The Vehicle Mix Decision in Emergency Medical Service Systems

Kenneth C. Chong, Shane G. Henderson, Mark E. Lewis
School of Operations Research and Information Engineering, Ithaca, NY 14853.
kcc66, sgh9, mel47@cornell.edu

We consider the problem of selecting the number of Advanced Life Support (ALS) and Basic Life Support (BLS) ambulances— the vehicle mix— to deploy in an Emergency Medical Service (EMS) system, given a budget constraint. ALS ambulances can treat a wider range of emergencies, while BLS ambulances are less expensive to operate. To this end, we develop a framework under which the performance of a system operating under a given vehicle mix can be evaluated. Because the choice of vehicle mix affects how ambulances are dispatched to incoming calls, as well as how they are deployed to base locations, we adopt an optimization-based approach. We construct two models— one a Markov decision process, the other an integer program— to study the problems of dispatching and deployment in a tiered system, respectively. In each case, the objective function value attained by an optimal decision serves as our performance measure. Numerical experiments performed with both models suggest that, under reasonable choices of inputs, a wide range of tiered systems perform comparably to all-ALS fleets.

Key words: ambulance dispatching; ambulance deployment; Markov decision processes; queues; integer programming; advanced life support; basic life support

1. Introduction

Emergency Medical Service (EMS) systems operate in an increasingly challenging environment characterized by rising demand, worsening congestion, and unexpected delays (such as those caused by ambulance diversion). Achieving a desirable level of service requires the coordination of a wide range of medical personnel, as well as careful and effective management of system resources. To
this end, EMS providers can make a number of strategic decisions, one of which is the composition of their ambulance fleets.

Ambulances can be differentiated by the medical personnel on board, and thus, by the types of treatment they can provide. These personnel can be roughly divided into two groups: Emergency Medical Technicians (EMTs) and paramedics. EMTs use non-invasive procedures to maintain a patient’s vital functions until more definitive medical care can be provided at a hospital, while paramedics are also trained to administer medicine and to perform more sophisticated medical procedures on scene. The latter may be necessary for stabilizing a patient prior to transport to a hospital, or for slowing the deterioration of the patient’s condition en route. Thus, they may improve the likelihood of survival for patients suffering from certain life-threatening pathologies, such as cardiac arrest, myocardial infarction, and some forms of trauma. See, for instance, Bakalos et al. (2011), Gold (1987), Isenberg and Bissell (2005), Jacobs et al. (1984), McManus et al. (1977), and Ryynänen et al. (2010) for discussions of the effects of paramedic care on patient outcomes.

Ambulances staffed by at least one paramedic are referred to as Advanced Life Support (ALS) units (we use the terms “ambulance” and “unit” interchangeably), while ambulances staffed solely by EMTs are known as Basic Life Support (BLS) units. While ALS ambulances are more expensive to operate (due to higher personnel and equipment costs) they are viewed as essential components of most EMS systems, as such systems are frequently evaluated by their ability to respond to life-threatening emergencies.

The selection of a vehicle mix—that is, a combination of ALS and BLS ambulances to deploy—has been a topic of some debate in the medical community, with the primary issue being whether BLS units should be included in a fleet at all. Proponents of all-ALS systems, such as Ornato et al. (1990) and Wilson et al. (1992), cite the risk of sending a BLS unit to a call requiring a paramedic, either due to errors in the dispatch process or to system congestion. An ALS unit may also need to be brought on scene before transport can begin, thus diverting system resources, and allowing the patient’s condition to deteriorate. Proponents of tiered systems, such as Braun et al.
(1990), Clawson (1989), Slovis et al. (1985), and Stout et al. (2000), argue that BLS ambulances enable EMS providers to operate larger fleets, leading to decreased response times. This may be more desirable, as they observe that a significant fraction of calls do not require an ALS response. Both sides of the debate allude to a trade-off inherent in the vehicle mix decision—that between improving a system’s responsiveness and reducing the risk of inadequately responding to calls.

A number of secondary considerations may influence the decision-making process. For instance, dispatchers in a tiered system must also assess whether an ALS or BLS response is needed, complicating triage, and delaying the response to a call (Henderson 2011). As another example, EMS providers may have difficulty hiring and training the number of paramedics needed to operate an all-ALS system, as well as providing these paramedics with opportunities to hone and maintain their skills (Braun et al. 1990, Stout et al. 2000). While many of these issues are quantifiable, they have received less attention in the literature, and we do not consider them here.

In this paper, we contribute to this debate by constructing models under which quantitative comparisons among vehicle mixes can be made. To do so, we consider a system in which the EMS provider has a fixed annual operating budget B, and for which annual operating costs for ALS and BLS ambulances are C_A and C_B, respectively (where $C_A \geq C_B$). We define a vehicle mix to be an integer pair (N_A, N_B)—corresponding to the number of ALS and BLS ambulances deployed, respectively—for which $C_A N_A + C_B N_B \leq B$. Let $f(N_A, N_B)$ denote a scalar measure of system performance that is attained when the EMS provider deploys the vehicle mix (N_A, N_B).

We formally describe our notion of performance in later sections, but comment that it is an aggregate measure of the system’s ability to respond both to life-threatening and less urgent calls. Regardless of how we define it, performance depends on two closely-related decisions: dispatching decisions, the policy by which ambulances are assigned to emergency calls in real time, and deployment decisions, the base locations to which ambulances are stationed. These decisions, in turn, are affected by an EMS provider’s choice of vehicle mix. Thus, it is reasonable for $f(N_A, N_B)$ to be the output of an optimization procedure. However, we do not intend for any “optimal solutions”
we obtain to directly aid decision-making in practical contexts. Doing so would require tailoring our model to a specific EMS system, and we are more interested in obtaining general insights.

