
Proceedings of the 2011 Winter Simulation Conference
S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, eds.

SIMOPT: A LIBRARY OF SIMULATION OPTIMIZATION PROBLEMS

Raghu Pasupathy

Industrial and Systems Engineering
Virginia Tech

Blacksburg, VA 24061, USA

Shane G. Henderson

Operations Research and Information Engineering
Cornell University

Ithaca, NY 14853, USA

ABSTRACT

We present SimOpt — a library of simulation-optimization problems intended to spur development and
comparison of simulation-optimization methods and algorithms. The library currently has over 50 problems
that are tagged by important problem attributes such as type of decision variables, and nature of constraints.
Approximately half of the problems in the library come with a downloadable simulation oracle that follows
a standardized calling protocol. We also propose the idea of problem and algorithm wrappers with a view
toward facilitating assessment and comparison of simulation optimization algorithms.

1 INTRODUCTION

Simulation optimization (SO) is the practice of finding a minimizer or maximizer of a real-valued function
that can only be estimated through stochastic simulation. The appeal of SO is that it allows one to work
with essentially arbitrarily complex simulation models, freeing the modeler from the tyranny of restricting
model complexity to mathematically tractable forms. The problem of course is that complex models can
lead to complex optimization problems. Not only must SO algorithms deal with the estimation error
associated with stochastic simulation, but SO also inherits all of the challenges associated with optimizing
deterministic functions, including nonlinearity, nondifferentiability, noncontinuity, and so forth.

These challenges have led to the development of a number of SO algorithms that can tackle very general
problems, but lack practical guarantees of performance. One often sees results in the SO literature on
algorithms that guarantee asymptotic convergence to a local or global optimizer. One also occasionally sees
convergence rate results that offer hope with regard to practical performance guarantees. Unfortunately,
most of these convergence-rate results tend to be built around asymptotic analyses that apply once an
algorithm is focusing on a neighbourhood of an optimal solution. While these results are welcome and
worthwhile, the asymptotic regime in which they apply is often well beyond the reach of the computational
budgets that are relevant in practice.

A library of SO problems could help address this issue. Realizing this, an appeal for an SO problem
library was made (Fu et al. 2000, Fu 2002, Glynn 2002), and one was proposed in Pasupathy and Henderson
(2006). In this paper we announce the arrival of the library (Pasupathy and Henderson 2011), explain
how the library is organized, how problems are implemented in the library and how the library can be
used to compare SO algorithms. Our goal is to stimulate use of and contributions to the library. Indeed,
contributions are vital because the library is not a finished product, but rather a living repository that we
hope will grow to fulfil its intended purposes, as detailed below.

The primary purpose of the library is to ensure more comprehensive numerical comparisons between
SO algorithms. Such comparisons should

• focus attention on the performance of algorithms when applied with computational budgets that
are practically relevant;

Pasupathy and Henderson

• stimulate the development of classes of SO problems that, in turn, stimulate algorithm development,
just as there are now algorithms for deterministic optimization specialized to linear problems and
subclasses thereof (e.g., transportation problems), smooth convex problems, nonsmooth convex
problems, multimodular problems on integer domains;

• facilitate comparisons between algorithms to identify their strengths and weaknesses and stimulate
their further development; and

• help promote the use of SO.

The library (Pasupathy and Henderson 2011) is organized as a list of problems together with their
attributes. Attributes are aspects of the problems that may limit the types of algorithms that can be brought
to bear on them, such as the nature of the variables and so forth. Each problem has its own wiki page
containing a full description of the problem in pdf format, source code (if any) for the problem, and other
comments or information about the problem. More details on library organization, including information
on how you can contribute, may be found in Section 2 below.

Approximately half of the problems in the library have been coded. Thus far, all implementations
are in MATLABTM. We chose this environment because of its wide availability and ease of coding,
and also because it facilitates algorithm comparisons. This choice comes at the price of execution speed
because MATLABTMis an interpreted language, but we believe that accessibility is more important than
computational efficiency at this stage. Having said that, it is straightforward to add other versions of
problem codes to the library, and so we remain open to other programming languages and environments.
We provide more details on the standardized interface we have used for implementing SO problems in
Section 3 below. Section 3 also discusses how random number streams are implemented, owing to the
importance of this point in employing techniques like common random numbers in SO algorithms.

