1−β

1− β
dX←α (u), t ≥ 0 ,

in C[0,∞).

NB: This is the integrated version of the result for M .
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1. Infinite Source Poisson Fluid Input Model

Suppose sessions characterized by

• Session initiation times are {Γk} where

{Γk} ∼ homogeneous Poisson on (−∞,∞), rate λ.

• Sequence of iid marks independent of {Γk}: Each Poisson point
Γk receives a mark which characterizes input characteristics:

(Fk, Lk, Rk) = (file, duration, rate ),

where
Fk = LkRk.

Assume

Rk ≡ 1 so Fk = Lk and 1 < αF = α < 2.

• Number of sessions in progress at t

M(t) =
∞∑

k=1

1[Γk≤t<Γk+Lk]
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• Cumulative input in [0, t],

A(t) =

∫ t

0

M(s)ds.

• {Γk} ⊥⊥ {Lk}
• Session length distribution has regularly varying tail:

P(Lk > x) = F̄L(x) = x−α`(x), x > 0, 1 < α < 2 , (1)

where ` is a slowly varying function.

• α ∈ (1, 2) means the variance of Lk is infinite and its mean µL is
finite.

• Quantile function

b(t) =

(
1

1− FL

)←
(t) =: inf{x :

1

1− FL(x)
≥ t}, t > 0, (2)

which is regularly varying with index 1/α.

• Will scale cumulative input by T → ∞ and let λ = λ(T ) → ∞
(At what rate?) and consider for the T th model:

AT (t) = A(Tt),

and
MT (t) = # active sources in T th model.
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• Family of models indexed by T . As we move through the family
by letting T →∞, is there an informative limit?
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2. Growth conditions

• λ = λ(T ): the parameter governing the initiation of sessions in
the T th model;

• Suppose λ = λ(T ) is non-decreasing function of T .

• Asymptotic behavior of AT (·) depends on whether slow growth or
fast growth holds for λ(T ).

We phrase our condition first in terms of the quantile function b defined
in (2).

Lemma 1 (Slow/fast growth) Sppse

• F̄L ∈ RV−α, 1 < α < 2.

• Session initiations form a stationary PRM on R, rate λ = λ(T ).

• MT (t), the number of active sources at time t in the T th model
when λ = λ(T ), is a stationary process on R.
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Then with λ = λ(T ), the following are euivalent and define slow growth:

1.

lim
T→∞

b(λT )

T
= 0,

2.
lim

T→∞
λT F̄L(T ) = 0,

3.
lim

T→∞
Cov (MT (0), MT (T )) = 0.

Fast growth is defined by replacing 0 by ∞.
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3. Two very different approximations

Theorem 1 (Mikosch et al. (2002)) If slow growth holds, then the
process (A(Tt), t ≥ 0) describing the total cumulative input in [0, T t],
t ≥ 0, satisfies the limit relation

X(T )(·) :=
A(T ·)− TλµL(·)

b(λT )

fidi→ Xα(·), (3)

where

• Xα(·) is α-stable Lévy motion;

• fidi→ denotes convergence of the finite dimensional distributions.

Theorem 2 If fast growth holds, then the process (A(Tt), t ≥ 0) de-
scribing the total accumulated input in [0, T t], t ≥ 0, satisfies the limit
relation

A(T ·)− λµLT (·)
[λT 3F̄L(T )σ2]1/2

d→ BH(·) ,

where

• d→ denotes weak convergence in (D[0,∞), J1),

• BH is standard fractional Brownian motion,

• H = (3− α)/2
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• σ2 is a constant.

See Gaigalas and Kaj (2003), Kaj and Taqqu (2004), Kaj (1999, 2002),
Konstantopoulos and Lin (1998), Mikosch and Stegeman (1999), Mikosch
et al. (2002), Resnick and van den Berg (2000), Resnick (2003).
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4. Why A(T ) should be asymptotically stable under
slow growth.

Recall using augmentation

ξ :=
∑

k

ε(Γk,Lk) = PRM(λLEB× FL) (4)

is a two dimensional Poisson random measure on R× [0,∞) with mean
measure

µ := λdt× FL(dx).