While we could construct a model that jointly optimizes with respect to both dispatching and deployment decisions, such a model may not be tractable. To obtain general insights, we require a procedure that can be quickly applied to large collections of problem instances. Thus, instead of studying one sophisticated model, we base our analysis upon two more stylized models. If we make the (admittedly large) assumption that the locations of arriving calls and ambulances can be ignored, we need only optimize with respect to dispatching decisions, and the resulting problem can be modeled as a Markov decision process (MDP). Alternatively, if we assume that the EMS provider operates under a fixed dispatching policy, the resulting problem of deployment can be modeled as an integer program (IP). Both models treat \((N_A, N_B)\) as input, and we take \(f(N_A, N_B)\) in each case to be the objective function value associated with an optimal solution.

We contend that there is value in using both models to study the vehicle mix problem. An analysis conducted using the MDP model alone would leave open the question of whether taking geographical factors into account would lead to qualitatively different results. Furthermore, an analysis conducted solely using the IP model largely omits the real-time decision-making aspects of the problem, and raises similar concerns. Thus, we view our two models as complementary to one another. Numerical experiments indicate that our models yield similar qualitative insights, but different quantitative results. However, we demonstrate below that these discrepancies can be reconciled, allowing us to draw stronger conclusions than is possible with either model alone.

Our paper’s primary finding is that there are rapidly diminishing marginal returns associated with biasing a fleet towards all-ALS, suggesting there is a fairly wide range of vehicle mixes that perform comparably to an all-ALS fleet. This can be interpreted in several ways. For systems that already operate all-ALS fleets, our analysis suggests that there is not a compelling reason to switch to a different vehicle mix. For systems that operate a mixture of ALS and BLS ambulances, the benefit that can be attained by a conversion to an all-ALS fleet may not justify the costs involved.
With respect to the vehicle mix debate, we contend that the most appropriate fleet for a given system should depend more heavily on the secondary considerations described above, or at least, that these considerations can be weighted more heavily in the decision-making process without significantly affecting performance.

The remainder of this paper is organized as follows. Following a literature review in Section 2, we describe and formally construct in Section 3 our MDP model for ambulance dispatching in a tiered EMS system. We perform a computational study on this model in Section 4, which is based upon a large-scale EMS system loosely modeled after Toronto EMS. In Section 5, we formulate our IP model for ambulance deployment, and conduct a numerical study in Section 6 similar to that in Section 4. We conclude and discuss future research directions in Section 7.

2. Literature Review

There is a sizable body of literature relating to the use of operations research models to guide decision-making in EMS systems. We do not give a detailed overview here, and instead refer the reader to surveys, such as those by Brotcorne et al. (2003), Goldberg (2004), Green and Kolesar (2004), Henderson (2011), Ingolfsson (2013), Mason (2013), McLay (2010), and Swersey (1994). We draw primarily from two streams of literature.

The first stream of literature we consider pertains to dynamic models, which are used to analyze real-time decisions faced by an EMS provider. Such models typically assume that ambulances have already been deployed to bases, and instead consider how to dispatch these ambulances to incoming calls, or alternatively, how to redeploy idle ambulances to improve coverage of future demand. The first such model is due to Jarvis (1975), who constructs an MDP for dispatching in a small-scale EMS, while McLay and Mayorga (2012) consider a variant in which calls can be misclassified. Work relating to ambulance redeployment was initiated by Berman (1981a,b,c), and Zhang (2012) conducts a more refined analysis for the case of a single-ambulance fleet. The aforementioned models succumb to the curse of dimensionality, and so to analyze large-scale systems, Maxwell et al. (2010) and Schmid (2012) develop redeployment policies using approximate dynamic programming. While
our model is less detailed than those cited above, it captures the essential features of a tiered EMS system, and is amenable to sensitivity analysis, and can thus be used to obtain quick insights. Our model can also be extended to include a fairly wide range of system dynamics, such as call queueing, without significantly increasing the size of the state space; see Online Appendix A.

The second stream of literature we consider relates to integer programming models for ambulance deployment, canonical examples of which include Toregas et al. (1971), Church and ReVelle (1974), and Daskin (1983). These models base their objective functions upon some measure of the system’s responsiveness to emergency calls. This can be quantified via the proportion of emergency calls that survive to hospital discharge, as in Erkut et al. (2008) and in Mayorga et al. (2013), or more commonly, via the concept of coverage: the long-run average number of calls to which an ambulance can be dispatched within a given time threshold. These models have been extended to study the problem of deploying multiple types of emergency vehicles; see, for instance, Charnes and Storbeck (1980), Mandell (1998), and McLay (2009). Our IP model is most similar in spirit to that of Daskin (1983), in that we use a similar notion of coverage in our objective function, and is also closely related to that of McLay (2009), who considers calls of varying priority. However, our IP takes into account more of the nuances of dispatching in a tiered EMS system, by affording some flexibility in the dispatching policy. We also consider a more general notion of coverage that quantifies the system’s ability to respond both to high-priority and low-priority calls.