Given that the primary purpose of the library is to compare SO algorithms, we have developed a set
of tools for assisting with such comparisons. Section 4.1 discusses these tools, and Section 4.2 gives an
example of their use in comparing two simple algorithms. These two algorithms are really caricatures of
algorithms that are included to clarify how comparisons can be undertaken, and are certainly not algorithms
that we advocate for SO practice.

Our efforts in developing and promoting SimOpt continue, but the library will not flourish without
the participation of the SO research community. Accordingly, we request your contributions in using, and
contributing to, the library.

• Please upload your own SO test problems, with or without code at http://www.simopt.org/upload.php
• Please upload comments on your experiences with the various problems you tackle on the problem

wiki pages.
• Please upload bug fixes, and alternative implementations in other languages.
• Please let us know of suggested improvements in implementations or interfaces.

2 LIBRARY ORGANIZATION

The library (Pasupathy and Henderson 2011) currently consists of a collection of test problems that are listed
with their key attributes, described in detail in pdf files, and many are implemented in MATLABTMcodes
and discussed further in wiki pages.

2.1 Problem Attributes

The SO library is restricted to finite-dimensional problems. This means, for example, that a stochastic
control problem that is parameterized by a dynamic-programming value function defined on a countably
infinite, or uncountable state space is explicitly excluded. However, if one were to parameterize, with a finite
number of parameters, a class of policies for that same stochastic control problem, then the parameterized
version of the problem would not necessarily be excluded.

http://www.simopt.org/upload.php

Pasupathy and Henderson

Within the class of finite-dimensional problems, problems are characterized by the following attributes,
which are important in determining what algorithms may be appropriate for a given SO problem.

Variable Class An SO problem may have continuous, integer-ordered, or categorical decision variables.
Continuous (decision) variables can take on any real value in an interval, e.g., the x-coordinate of
a location in the plane. Integer-ordered variables take on integer values in an interval and the order
of the integers has a physical meaning, e.g., the number of agents assigned to a particular shift.
Categorical variables capture all other variable types that can take only a finite number of values,
and is something of a “catchall,” e.g., the sequence of nodes visited in a graph. Some problems
contain a mix of these variable classes. In that case, the problem is characterized as categorical if
any variables are categorical, as integer ordered if any variables are integer ordered and there are
no categorical variables, and continuous otherwise.

Constraints Problems can be unconstrained, have deterministic constraints only, or have at least one
stochastic constraint. Deterministic upper and lower bounds, e.g., 0 ≤ x ≤ 1, or 0 ≤ x < ∞ are
not considered to be constraints. Deterministic constraints are those that can be computed without
the need for stochastic simulation. Stochastic constraints, then, are those that must be evaluated
using stochastic simulation. For example, call center problems typically place lower bounds on the
fraction of calls that are answered within a certain time threshold of being received. This fraction
must be estimated within a simulation.

Code Available? We ultimately hope to make code available for all of the problems in the library,
but for now only a subset of the problems have code available. We currently have a preference
for MATLABTMcode, but the library will certainly accept other languages and will even accept
multiple implementations of problems in multiple languages.

2.2 Wiki Pages

Each SO problem has its own wiki page. The wiki page is broken down into sections:

About the Problem contains at minimum a link to a pdf file that describes the problem. Optional
extras include links to source code and/or supplementary files (data files being common). The pdf
description should be sufficient to completely specify the problem at the level of specifying any
underlying stochastic processes.

Reported Results is the natural place to discuss algorithm performance, best solutions found thus far,
and so forth. We want to generate discussion in the research community, so please do “show off”
if you are particularly pleased about your algorithm’s performance on the problem!

Related Problems is a section that describes other problems (not listed in the library) that are “similar”
to the problem in question. This is intended to possibly give the user additional insight on problem
structure and the nature of the solution.