Decompose A(T ) by decomposing (initiation time, session length) in
(−∞, T ]× [0,∞) into 4 regions R1, . . . , R4:
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R1 :={(s, y) : 0 < s ≤ T, 0 < y,

s + y ≤ T},
R2 :={(s, y) : 0 < s ≤ T, T < s + y},
R3 :={(s, y) : s ≤ 0, 0 < s + y ≤ T},
R4 :={(s, y) : s ≤ 0, T < s + y},

Rewrite A(T )

A(T ) =
∑

k

Lk1[(Γk,Lk)∈R1] +
∑

k

(T − Γk)1[(Γk,Lk)∈R2]

+
∑

k

(Lk + Γk)1[(Γk,Lk)∈R3] +
∑

k

T1[(Γk,Lk)∈R4]

=:A1(T ) + A2(T ) + A3(T ) + A4(T ).
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Restriction of ξ(·) to regions Ri:

Recall
ξ =

∑
k

ε(Γk,Lk).

• The mean measure µ := Eξ(·) restricted to Ri is finite for i =
1, . . . , 4.

• Therefore, the points of ξ
∣∣
Ri

can be represented as a Poisson num-

ber of iid singleton point measures:

ξ
∣∣
Ri

d
=

Pi∑
k=1

ε(tk,i,jk,i) , i = 1, . . . , 4 ,

where

– Pi is a Poisson random variable which is independent of the
iid pairs (tk,i, jk,i), k ≥ 1,

– with common distribution

λLEB(ds)FL(dy)

µ(Ri)

∣∣∣
Ri

,

for i = 1, . . . , 4.

– Pi has mean
µ(Ri).
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Note the mean of P1 is

µ(R1) =Eξ(R1) ==

∫∫
0≤s≤T
s+y≤T

λdsFL(dy)

=

∫ T

s=0

λds

∫ T−s

y=0

FL(dy) = λ

∫ T

0

FL(s) ds

∼λT, (T →∞).

Reminder

A1(T ) =
∑

k

Lk1[(Γk,Lk)∈R1]
d
=

P1∑
k=1

jk,1

where
{(tk,1, jk,1), k ≥ 1} ⊥⊥ P1

and

{(tk,1, jk,1), k ≥ 1} iid ∼ λdsFL(dy)

µ(R1)
on R1.
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So

• A1(T ) is a Poissonized sum;

• Poissonized sums behave asymptotically like ordinary sums if you
replace P1 by E(P1) = µ(R1) ∼ λT .

• Therefore, to show

A1(T )− centering(T )

b(λT )

is asymptotically stable, it should be enough (modulo the trun-
cated variance condition) to show that

λTP [jk,1 > b(λT )x] → x−α, T →∞.

This is the analogue of

[n·]∑
k=1

(
Xn,k − centering

)
⇒ X0(·),

iff {
nP [Xn,1 ∈ · ]

v→ ν(·)
truncated 2nd moment condition.
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Some blood and guts.

λTP(jk,1 >b(λT ) x)

=λT

∫∫
0≤s≤T

0≤s+y≤T
y>b(λT )x

λdsFL(dy)

µ1(R1)
(use µ1(R1) ∼ λT ),

∼λ

∫ T−b(λT )x

s=0

(∫ T−s

y=b(λT )x

FL(dy)
)
ds

=λ

∫ T−b(λT )x

s=0

[F̄L(b(λT )x)− F̄L(T − s)]ds

=λ
[
F̄L(b(λT )x)(T − b(λT )x)

−
∫ T−b(λT )x

s=0

F̄L(T − s)ds
]

∼
(

1− b(λT )x

T

)
λT F̄L(b(λT ) x)

− b(λT )

T

∫ T/b(λT )

x

λT F̄L(b(λT ) s) ds

∼x−α , (5)

provided b(λT )/T → 0 ⇔ slow growth.
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Final steps:

• Show truncated variance condition (Karamata theorem)

lim
δ→0

lim sup
T→∞

λTE

(( jk,1

b(λT )

)2

1
[j_{k,1}≤b(λT )δ]

)
= 0.