Closely related to the above body of work is a stream of literature pertaining to descriptive models of EMS systems, which aims to develop accurate and detailed performance measures for a system operating under a given set of deployment decisions. Larson’s hypercube model (1974) and its variants, such as those by Larson (1975) and Jarvis (1985), are perhaps the most influential of this kind. Simulation has been widely used since Savas (1969); see, for instance, Henderson and Mason (2004). While descriptive models allow for more thorough comparisons between candidate deployment decisions, they are not as amenable to optimization.

There is a related body of literature on the flexible design of manufacturing and service systems. The seminal work in this area is due to Jordan and Graves (1995), who observe that much of
the benefit associated with a “fully flexible” system (which, in their case, represents the situation in which all plants in manufacturing system can produce every type of product) can be realized by a strategically-configured system with limited flexibility. A similar principle has been shown to hold for call centers (Wallace and Whitt 2005), as well as for more general queueing systems (Gurumurthi and Benjaafar 2004, Tsitsiklis and Xu 2012). Theoretical justifications thereof are provided in Aksin and Karaesmen (2007) and Simchi-Levi and Wei (2012). In relating our work to this body of literature, we can define “flexibility” as the fraction of the budget that an EMS provider expends on ALS ambulances, but our paper’s conclusions do not directly follow from this work. This is because servers in our model are geographically distributed, and their locations affect the system’s ability to respond to incoming demand. The models we formulate provide a way to quantify these changes, and in turn, to study their effects on performance.

3. An MDP-Based Dispatching Model

3.1. Setup

Consider an EMS system operating N_A ALS and N_B BLS units. Incoming emergency calls are divided into two classes: urgent, high-priority calls for which the patient’s life is potentially at risk, and less urgent low-priority calls. We assume that high-priority and low-priority calls arrive according to independent Poisson processes with rates λ_H and λ_L, respectively, and that they only require single-ambulance responses.

Service times are exponentially distributed with rate μ, independent of the priority of the call and of the type of ambulance dispatched. While we use the exponential distribution for tractability, our assumption of a single μ may be reasonable in large-scale systems, as on-scene treatment times are typically small relative to those for other components of the emergency response, such as travel and hospital drop-off times. Arrivals occurring when all ambulances are busy do not queue, but instead leave the system without receiving service. This is consistent with what occurs in practice, as EMS providers may redirect calls to external services, such as a neighboring EMS or the fire department, during periods of severe congestion, but we revisit this assumption in Section 3.3.
Dispatches to high-priority calls must be performed whenever an ambulance is available, but a BLS unit can be sent in the event that all ALS units are busy, so as to provide the patient with some level of medical care. In this case, we assume that the BLS unit can adequately treat the high-priority call, but that such a dispatch is undesirable, in a way that we clarify in Section 3.1.2; we also revisit this assumption in Section 3.3. Similarly, dispatches to low-priority calls must be made if a BLS ambulance is available, but if this is not the case, the dispatcher may either respond with an ALS unit (if one is available), or redirect the call to an external service (to reserve system resources for potential future high-priority calls).

3.1.1. State and Action Spaces. Given the above, we define the state space to be $S = \{0, 1, \ldots, N_A\} \times \{0, 1, \ldots, N_B\}$, where $(i, j) \in S$ denotes the state in which i ALS and j BLS units in the system are busy. We define the action space to be $A = \bigcup_{(i,j) \in S} A(i, j)$, where

$$A(i, j) = \begin{cases} \{0, 1\} & \text{if } i < N_A \text{ and } j = N_B, \\ \{0\} & \text{otherwise.} \end{cases}$$

In states where both actions are available, Action 1 dispatches an ALS unit to the next arriving low-priority call, while Action 0 redirects the call instead. In all other states, the dispatcher does not have a decision to make, and Action 0 represents a dummy action.

3.1.2. Rewards. Let R_{HA} and R_{HB} be the rewards associated with dispatching an ALS unit or a BLS unit to a high-priority call, respectively, and R_L be the reward for dispatching an ambulance (of either type) to a low-priority call. We assume $R_{HA} = 1$ (without loss of generality) and $R_{HA} \geq \max\{R_{HB}, R_L\}$, but make no assumptions about the relative ordering of R_{HB} and R_L, as this may depend, for instance, on the skill gap between EMTs and paramedics, or on the incentives of the EMS in question. This is an unconventional modeling choice, but it results in an objective function that takes into account the system’s responsiveness to both high-priority and low-priority calls. Typically, these two goals conflict, and we can adjust how they are weighted in the objective function by changing the reward structure. Our framework is also flexible. By letting R_{HA}, for
instance, be the probability of patient survival when an ALS ambulance responds to a high-priority call (and defining R_{HB} and R_L similarly), we can mimic the reward structure adopted by McLay and Mayorga (2012). If an EMS provider is concerned solely with high-priority calls, we can let $R_{HA} = 1$, $R_{HB} = 0$, and $R_L = 0$. More generally, these rewards can represent a measure of the utility that the EMS provider derives from a successful dispatch. Nevertheless, identifying suitable choices for R_{HA}, R_{HB}, and R_L may be difficult, and we discuss this issue further in Section 4.

3.1.3. Uniformization

Because the times between state transitions in our model are exponentially distributed with a rate that is bounded above by $\Lambda = \lambda_H + \lambda_L + (N_A + N_B)\mu$, our MDP is uniformizable in the spirit of Lippman (1975), and we can consider an equivalent process in discrete time. Suppose without loss of generality (by rescaling time, if necessary) that $\Lambda = 1$. The discrete-time process is such that at most one event can occur during a single (uniformized) time period, and given the system is in state $(i,j) \in S$, that event can be:

- With probability λ_H, the arrival of a high-priority call,
- With probability λ_L, the arrival of a low-priority call,
- With probability $i\mu$, an ALS unit service completion,
- With probability $j\mu$, a BLS unit service completion,
- With probability $(N_A - i)\mu + (N_B - j)\mu$, a dummy transition.