Comments is a placeholder for general comments, including necessary bug fixes, minor issues with
the problem statement and data, and any problem quirks.

References is a section that contains any external references from which the problem originates.
Contributing Content contains a link giving directions to the user on contributing content to the

wiki. As noted, for each problem’s wiki, volunteers will have the ability to contribute to the text.
Contributions will be accepted after appropriate editing.

3 INTERFACES AND IMPLEMENTATION

In this section we explain the standardized MATLAB interface for each problem, along with a discussion
about random number streams, owing to the importance of these in enabling common random numbers,
independent replications, etc. As a running example, we use the problem “Ambulances in a square.”

Pasupathy and Henderson

3.1 Problem Interface

The MATLAB implementation of every SO problem in the library requires two separate MATLAB functions.
The first function specifies the problem structure, while the second implements the simulation model
itself. These functions should be named UniqueProblemNameStructure and UniqueProblemName respectively. The
standardized names are important, because they allow us to easily perform algorithm comparisons, as
discussed in Section 4.1 below.

Before describing the two functions in more detail, we comment on problem constraints. Each constraint
in a problem is assumed to be of the form g(x)≥ 0, where g is some function value that is either computed
“exactly” (to numerical precision) or estimated in the simulation code. Problems with equality constraints
can be exceedingly hard to handle numerically because the solution space of such problems often has an
empty interior, so where possible we encourage the avoidance of equality constraints. For example, a
common form of constraint is x1 + x2 + · · ·+ xd = b, where b is some budget parameter. In this case one
can simply drop the dimension by one and exclude the constraint, since the value of xd is implied by the
other variables. If, in addition, xd was required to be nonnegative, then after dropping the dimension by
one we must also specify the constraint b− x1− x2−·· ·− xd−1 ≥ 0.

The interface for the function specifying the problem structure is

function [minmax d m VarNature VarBds FnGradAvail NumConstraintGradAvail StartingSol budget ObjBd OptimalSol] =
AmbulanceStructure(NumStartingSol, seed)

This “structure” function also generates any starting solution(s) required. Indeed, some algorithms,
such as stochastic approximation, need a single starting solution, while others, such as genetic algorithms,
require a family of solutions. The generation of such starting solutions is part of the problem description,
and performed in the “structure” function. This explains the integer input parameter NumStartingSol (which
can be zero). If the problem description requires random starting points, then the positive integer input
parameter seed will be required to set the seed of the random number generator, as discussed in Section 3.2
below.

The structure function returns the following quantities.

• minmax gives +1 for maximization problems, and −1 for minimization problems.
• d gives the dimension (number of decision variables)
• m gives the number of constraints (0 for unconstrained problems)
• VarNature is a d dimensional column vector where the jth component gives the nature of the jth

decision variable: continuous (0), integer-ordered (1) or categorical (2).
• VarBds is a d ×2 matrix, the jth row of which gives lower and upper bounds on the jth variable.

These bounds can be −inf, +inf or any real number for continuous or integer-ordered variables.
Categorical variables are assumed to take integer values, including the lower and upper bound
endpoints (assumed to be integer). Thus, a categorical variable taking 3 values could have bounds
1,3 or 2,4, etc.

• FnGradAvail equals 1 if function gradient estimates are available, and 0 otherwise.
• NumConstraintGradAvail gives the number of constraints for which gradient estimates of the left-hand

side of the constraints are available. Any such differentiable constraints are assumed to come first
in the collection of m constraints in the simulation implementation function below.

• StartingSol is a matrix with NumStartingSol rows and d columns, where each row contains a starting
solution. If NumStartingSol is 0 then this equals NaN (not a number).

• budget is a column vector containing a collection of suggested budgets. (Recall that a budget is
the amount of computer time, measured as specified in the problem description, allowed for the
optimization problem to complete its search.

• ObjBd is a bound (upper bound for maximization problems, lower bound for minimization problems)
on the optimal solution value, or NaN if no such bound is known.