• Show
Ai(T )

b(λT )

P→ 0, i = 2, 3, 4.

• Show for any fixed t:

A1(Tt)− TtλµL

b(λT )
⇒ Xα(t), in R.

• Show fi di convergence.
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1. Heavy Traffic Approximation to Negative Drift Ran-
dom Walks

• Aim: understanding of the heavy traffic approximation for sta-
tionary waiting time distribution in GI/G/1 queueing model when
service times heavy tailed.

• Stationary waiting time distribution in a stable Lindley queue
expressed as the distribution of the supremum of a negative drift
random walk.

• Begin with negative drift random walk.

Asmussen (2003), Boxma and Cohen (1999), Cohen (1998), Furrer
(1997, 1998), Resnick and Samorodnitsky (2000)
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1.1. Approximation to a negative drift random walk.

Setup:

• For each k = 1, 2, . . . , {X(k)
i , i ≥ 1} are iid.

• The kth random walk is

S
(k)
0 = 0, S(k)

n =
n∑

i=1

X
(k)
i , n ≥ 1,

so that the kth random walk has steps X
(k)
i , i = 1, 2, . . . .

Assumptions:

Assumption 1. ∃ sequence of integers 0 < d(k) →∞ such that

νk(·) := d(k)P[X
(k)
1 ∈ ·] v→ ν(·), (1)

vaguely in [−∞,∞] \ {0}, where ν is a measure on [−∞,∞] \ {0}
satisfying

(a) ν is a Lévy measure

(b) ν(−∞, 0) = 0, (spectrally positive)

(c)
∫∞

1
xν(dx) < ∞.
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Assumption 2. Control mass near 0: for any M > 0

lim
ε↓0

lim sup
k→∞

d(k)E
((

X
(k)
1

)2
1

[|X(k)
1 |≤ε]

)
= 0. (2)

Assumption 3. Each X
(k)
i has finite negative mean:

E(X
(k)
i ) = µ(k) < 0, i ≥ 1

satisfying
lim
k→∞

d(k)µ(k) = −1,

which implies 0 > µ(k) → 0 as k →∞.

Assumption 4. Additional control on ν near ∞:

lim
M→∞

lim sup
k→∞

d(k)E

(
|X(k)

i |1
[|X(k)

i |>M ]

)
= 0. (3)
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How a sequence of negative drift random walks are approximated
by a negative drift Lévy process.

Proposition 1 Assume Assumptions 1–4 hold. Define the random
element of D[0,∞)

Y (k)(t) = S
(k)
[d(k)t], t ≥ 0

for k = 1, 2, . . . . Define

• {ξ(∞)(t), t ≥ 0} is a totally skewed to the right zero mean Lévy
process with Lévy measure ν

• and define
Y (∞)(t) = ξ(∞)(t)− t, t ≥ 0.

Then in D[0,∞)
Y (k)(·) ⇒ Y (∞)(·).
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Proof: Step 1. Use standard convergence to Lévy method:

X(k)(·) :=

[d(k)·]∑
i=1

(
X

(k)
i − E

(
X

(k)
i 1

[|X(k)
k |≤1]

))
⇒ X(∞)(·) (4)

in D[0,∞) where

X(∞)(·) := lim
δ↓0

(∑
tk≤(·)

jk1[jk>δ] − (·)
∫

δ<x≤1

xν(dx)
)

= lim
δ↓0

(∑
tk≤(·)

jk1[
jk∈(δ,1]

] − (·)
∫

δ<x≤1

xν(dx)

+
∑

tk≤(·)

jk1[
jk>1]

] − (·)
∫

x>1

xν(dx) + (·)
∫

x>1

xν(dx)

)

=ξ(∞)(·) + (·)
∫

x>1

xν(dx),

and ξ(∞)(t) is

• totally skewed to the right,

• has Lévy measure ν,

• zero mean.
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Step 2. Center (4) to zero expectations:

d(k)
(
µ(k) − E

(
X

(k)
1 1

[|X(k)
1 |≤1]

))
=d(k)E

(
X

(k)
1 1

[|X(k)
1 |>1]

)
→
∫

x>1

xν(dx).