3.1.4. Rewards and Transition Probabilities

Let $R((i,j),a)$ denote the expected reward collected over a single uniformized time period, given that the system begins the period in state (i,j), and the dispatcher takes action $a \in A(i,j)$. We have:

$$R((i,j),a) = \begin{cases}
\lambda_H R_{HA} + \lambda_L R_L & \text{if } i < N_A, j < N_B, a = 0, \\
\lambda_H R_{HB} + \lambda_L R_L & \text{if } i = N_A, j < N_B, a = 0, \\
\lambda_H R_{HA} & \text{if } i < N_A, j = N_B, a = 0, \\
\lambda_H R_{HA} + \lambda_L R_L & \text{if } i < N_A, j = N_B, a = 1, \\
0 & \text{if } i = N_A, j = N_B, a = 0.
\end{cases}$$

(1)
Let $P((i', j') \mid (i, j), a)$ denote the one-stage transition probabilities from state (i, j) to state (i', j') under action $a \in A(i, j)$. There are several cases to consider, as the system dynamics change slightly at the boundary of the state space. For brevity, we consider only the case when $0 < i < N_A$ and $j = N_B$, in which case, we have

$$
P((i', j') \mid (i, j), a) = \begin{cases}
\lambda_H + I(a = 1)\lambda_L & \text{if } (i', j') = (i+1, j), \\
i\mu & \text{if } (i', j') = (i-1, j), \\
j\mu & \text{if } (i', j') = (i, j-1), \\
1 - \lambda_H - I(a = 1)\lambda_L - (i+j)\mu & \text{if } (i', j') = (i, j).
\end{cases}
$$

The first transition corresponds to an arrival of a high-priority call (or a low-priority call, if the dispatcher performs Action 1), the second and third to service completions by ALS and BLS units, respectively, and the fourth to dummy transitions due to uniformization.

3.2. Optimality Equations

We seek a policy that maximizes the long-run average reward collected by the system, where we define a policy to be a stationary, deterministic mapping $\pi : \mathcal{S} \to \{0,1\}$ that assigns an action to every system state. Because state and action spaces are finite, by Theorem 8.4.5 of Puterman (2005), we can restrict attention to this class of policies Π without loss of optimality.

For a fixed policy $\pi \in \Pi$, let S_n^π be the state of the system at time n, and A_n^π be the action selected by π at this time. We define the long-run average reward collected attained by policy π as

$$
J^\pi = \lim_{N \to \infty} \frac{1}{N} \mathbb{E}\left[\sum_{n=1}^{N} R^\pi(S_n^\pi, A_n^\pi) \right],
$$

By Theorem 8.3.2 of Puterman (2005), J^π is well-defined and independent of the system’s initial state, as the Markov chain induced by π is irreducible. Indeed, suppose (i, j) and (i', j') are distinct states in \mathcal{S}. Then state (i', j') can be reached from state (i, j) under any policy via $i+j$ consecutive service completions, followed by i' high-priority and j' low-priority call arrivals. We wish to find
$J^* := \max_{\pi \in \Pi} J^\pi$, the long-run average reward attained by an optimal policy. This quantity is well-defined because Π is finite, and can be found by solving the optimality equations

$$J^* + h(i, j) = \max_{a \in A(i, j)} \left\{ R((i, j), a) + \sum_{(i', j') \in S} P((i, j), (i', j'), a) h(i', j') \right\} \quad \forall (i, j) \in S$$

for $h(\cdot)$ and J^*. We do this using the policy iteration algorithm in Section 8.6.1 of Puterman (2005).

3.3. Extensions to the MDP

Our MDP model can be modified to relax some of the above assumptions without dramatically increasing the size of the state space. In Online Appendix A, we formulate an extended MDP in which low-priority calls can be placed in queue during periods of congestion, and in which ALS units may need to be brought on scene to assist BLS first responses to high-priority calls. For our computational work in Section 4, we focus primarily on the base model we formulated above, as our extended model yields very similar numerical results; see Online Appendix A.7.

4. Computational Study of the MDP

In this section, we consider a hypothetical system loosely modelled after that operated in Toronto, Canada. We use the term “loosely” because we select inputs to our model using a dataset obtained from Toronto EMS, but we assume that the interarrival and service time distributions do not vary with time. Thus, the results we obtain below may be indicative of—but not necessarily predict—how the vehicle mixes we consider below would perform in practice.

4.1. Experimental Setup

Our dataset contains records of all ambulance dispatches occurring within the Greater Toronto Area between January 1, 2007 and December 31, 2008; we restrict our attention to calls originating from the City of Toronto. Emergency calls are divided into eight priority levels, two of which require a “lights and sirens” response. We treat calls belonging to these two priority levels as high-priority, and all other emergency calls as low-priority. Estimating arrival rates by taking long-run averages over the two-year period for calls originating within the City of Toronto, we obtain $\lambda_H = 8.1$ and $\lambda_L = 13.1$ calls per hour. We define service time as the length of the interval beginning with an
ambulance dispatch and ending with the call being cleared (either on scene or following drop-off at a hospital). Because the mean service times for low-priority and high-priority calls do not differ substantially in the dataset (by less than 5%), our assumption of a single service rate for all calls is reasonable. We set $\mu = 3/4$ per hour, corresponding to a mean service time of 80 minutes.