Pasupathy and Henderson

• OptimalSol is a d dimensional column vector giving an optimal solution if known, and it equals NaN
if no optimal solution is known.

Let us turn our attention now to the function that performs the simulation itself.

function [fn, FnVar, FnGrad, FnGradCov, constraint, ConstraintCov, ConstraintGrad, ConstraintGradCov] =
Ambulance(x, runlength, seed, other);

The meaning of the inputs to this function are as follows.

• x is a d-dimensional column vector giving the solution at which to simulate.
• runlength is a nonnegative real number specifying the runlength, measured in time units as specified

in the problem description.
• seed is a strictly positive integer giving the seed for random variate generation. In fact, it is not

actually a seed, but rather the index of the substream of random numbers to be used. See Section 3.2
below for full details.

• other is a catchall for, e.g., problem parameters like arrival rates in queues if the problem is so
parameterized. For most problems it is ignored.

The meaning of the outputs from this function are as follows.

• fn is the real-valued estimate of the function value at the point x. The value NaN is returned if
the point x is “hard” infeasible in the sense that the x values cannot be used in the simulation, as
opposed to “soft” infeasible when the problem constraints are not satisfied.

• FnVar is a real-valued estimate of the variance of the estimator fn. In the common case where n
i.i.d. replications are performed, this quantity equals s2/n, where s2 is the sample variance of the
n observations. If a variance estimate is not computed, this is returned as NaN.

• FnGrad is a d-dimensional column vector giving an estimate of the gradient of the function at x,
returned as a d-vector or NaN if gradients are unavailable or inappropriate.

• FnGradCov is a d × d estimated covariance matrix of the function gradient estimate, including any
scaling to account for the number of replications (see FnVar above). The constant (not a matrix)
NaN is returned if the gradient covariance is not available or not appropriate.

• constraint is an m-dimensional column vector giving the estimated left-hand side (LHS) of inequality
constraints that are assumed to be of the form LHS ≥ 0. If m = 0 so there are no constraints, then
the constant (not a matrix) NaN is returned.

• ConstraintCov is the estimated covariance matrix of the constraint LHS estimates. This could have
zero rows/columns corresponding to deterministic constraints. It is returned as the constant (not a
matrix) NaN if there are no constraints, or if constraint covariance estimates are not computed.

• ConstraintGrad is a d × k matrix giving the estimated gradients of the k =NumConstraintGradAvail
constraint LHS values for which gradients are available, one in each column. If there are no
constraints then the constant (not a matrix) NaN is returned.

• ConstraintGradCov is a dk× dk matrix giving the estimated covariance matrix of the Constraint LHS
gradient estimates, where k = NumConstraintGradAvail. Entries are ordered by constraint and then
by gradient component, i.e., the ith row (or column) corresponds to Component (i mod d) of the
gradient of Constraint (b(i−1)/dc+1). The constant (not a matrix) NaN is returned if constraint
gradients are not available.

In this setup we have chosen to separately identify the function, function gradient, constraint and
constraint gradient estimates, rather than returning some kind of matrix of outputs with all of these
quantities contained therein. We have done so because this approach seems clearer. This clarity comes at a
small (from our perspective) cost. For example, there could be dependence between the function estimates
and the function gradient estimates, but such dependence is not reported in the above interface.

Pasupathy and Henderson

% Create a separate stream for each source of primitive inputs needed, e.g., for M/M/c+M queue
[ArrivalStream, ServiceStream, PatienceStream] = RandStream.create(’mrg32k3a’, ’NumStreams’, 3);

% Set the substream for each source of randomness to the ”seed” provided.
ArrivalStream.Substream = seed;
ServiceStream.Substream = seed;
PatienceStream.Substream = seed;

% Pregenerate the random variables for the simulation.
OldStream = RandStream.setDefaultStream(ArrivalStream); % Store old stream and set stream for generating arrivals
InterarrivalTimes = exprnd(InterArrivalMean, runlength, 1);
ArrivalTimes = cumsum(InterarrivalTimes);

RandStream.setDefaultStream(ServiceStream);
ServiceTimes = exprnd(ServiceMean, runlength, 1);

RandStream.setDefaultStream(PatienceStream);
PatienceTimes = exprnd(PatienceMean, runlength, 1);

RandStream.setDefaultStream(OldStream);

Figure 1: Random number streams for random variate generation in an M/M/c+M queue.