Use vague convergence (1) [Assumption 1], (3) of Assumption 4 and
Assumption 1c.
Step 3. Conclude:

[d(k)t]∑
i=1

X
(k)
i − [d(k)t]µ(k) ⇒ X(∞)(t)− t

∫ ∞
1

xν(dx)

in D[0,∞) and since (Assumption 3)

lim
k→∞

d(k)µ(k) = −1,

we get

Y (k)(t) = S
(k)
[d(k)t] ⇒X(∞)(t)− t

∫ ∞
1

xν(dx)− t

=ξ(∞)(t)− t =: Y (∞)(t)

in D[0,∞). �
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2. Approximation to the supremum of a negative drift
random walk.

Reminder: The supremum of negative drift random walk related to the
equilibrium waiting time of GI/G/1 queue.

Proposition 2 Assume Assumptions 1–4 of Section 1.1 hold. Define

W (k) :=
∞∨

t=0

Y (k)(t) =
∞∨

n=0

S(k)
n

=all-time max of kth random walk.

Then in R, we have the convergence in distribution, as k →∞,

W (k) ⇒ W (∞) :=
∞∨

t=0

Y (∞)(t) =
∞∨

t=0

(
ξ(∞)(t)− t

)
,

where recall ξ(∞)(·) is the zero mean Lévy process of Proposition 1.

All time max of kth random walk ⇒ all time max of zero mean Lévy
process with negative drift.
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Proof. Use a method from Asmussen (2003) for the finite variance
case: For M > 0, the map

x 7→
M∨

s=0

x(s)

is continuous from D[0,∞) 7→ R so from Proposition 1 ⇒

M∨
s=0

Y (k)(s) ⇒
M∨

s=0

Y (∞)(s)

in R. Get rid of M : The desired result follows from Second Converging
Together Theorem if for any η > 0 that

lim
T→∞

lim sup
k→∞

P[
∨

j≥d(k)T

S
(k)
j > η] = 0. (5)

Use reverse MG argument. �
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3. Heavy traffic approximation for queues with heavy
tailed services.

Construct sequence of Lindley queuing models.
Setup:

• {τ (k)
i , i ≥ 1}–non-negative iid sequence of service lengths with

common distribution B(k)(x); finite mean;

• {σ(k)
i , i ≥ 1}–iid sequence of non-negative interarrival times with

common distribution A(k)(x); finite mean;

• For each k:
{τ (k)

i , i ≥ 1} ⊥⊥ {σ(k)
i , i ≥ 1}.

• Traffic intensity for the kth model:

ρ(k) = E(τ
(k)
1 )/E(σ

(k)
1 ).

• The delay or waiting time process of the kth Lindley queue:

W
(k)
0 = 0, W

(k)
n+1 = (W (k)

n + τ (k)
n − σ

(k)
n+1)

+, n ≥ 0.
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Heavy traffic approximation requires the following conditions.

Condition (A).

• ∃ df F on [0,∞) such that

F̄ := 1− F ∈ RV−α, 1 < α < 2.

The quantile function:

b(t) =

(
1

1− F

)←
(t) ∈ RV1/α. (6)

• Further B(k)(x) tail approximated by F in the sense that

lim
x→∞

B̄(k)(x)

F̄ (x)
= 1, (7)

uniformly in k = 1, 2, . . . ; ie, given δ > 0, there exists x0 =
x0(δ) independent of k such that for x > x0 and all k

1− δ <
B̄(k)(x)

F̄ (x)
≤ 1 + δ. (8)

Condition (B). The tails of the distribution of σ
(k)
1 are always

lighter than the tail of F . A convenient way we ensure this is by
supposing that there exists η > α such that

c∨ := sup
k≥1

E(σ
(k)
1 )η < ∞. (9)
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Condition (C). Assume heavier loading as k gets large:

0 > m(k) := E(τ
(k)
1 )− E(σ

(k)
1 ) → 0, (10)

as k →∞. Set

X
(k)
i :=

τ
(k)
i − σ

(k)
i+1

b(d(k))
, i ≥ 1, (11)

where d(k) still to be specified. The step mean E(X
(k)
1 is

µ(k) =
E(τ

(k)
1 )− E(σ

(k)
1 )

b(d(k))
=

m(k)

b(d(k))
.