As a starting point for our analysis, we let $R_{HA} = 1$, $R_{HB} = 0.5$, and $R_L = 0.6$; we investigate below the sensitivity of our findings to the latter two quantities. To estimate C_A and C_B, we assume that an ambulance requires three crews to operate 24 hours per day, that an ALS crew consists of two paramedics, that a BLS crew consists of 2 EMTs, and that ALS and BLS vehicles cost $110,000 and $100,000 to equip and operate annually, respectively. Assuming that annual salaries for paramedics and EMTs are $90,000 and $70,000 per year, respectively, we obtain $C_A = 650,000$ and $C_B = 520,000$, which we normalize to $C_A = 1.25$ and $C_B = 1$.

To determine our system’s operating budget B, we assume that the average utilization of ambulances in our system is 0.4. Since $\lambda_H + \lambda_L = 21.2$ and $\mu = 0.75$, we would need approximately 70 ambulances to achieve the desired utilization. Assuming our system operates an all-ALS fleet (as in Toronto), we obtain $N_A = 70$ and $B = 87.5$. Restricting our attention to fleets that use as much of the budget as possible, we evaluate vehicle mixes in the set

$$\Gamma = \{(N_A, N_B) : N_A \leq 70 \text{ and } N_B = \lfloor 87.5 - 1.25N_A \rfloor\}.$$ \hspace{1cm} (3)

4.2. Findings

Using the inputs specified above, we construct an MDP instance for each vehicle mix (N_A, N_B) in the set Γ specified in (3). We solve each instance numerically using policy iteration, and record the long-run average reward attained under the corresponding optimal policy. Plotting the resulting values with respect to N_A, we obtain Figure 1 below.

The curve in Figure 1 increases fairly steeply when N_A is small, indicating there is significant benefit associated with including ALS ambulances in a fleet. However, for larger values of N_A, the curve plateaus. This suggests that the marginal benefit associated with continuing to increase N_A diminishes rapidly. One might suspect that the marginal benefits decrease too rapidly. Indeed, the
long-run average reward attainable under any dispatching policy is upper bounded by $\lambda_H R_{HA} + \lambda_L R_L = 15.96$, but every vehicle mix for which $N_A \geq 20$ performs within 0.1% of this upper bound. We would not expect to find systems attaining this level of service in practice.

This behavior can be attributed to resource pooling. In formulating our MDP, we implicitly assumed that any ambulance can respond to any incoming call. In practice, most ambulances will be too far from a particular call to respond in time, and so only a small number of ambulances may be effectively pooled. Thus, the MDP-based system can more readily respond to calls during periods of congestion; see, for instance, Whitt (1992) for a formal discussion of this phenomenon.

To offset the effects of resource pooling, two alternatives include accelerating call arrivals, or reducing the number of ambulances in the system by decreasing the budget B; we adopt the latter approach here. Shrinking the fleet allows us to more easily see the effects of the vehicle mix decision under an optimal dispatching strategy, and in turn, draw insights from our MDP. This is because we subject the system to periods of congestion, which occur in practice, and represent the situations in which vehicle mix may have the greatest impact on system performance.

It is not at all obvious to what extent the fleet should be shrunk. We proceed by first selecting a service level, which we define as the long-run fraction of time in which at least one ambulance is
available. If we assume that the EMS provider operates an all-ALS fleet, and adopt a dispatching policy in which low-priority calls are not redirected unless all ambulances are busy, then we can model the system as an $M/M/N_A/N_A$ queue, and find the blocking probability under a given budget using the Erlang loss formula. We consider five different budgets: 48.75, 46.25, 43.75, 41.25, and 37.50, which allow for all-ALS fleets of size 39, 37, 35, 33, and 30, respectively. These fleets can provide service levels of 0.990, 0.980, 0.965, 0.943, and 0.898, respectively, and operate under utilizations of 0.846, 0.808, 0.779, 0.749, and 0.717, respectively. Solving the corresponding MDP instances, and plotting the resulting five curves, we obtain Figure 2 below.

Figure 2 Long-run average reward as a function of vehicle mix, for several reduced values of the budget B.

![Figure 2](image)

While the curves in Figure 2 maintain the same basic structure observed in Figure 1, they taper off for larger values of N_A, suggesting that in certain situations, an all-ALS fleet may be detrimental. This is intuitive, as all-ALS systems tend to operate smaller fleets than their tiered counterparts, and a larger fleet may be preferable in heavily congested systems. To explore this idea further, we examine two related performance measures: the level of service provided to high-priority and to low-priority calls. Figure 3 plots these performance measures for the case $B = 43.75$.

As we expect, increasing N_A improves the system’s responsiveness to high-priority calls, but worsens the system’s responsiveness to low-priority calls. This results in a trade-off that is influenced
Figure 3 Long-run proportion of calls receiving an appropriate dispatch as a function of N_A, when $B = 41.25$.

Figure 4 depicts five curves, each similar in spirit to that in Figure 1, but for values of C_A ranging from 1.05 to 1.45. Although we do not expect ALS units to cost 45% more than BLS units to operate in practice, we choose a wide range of values for illustrative purposes.