3.2 Random Number Streams

Some optimization algorithms rely on the use of common random numbers (CRN), while others rely on
independence. To accommodate these preferences, the optimization code should call the simulation with a
specified ”seed,” which is a positive (≥ 1) integer. This integer is not really a seed, but instead specifies the
substream used in generating primitive inputs within the simulation model. Indeed, MATLABTMcontains a
limited implementation of streams and substreams, as described in L’Ecuyer et al. (2002). The simulation
code creates its own random number generators, so that the optimization code is free to use a randomized
algorithm that will be independent of the estimates produced by the simulation code.

Hence, to implement CRN, the optimization code should simply use the same “seed” with every call
to the simulation code. To implement independence for, e.g., stochastic approximation, the optimization
code should use a new seed at every step, which could simply be a counter that reflects the number of
times the simulation code has been called (starting at 1).

As an example of how this is implemented in MATLABTM, Figure 1 depicts code for generating the
inputs for an M/M/c+M (multiserver queue with abandonments) queue, for the first runlength customers,
each of which needs an interarrival time, a service time and an abandonment time.

Statistics Toolbox generators, e.g., exprnd, betarnd, random use rand or randn, which in turn use the default
random number generator. (See the MATLABTMdocumentation on Random Number Generators under
“Statistics Toolbox: Distribution Functions.”) Therefore, we set the default stream before generating each
set of inputs, and finish by restoring the stream that was used before the simulation was called.

We have elected to pre-generate and store all random variables needed for the simulation, rather than to
generate them as needed. There are two reasons for this. First, MATLABTMoperations are more efficiently
completed when vectorized, and so there is a speed advantage this way, at the expense of some storage.
Second, this may also help with synchronization issues if the number of random variables needed in a
replication depends on x.

Pasupathy and Henderson

4 COMPARING ALGORITHMS

In this section, we present the idea of wrappers — function protocols designed to facilitate the comparison
of competing SO algorithms through rigorous and automatic finite-time performance assessment. Wrappers
are a realization of assessment ideas discussed in Pasupathy and Henderson (2006). In what follows, we
present the structure of wrappers and provide a simple example for illustration.

4.1 Wrappers

A wrapper is essentially a protocol designed to seamlessly execute a chosen algorithm on a chosen problem.
The idea of wrappers is meant to take us one step further toward our medium-term objective of developing
and maintaining a sister library of contributed algorithms for SO problems. Like SimOpt, the sister library
will be a “living” archive of algorithms organized by attributes specific to the class of problems they are
designed to solve.

The inputs to the proposed wrapper are “AlgorithmName” corresponding to the algorithm chosen
for execution, “aparam” giving a vector of algorithm parameters corresponding to “AlgorithmName,”,
“ProblemName” corresponding to the problem on which the chosen algorithm is to be executed, “budget”
giving suggested budgets for the optimization algorithm, and “quantiles” specifying which quantiles of
performance to estimate. The primary performance measure of interest is the (true) objective function value
g(X(t)) evaluated at the solutions X(t) returned by the algorithm at each of the budgets t = t1, t2, . . . , tn
specified through the problem description. Accordingly, towards estimating summary measures of the random
variable g(X(t)), the wrapper performs independent and identically distributed runs of the algorithm to
obtain realizations X1(t),X2(t), . . . , of the solutions at each of the budgets t = t1, t2, . . . , tn. The objective
function value g(X(t)) is then estimated (to negligible error) by calling the simulation at each of the realized
solutions.