Interpret (10):

• The kth random walk has negative drift

• ⇒ the kth Lindley queue is stable;

• As k increases, the random walk drift becomes more and more
negligible

• ⇒ the associated Lindley models become less and less stable.

• Hence the need for scaling by b(d(k)).
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Definition of d(k).

In order for the random walks with negative drift to be approximated
by stable Lévy motion with drift -1, the function d(k) must satisfy

d(k)µ(k) :=
d(k)m(k)

b(d(k))
→ −1,

as k →∞. The function

H(t) :=
t

b(t)
∈ RV1− 1

α
, 1− α−1 > 0 (12)

grows like a power function and has an asymptotic inverse

H← ∈ RVα/(α−1).

The sequence d(k) must satisfy

H(d(k)) ∼ 1

|m(k)|
.

Therefore, we choose the sequence {d(k)} to be any sequence satisfying

d(k) ∼ H←
(

1

|m(k)|

)
, (13)

where H is specified in (12).
We now state the approximation theorem.
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Theorem 1 Assume Conditions (A)–(C) hold. With {X(k)
i , i ≥ 1}

defined by (11) and {d(k)} satisfying (13) we have in D[0,∞)

Y (k)(t) :=

[d(k)t]∑
i=1

X
(k)
i =

1

b(d(k))

[d(k)t]∑
i=1

(
τ

(k)
i − σ

(k)
i+1)
)
⇒ Y (∞)(t), (14)

where the limit Y (∞)(t) = ξ(∞)(t)− t and ξ(∞)(t) is a totally skewed to
the right, zero mean, α-stable Lévy motion.
Furthermore, the sequence of stationary waiting times indexed by k
converges in distribution in R:

1

b(d(k))
W (k) =

∞∨
n=0

1

b(d(k))

n∑
i=1

(
τ

(k)
i − σ

(k)
i+1

)
⇒ W (∞) =

∞∨
t=0

Y (∞)(t).

(15)

Remark

• The distribution of the maximum W (∞) of a negative drift α-stable
Lévy motion computed in Furrer (1997, 1998) using Zolotarev
(1964).

• The limit distribution is a Mittag–Leffler distribution.
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We have the following corollary.

Corollary 1 Suppose the assumptions of Theorem 1 hold. Then for
every t > 0,

P (W (k)/b(d(k)) ≤ t) → P (W (∞) ≤ t) = 1−
∞∑

n=0

(−a)n

Γ(1 + n(α− 1))
tn(α−1) ,

(16)
where a = (α− 1)/Γ(2− α), and for every λ ≥ 0,

Ee−λW (k) → Ee−λW (∞)

=
a

a + λα−1
. (17)
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4. Example

Consider

• GI/G/1 queue with service times {τi, i ≥ 1} having the Pareto
distribution

F (x) = 1− x−3/2, x ≥ 1 ,

• Interarrival times {σi, i ≥ 1} having the Gamma(β, λ) distribu-
tion.

• Assume
ρ = E(τ1)/E(σ1) < 1 ,

Approximate values of the probabilities that the stationary waiting
time in the system exceeds a given level: the scaling setup suggests
associating big k with ρ close to 1. With this association

ρ ↔ k

we have

• b(t) = t2/3 for t ≥ 1,

• m(ρ) = −(1− ρ)E(τ1) = −2(1− ρ).

• The function H in (12) is

H(t) = t1/3 for t ≥ 1
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• Its inverse is
H←(u) = u3 for u ≥ 1 .

• Supposing the relation (13) defining d(k) is an equality so

d(k) =
1

8
(1− ρ)−3 .

With W (∞) having the Mittag-Leffler distribution (16), our approxi-
mation is then

P (W > t) ≈ P (W (∞) > t/b(d(k))) = P
(
W (∞) > 4(1− ρ)2t

)
.
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