Not surprisingly, operating an all-ALS fleet can be suboptimal when C_A is large. Perhaps the more interesting observation is that when C_A is small, an all-ALS fleet is not necessarily the
obvious choice. As we observed in Figure 3, an EMS provider would consider a fleet with more ALS ambulances if there is a strong incentive to provide ALS responses to high-priority calls. However, a high level of service can be achieved without an all-ALS fleet, and the marginal benefit associated with increasing N_A shrinks rapidly—even when ALS ambulances are inexpensive.

Next, we consider the robustness of our findings to our rewards. Because we assume $R_{HA} = 1$, we need only perform a sensitivity analysis with respect to R_{HB} and R_L. We restrict our attention to the all-ALS fleet (35, 0) and the tiered system (19, 20): the optimal vehicle mix from our “base case” analysis in Figure 2. We consider a collection of 625 MDP instances where R_{HB} and R_L take on one of 25 values in the set $\{0.0, 0.02, 0.06, \ldots, 0.94, 0.98\}$. Plotting the relative difference in long-run average reward collected by the two systems for each instance, we obtain Figure 5.

In each problem instance, the tiered system outperforms the all-ALS fleet. This is unsurprising for instances where R_{HB} and R_L are close to 1 (as emergency calls become effectively indistinguishable, and the tiered system deploys eight more ambulances), but is counterintuitive for instances when R_{HB} and R_L are small. Even when performance is determined almost entirely by the system’s responsiveness to high-priority calls, the all-ALS fleet does not outperform the tiered system. This suggests that the tiered system can adequately respond to these calls, which is consistent with
Figure 5 Contour plot of the relative difference between the long-run average reward collected by the tiered system \((19, 20)\) and that by the all-ALS fleet \((35, 0)\), for various values of \(R_{HB}\) and \(R_L\).

Figure 3. We also observe that the two systems perform comparably in all of our problem instances; the largest observed difference was roughly 2.53%. We obtain similar results when comparing the all-ALS fleet to other tiered systems, although we omit the corresponding plots of these results in the interest of brevity. This suggests our findings are insensitive to our choice of rewards, which is encouraging, as selecting appropriate values of \(R_{HB}\) and \(R_L\) is difficult.

We conclude this section with a brief examination of the extended MDP model alluded to in Section 3.3. This model allows low-priority calls to be placed in a finite buffer, and considers the possibility that high-priority calls receiving a BLS first response may later receive treatment from an ALS ambulance. Plotting the “base case” curves for both the original and extended models, we obtain Figure 6 below. We truncate the curves at \(N_A = 1\), as an all-BLS fleet cannot adequately treat high-priority calls in the extended model.

Fleets operating too few ALS ambulances perform noticeably worse in the extended model. This is because high-priority calls will primarily be assigned to BLS ambulances, and many of these ambulances will be forced to idle as they wait for ALS units to become free. However, for vehicle
mixes under which high-priority demand can be adequately met, our two models are roughly in agreement. We conduct a more detailed analysis of the extended model in Online Appendix A.7.

4.4. Discussion

Taken together, our numerical experiments suggest that a wide range of tiered systems perform comparably to all-ALS fleets. The relatively small gap in long-run average reward that we observe between the two types of systems appears to be robust to changes in operating costs, arrival patterns, reward structure, and changes to system dynamics.

In Section 6, we perform a similar set of numerical experiments, to determine whether we draw similar conclusions when we study our IP model, in which we mitigate the effects of resource pooling by geographically dispersing the fleet.

5. An IP-Based Deployment Model

5.1. Formulation

Consider an EMS system whose service area is represented by a connected graph \(G = (N, E) \), where \(N \) is a set of demand nodes and \(E \) is a set of edges. High-priority and low-priority calls originate from node \(i \in N \) at rates \(\lambda_i^H \) and \(\lambda_i^L \), respectively. An EMS provider can respond to these calls...
with a fleet of \(N_A \) ALS and \(N_B \) BLS ambulances, which can be deployed at a set of base locations \(\bar{N} \subseteq N \). For convenience we set \(\bar{N} = N \), but this assumption can easily be relaxed.

We define \(t_{ij} \) as the travel time along the shortest path between nodes \(i \) and \(j \). A call originating from node \(i \) can only be treated by an ambulance based at node \(j \) if \(t_{ij} \leq T \), where \(T \) is a prespecified response time threshold. This gives rise to the neighborhoods \(C_i = \{ j \in N : t_{ij} \leq T \} \) — the set of bases from which an ambulance can promptly respond to a call originating from node \(i \). If \(a \) ALS and \(b \) BLS units are deployed within \(C_i \), we say that node \(i \) is covered by \(a \) ALS and \(b \) BLS units.

Let \(p_A \) denote the busy probability associated with each ALS ambulance: the long-run fraction of time that a given ALS unit is not available for dispatch; we define \(p_B \) similarly for BLS ambulances. We treat \(p_A \) and \(p_B \) as model inputs, and discuss our procedure for approximating these quantities in Section 5.2. We assume that ambulances of the same type operate under the same utilization, and that all ambulances are busy independently of one another. Thus, if node \(i \) is covered by \(a \) ALS units and \(b \) BLS units, then \((p_A)^a (p_B)^b \) is the long-run proportion of time that the system cannot respond to calls originating from that node. Calls to which an ambulance cannot be immediately dispatched are redirected to an external service. We revisit these assumptions in Section 5.3.

