Problem Set 4
Mathematical Programming, OR 630
September 21, 2006

Due date: Friday, Sept 29, 2006.

1. Let A be a symmetric n by n matrix, and consider the linear program to minimize cx subject to $Ax \geq b$, $x \geq 0$, where b is the transpose of c. Show that if $Ax^* = b$ and $x^* \geq 0$, then x^* is optimal.

2. Consider a pair of primal and dual linear programs in standard form (in our usual notation). Fix some variable x_j in the primal. Suppose that $x_j = 0$ in every optimal solution. Show that there exists an optimal solution \bar{y} such that $\bar{y}A_j < c_j$. (Hint: create an auxiliary LP that that optimizes x_j among all of the original optimal solutions, and apply LP duality.)

3. Consider a pair of primal and dual linear programs in standard form (in our usual notation). Let x be a feasible solution to the primal, and let $N = \{i : x_i = 0\}$. Prove that x is an optimal solution for the primal if and only if the optimal value of the linear program, minimize cz subject to $Az = 0$, where $z_i \geq 0$ for each $i \in N$ is 0.

4. A polytope that has a particularly nice structure is the bipartite matching polytope. Consider a bipartite graph $G = (V_1, V_2, E)$ (that is, the node set is $V_1 \cup V_2$ and each edge has one endpoint in V_1 and one endpoint in V_2). Suppose $n = |V_1| = |V_2|$. A perfect matching M in G is a subset of n edges such that no two edges share a common endpoint. Suppose that for each perfect matching M we create a point x^M in $R^{|E|}$ where the coordinate x_e, for each $e \in E$ is 1 if $e \in M$, and is 0 otherwise. (That is, x^M is the so-called incidence vector of M.) Let $P(G)$ be the convex hull of all such points (that is, over all perfect matchings M in G).

Consider the polar of $P(G)$, $P(G)^*$, and consider all integer points in the non-negative orthant of $P(G)^*$. What do these points correspond to in terms of the original graph?