Output from the wrapper includes a graph containing estimated quantiles of g(X(t)), plotted as a
function of the desired vector of budgets. (See Pasupathy and Henderson (2006) for more details on
finite-time assessment of SO algorithms.) The output from the wrapper is unique to the algorithm-problem
combination. Users wanting to compare multiple algorithms on a set of problems, or assess a single
algorithm on multiple problems, can easily write driver programs that repeatedly call the wrapper.

We now provide a little more detail on the inputs and outputs of the proposed wrapper.

function [OptVal, OptGap, ErrOptSol, handleOptVal, handleOptGap, handleOptSol]
= SOwrapper(AlgorithmName, aparams, ProblemName, budget, quantiles);

The meaning of the various quantities in this function are as follows.

• AlgorithmName is the unique name given to the algorithm being assessed.
• aparams is a column vector of algorithm parameters (of type double) required to execute the chosen

algorithm. For instance, the stochastic approximation algorithm may need a constant K1 used to
construct the gain sequence, and a constant K2 used to construct the step-sizes needed for estimating
derivatives. The two constants K1, and K2 are then specified through aparams(1), and aparams(2). The
size of the vector aparams might be different for different algorithms.

• ProblemName as mentioned in Section 3.1 is the unique name of the problem on which the chosen
algorithm is being assessed.

• budget is a column vector of budgets for the algorithm to use in solving the problem. If this quantity
equals NaN then the default budgets specified as part of the problem description are used, but
otherwise it overrides the problem-specified budgets.

• quantiles is a column vector of values in the interval (0,1) specifying the quantiles of g(X(t)) that
are to be estimated for each budget t. If this quantity equals NaN then the default quantiles 0.1,0.5
and 0.9 are used.

Pasupathy and Henderson

• OptVal is an output matrix of real numbers corresponding to the estimated quantiles of the objective
function values measured at the solutions returned by the algorithm. More formally, OptVal is the
matrix of estimated pre-specified quantiles of the random variables g(X(t)), t = t1, t2, . . . , tn where
t1, t2, . . . , tn are the budgets requested through the problem description. Accordingly, OptVal has size
l×q, where l is the size of the vector budget and q is the number of reported quantiles. For example,
if budget is [100; 500; 1000], and the 0.25, 0.50, 0.75 and 0.90 quantiles are to be reported, then l = 3
and q = 4.

• OptGap is an output matrix similar to OptVal, but reports estimated quantiles of an upper bound on
the optimality gaps measured at the solutions returned by the algorithm. So, if X(t) is the random
variable described earlier and v∗ is some known lower bound on the optimal value of a minimization
problem, then OptGap returns various estimated quantiles of |g(X(t))− v∗|. Like OptVal, the matrix
OptGap has size l× q, where l is the size of the vector budget and q is the number of reported
quantiles. The value v∗ is returned as the output ObjBd from the problem-structure function, and if
v∗ is unknown then OptGap takes the value NaN.

• ErrOptSol is an output matrix similar to OptGap, but it reports estimated quantiles of the deviations
(in L2 norm) of the solutions X(t) returned by the algorithm from a known optimal solution x∗.
The solution x∗ is returned as the output OptimalSol from the problem-structure function. Like OptVal
and OptGap, the matrix ErrOptSol has size l×q, where l is the size of the vector budget and q is the
number of reported quantiles. The value NaN is returned if x∗ is unknown.

• handleOptVal, handleOptGap, and handleErrOptSol are handles to graphs with abscissae as elements of
budget, and each having q curves corresponding to the estimated quantiles reported through the
matrices OptVal, OptGap, and ErrOptSol respectively. If v∗ or x∗ are not available, the corresponding
handle is returned as NaN.

A few other comments relating to wrappers are warranted.

(i) Problem names and algorithm names are pre-specified through the SimOpt library and the proposed
algorithm library, respectively.

(ii) Recall that the vector input aparams allows using some of the algorithm parameters as user inputs.
This is only to promote flexibility — algorithm submitters can choose to hardcode some or all
of these parameter choices inside their code, in which case the hardcoded parameters will not be
included in the input vector aparams. For instance, if an implementation of stochastic approximation
includes the option of using common random numbers, then a switch to use (or not) common random
numbers will appear as an element in aparams. Likewise, implementations that do not provide this
flexibility will not include this switch as part of aparams.