As in the MDP model, we allow BLS units to be dispatched to high-priority calls, and ALS units to be dispatched to low-priority calls, but we do not require that ALS ambulances respond to every low-priority call that arrives when all BLS ambulances are busy. Let \(\phi \) denote the long-run proportion of low-priority calls receiving an ALS response in this situation. This quantity does not specify how decisions are made in real time, but provides a succinct measure of the system’s willingness, in the long run, to dispatch ALS ambulances to low-priority calls. As with \(p_A \) and \(p_B \), we assume \(\phi \) to be given, and discuss in Section 5.2 how it can be approximated. Finally, we define rewards \(R_{HA} \), \(R_{HB} \), and \(R_L \) as before.

We construct our objective function as follows. Suppose that node \(i \in N \) is covered by \(a \) ALS and \(b \) BLS ambulances, and consider the level of coverage provided to low-priority calls at that node. With probability \(1 - (p_B)^b \), a BLS unit can be dispatched. Conditional on this not being the case,
an ALS unit is available with probability $1 - (p_A)^a$, but a dispatch only occurs with probability ϕ. Thus, the expected reward collected by the system from a single low-priority call is

$$R_L(a, b) = R_L[1 - (p_B)^b + \phi (p_B)^b (1 - (p_A)^a)]. \quad (4)$$

Similar reasoning yields that the system collects, in expectation, a reward

$$R_H(a, b) := R_{HA} (1 - (p_A)^a) + R_{HB} (p_A)^a (1 - (p_B)^b) \quad (5)$$

from a single high-priority call. This implies that the system obtains reward from node i at a rate $\lambda_i^H R_H(a, b) + \lambda_i^L R_L(a, b)$ per unit time. We want to deploy ambulances such that the sum of this quantity over all nodes in N is maximized. Let x_i^A and x_i^B be the number of ALS units and BLS units stationed at node $i \in N$, respectively, and let y_{iab} take on the value 1 if node $i \in N$ is covered by exactly a ALS units and b BLS units, and 0 otherwise. We thus obtain the formulation

$$\max \sum_{i \in N} \lambda_i^H \sum_{a=0}^{N_A} \sum_{b=0}^{N_B} y_{iab} R_H(a, b) + \sum_{i \in N} \lambda_i^L \sum_{a=0}^{N_A} \sum_{b=0}^{N_B} y_{iab} R_L(a, b) \quad (IP)$$

s.t.

$$\sum_{i \in N} x_i^A \leq N_A \quad (6)$$

$$\sum_{i \in N} x_i^B \leq N_B \quad (7)$$

$$\sum_{a=0}^{N_A} \sum_{b=0}^{N_B} y_{iab} \leq \sum_{j \in C_i} x_j^A \quad \forall i \in N \quad (8)$$

$$\sum_{b=0}^{N_B} \sum_{a=0}^{N_A} y_{iab} \leq \sum_{j \in C_i} x_j^B \quad \forall i \in N \quad (9)$$

$$\sum_{a=0}^{N_A} \sum_{b=0}^{N_B} y_{iab} \leq 1 \quad \forall i \in N \quad (10)$$

$$x_i^A \in \{0, 1, \ldots, N_A\} \quad \forall i \in N \quad (11)$$

$$x_i^B \in \{0, 1, \ldots, N_B\} \quad \forall i \in N \quad (12)$$

$$y_{iab} \in \{0, 1\} \quad \forall i \in N, a, b \quad (13)$$

Constraints (6) and (7) state that at most N_A ALS units and N_B BLS units can be deployed. Constraints (8), (9), and (10) link the $x-$variables to the $y-$variables, by ensuring for each node
that if \(\sum_{j \in C_i} x_j^A = a \) and \(\sum_{j \in C_i} x_j^B = b \), then \(y_{iab} = 1 \) if and only if \(a = \bar{a} \) and \(b = \bar{b} \). This holds because the coefficients multiplying the \(y \)-variables are strictly increasing in \(a \) and \(b \). Finally, constraints (11), (12), and (13) restrict the \(x \)-variables and the \(y \)-variables to integer values.

5.2. Approximating \(p_A, p_B, \) and \(\phi \)

To approximate the quantities \(p_A, p_B, \) and \(\phi \), we use the inputs of our integer program to construct an instance of our MDP form Section 3.1, and examine the stationary distribution induced by an optimal dispatching policy. The MDP model takes as input the arrival rates \(\lambda_H \) and \(\lambda_L \), as well as the service rate \(\mu \). We set \(\lambda_H = \sum_i \lambda_i^H \) and \(\lambda_L = \sum_i \lambda_i^L \), and for the computational work we perform in Section 6, we again use \(\mu = 0.75 \). Let \(\nu \) be the stationary distribution of the Markov chain induced by an optimal policy. We approximate the busy probabilities \(p_A \) and \(p_B \) using the average utilizations of ALS and BLS ambulances, respectively:

\[
p_A \approx \frac{1}{N_A} \sum_{(i,j) \in S} i \nu(i, j) \quad \text{and} \quad p_B \approx \frac{1}{N_B} \sum_{(i,j) \in S} j \nu(i, j).
\]

To approximate \(\phi \), we could similarly use the quantity

\[
\phi \approx \frac{\sum_{i=0}^{N_A-1} \nu(i, N_B) \cdot I(A(i, N_B) = 1 \text{ under the optimal policy})}{\sum_{i=0}^{N_A-1} \nu(i, N_B)}.
\]

The denominator of (15) corresponds to the long-run fraction of time that all ALS ambulances are busy and at least one BLS ambulance is available. The numerator denotes the long-run fraction of time in which the dispatcher would send an ALS ambulance to a low-priority call. Equations (14) and (15) are approximations because \(p_A, p_B, \) and \(\phi \) depend on how ambulances are located within the system. Nevertheless, these approximations allow us to capture, to an extent, the dependencies of these parameters on vehicle mix and on dispatching decisions.