(iii) The wrapper assumes a standardized calling function for the algorithm. Specifically, it assumes
that the algorithm can be called by

function [x, other] = AlgorithmName(aparams, ProblemName, budget, seed);

where aparams, ProblemName and budget are as described earlier, and seed is a positive integer (an initial
seed) that tags the specific independent run of the algorithm. Independent and identically distributed
runs of the algorithm can thus be obtained by changing the value of seed. The output x is a matrix
whose jth column (j ≥ 2) corresponds to the solution returned by the algorithm after expending
budget(j−1) computing effort, where budget is the column vector of budgets suggested either by the
chosen problem (see Section 3.1) or by the call to the wrapper (see above). The first column of x
returns the starting solution. The vector other is a “catch-all” for all other outputs returned by the
algorithm.

(iv) As mentioned earlier, the proposed wrapper will facilitate assessing and comparing algorithms
for sets of problems. We envision users writing driver programs that repeatedly call the wrapper
to generate quantile curves depicting the performance of algorithms of interest. Due to obvious

Pasupathy and Henderson

difficulties, and as discussed in Pasupathy and Henderson (2006), we have deliberately refrained
from constructing single measures of finite-time performance for SO algorithms.

(v) Depending on the nature of the problem, the matrices OptGap and ErrOptSol may make little sense
to the user. For example, in settings where a local extremum is sought, v∗ and x∗ are not of much
relevance because the number of local extrema may be numerous.

(vi) Due to the potential need to return large matrices, and since the quality of a solution is usually
measured in the function space rather than in the design space, we have chosen not to return any
summary statistics on the solutions attained by the algorithm.

4.2 An Example

As an example of using the proposed wrapper, we discuss the calling commands for assessing a basic
version of the “RandomLocalSearch” algorithm on the ambulance problem, and demonstrate the output
generated by the wrapper.

Assuming that a user wishes to assess RandomLocalSearch on Ambulance through the proposed wrapper,
the relevant MATLAB syntax is

function [OptVal, OptGap, ErrOptSol, handleOptVal, handleOptGap, handleOptSol]
= SOwrapper(‘RandomLocalSearch’, [], ’Ambulance’, NaN, [0.15; 0.5; 0.75; 0.9])

As explained in the previous section, the first and third inputs are the name of the algorithm and the name
of the problem being assessed. The second input is an empty vector because RandomLocalSearch has no
algorithm parameters that are user inputs. The budget is specified as NaN since we will use the default
budget specified in the Ambulance problem description, which is [10000;25000;50000;75000;100000],
and the vector of quantiles overrides the defaults in the wrapper.

The wrapper returns NaN for OptGap, ErrOptSol, handleOptGap and handleOptSol because a lower bound
on the optimality gap v∗ and the optimal solution x∗ were not provided as part of Ambulance. OptVal is
a 4×5 matrix of estimated 0.15,0.5,0.75,0.90 quantiles of the performance measure g(X(t)) at each of
the budget points t = 10000,25000,50000,75000,100000. A handle to a corresponding plot is provided
through the output handleOptVal, and is depicted in Figure 2.

In Figure 2, all quantiles are equal at t = 0 since this corresponds to the fixed starting solution provided
through the problem. Also, all randomness in the random variable g(X(t)) is assumed to come from the
random variable X(t). In other words, when estimating g(X(t)) at a specified X(t), enough replications
are performed by the wrapper so that the sampling error due of the objective function (for a given solution
X(t)) is negligible.

5 DISCUSSION

We end with a renewed call for contributions to increase the number and variety of problems available on
SimOpt. While we currently have a sizable library, there is a noticeable skew in the nature of available
problems. For example, integer-ordered and continuous-variable problems constitute the bulk of what is
currently available, with a severe dearth of SO problems having categorical variables. Similarly, amongst
the available continuous-variable problems, most are either unconstrained or have deterministic constraints.
Towards remedying this skew, we particularly welcome SO problems having categorical variables of all
constraint types, and SO problems having continuous variables with stochastic constraints.

We also encourage volunteers to test their SO algorithms on problems that are currently available in
the library. The wrapper interface described in Section 4 is specifically meant to facilitate such testing.
Standardized output from the wrapper interface will ease distribution and comparison. The proposed sister
library of algorithms, in addition to hosting particular algorithm implementations, will contain summarized
output generated from executing the wrapper interface on some or all of the available algorithms, and on
chosen sets of problems.

Pasupathy and Henderson

Figure 2: Quantile curves generated by the proposed wrapper when RandomLocalSearch is executed on
Ambulance.

ACKNOWLEDGMENTS

We thank the participants, and particularly the organizers Michael C. Fu and Barry L. Nelson, of a workshop
and a follow-up meeting on simulation optimization held on May 24–25, 2010, for advice and suggestions.
We had additional valuable conversations with Bruce Schmeiser, particularly about wrappers. We also
thank the many contributors to the library, including a number of students at both Virginia Tech and Cornell,
who have written up and coded problems. This work was supported by the National Science Foundation
under Grant Numbers CMMI-0800608 and CMMI-0800688.

REFERENCES

Fu, M. C. 2002. “Optimization for simulation: Theory vs. practice”. INFORMS Journal on Comput-
ing 14:192–215.

Fu, M. C., S. Andradóttir, J. S. Carson, F. Glover, C. R. Harrell, Y. C. Ho, J. P. Kelly, and S. M. Robinson.
2000, December. “Integrating optimization and simulation: research and practice”. In Proceedings of
the 2000 Winter Simulation Conference, edited by J. A. Joines, R. R. Barton, K. Kang, and P. A.
Fishwick, 610–616. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Glynn, P. W. 2002. “Additional perspectives on simulation for optimization”. INFORMS Journal on
Computing 14:220–222.

L’Ecuyer, P., R. Simard, E. J. Chen, and W. D. Kelton. 2002. “An Object-Oriented Random-Number Package
with Many Long Streams and Substreams”. Operations Research 50 (6): 1073–1075.

Pasupathy, R., and S. Henderson. 2006, December. “A Testbed of Simulation-Optimization Problems”.
In Proceedings of the 2006 Winter Simulation Conference, edited by L. F. Perrone, F. P. Wieland,

Pasupathy and Henderson

J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, 255–263. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers, Inc.

R. Pasupathy and S. G. Henderson 2011. “SimOpt”. Accessed Oct. 23, 2011. http://www.simopt.org.

AUTHOR BIOGRAPHIES

RAGHU PASUPATHY is an associate professor in the Industrial and Systems Engineering Department at
Virginia Tech. His research interests lie broadly in Monte Carlo methods with a specific focus on simulation
optimization and stochastic root finding. He is a member of INFORMS, IIE, and ASA, and serves as an
Associate Editor for ACM TOMACS and the INFORMS Journal on Computing. His e-mail address is
pasupath@vt.edu and his web page is https://filebox.vt.edu/users/pasupath/pasupath.htm.

SHANE G. HENDERSON is a professor in the School of Operations Research and Information Engineering
at Cornell University. His research interests include discrete-event simulation and simulation optimization,
and he has worked for some time with emergency services. He is the simulation area editor at Operations
Research, an associate editor for Management Science and for Stochastic Systems, and currently serves as
the chair of the INFORMS Applied Probability Society. He co-edited the Proceedings of the 2007 Winter
Simulation Conference. His web page is http://people.orie.cornell.edu/∼shane.

http://www.simopt.org
mailto://pasupath@vt.edu
https://filebox.vt.edu/users/pasupath/pasupath.htm
http://people.orie.cornell.edu/~shane

	INTRODUCTION
	LIBRARY ORGANIZATION
	Problem Attributes
	Wiki Pages

	INTERFACES AND IMPLEMENTATION
	Problem Interface
	Random Number Streams

	COMPARING ALGORITHMS
	Wrappers
	An Example

	DISCUSSION