5.3. Extensions to the IP

Perhaps the three most significant assumptions we make in formulating our integer program (IP) are that calls do not queue, that ambulances are busy independently of one another, and that these
probabilities do not depend on location. The former assumption can be relaxed by estimating \(p_A \), \(p_B \), and \(\phi \) from the output of an MDP that includes call queueing, such as that formulated in Online Appendix A, and by modifying the objective function to take queued calls into account.

The independence assumption can be relaxed using correction factors, which adjust the probabilities obtained under this assumption by a multiplicative constant to account for dependence. This idea is due to Larson (1975), and has been used, for instance, in Ingolfsson et al. (2008) and McLay (2009) to formulate IP-based models for ambulance deployment. In Online Appendix B, we formulate an extended IP model that incorporates correction factors to our objective function.

Relaxing the assumption of location-independent busy probabilities is difficult, as the utilization of a single ambulance depends upon how all other ambulances are deployed, resulting in nonlinear interactions. Budge et al. (2009) develop an iterative procedure for the case when ambulances have already been deployed. Ingolfsson et al. (2008) alternate between solving an integer program for a given set of utilizations, and using the resulting optimal solution to compute updated values, also in an iterative fashion. However, these approaches are computationally intensive.

For our computational work in Section 6, we study the IP model we formulated above, as the extended IP model yields qualitatively similar results; see Online Appendix B.3.

6. Computational Study of the IP

6.1. Experimental Setup

We base our computational experiments in this section upon the same hypothetical EMS considered in Section 4. To construct our graph \(G \), we bound the service area within a rectangular region. Using latitude and longitude information included with call records in the dataset, we find that a 26 × 19 mile region suffices. We divide this region into a 52 × 38 grid of 0.5 × 0.5 mile cells, which we treat as demand nodes.

To compute call arrival rates associated with each node, we map each call to a cell in the grid, and take a long-run average over the two-year period for which we have data. We define the distance between two nodes as the Manhattan distance between the centers of their corresponding cells.
For each node \(i \), we define the neighborhood \(C_i \) as the set of bases from which an ambulance can be brought on scene within 9 minutes. This response interval includes the time taken by the dispatcher to assign an ambulance to a call, and by the corresponding crew to prepare for travel to the scene. Assuming this process takes two minutes, and that ambulances travel at 30 miles per hour, \(C_i \) contains all nodes lying no more than 3.5 miles away from node \(i \). As before, we set \(R_{HA} = 1, R_{HB} = 0.5, R_L = 0.6, C_A = 1.25, \) and \(C_B = 1), and again evaluate vehicle mixes in the set \(\Gamma = \{ (N_A, N_B) : N_A \leq 70 \text{ and } N_B = \lfloor 87.5 - 1.25N_A \rfloor \} \).

6.2. Findings

For each vehicle mix in the set \(\Gamma \), we solve the corresponding instance of (IP) to within 1% of optimality, and store the resulting objective function value. Although we introduce some error by not finding the optimal integer solution, the impact on our overall findings is negligible. To decrease computation times, we remove any decision variables \(y_{iab} \) for which either \(a \geq 30 \) or \(b \geq 30 \). Thus, we consider any demand node that is covered by more than 30 ALS or BLS ambulances to be covered by exactly 30 ambulances of the corresponding type instead. In doing so, we do not render infeasible any solutions that cover a node with more than 30 units, but we disregard the contributions of these excess units to the objective function. We thereby underestimate the coverage provided by a given deployment decision, but not to a significant degree, as \(p_A^{30} \) and \(p_B^{30} \) are very small for reasonable choices of \(p_A \) and \(p_B \). Since \(a \) and \(b \) can be as large as 70 and 87, respectively, this dramatically reduces the number of decision variables in the model.

We use the procedure specified in Section 5.2 to approximate \(p_A, p_B, \) and \(\phi \), but find that for each of the problem instances we consider above that \(\phi = 1.0 \). That is, when we solve the MDP instances corresponding to our IP instances, the optimal policy always dispatches ALS ambulances to lower-priority calls when BLS ambulances are busy. These anomalous results can again be attributed to resource pooling. While a dispatcher may sometimes want to reserve ALS ambulances for future high-priority calls, this is not the case in the MDP model, as the system rarely becomes congested enough for the above policy to have detrimental effects. To identify more suitable values for \(\phi \), we
instead solve modified MDP instances in which we accelerate arrivals using a scaling factor \(s \). The resulting optimal policies may more closely reflect decisions made in practice, as they are derived from more heavily congested systems. Applying (15) to these policies, we obtain new values for \(\phi \), which we then use to construct modified IP instances in which all other inputs (including arrival rates and busy probabilities) are kept fixed.

It is not at all clear how arrivals should be scaled, and so we begin our numerical study by examining the sensitivity of our results to \(s \). Figure 7 below plots long-run average reward with respect to vehicle mix for values of \(s \) ranging from 1.50 to 2.50. The resulting curves are analogous to that in Figure 1 of Section 4, which we also include below.

Figure 7 Long-run average reward as a function of vehicle mix, attained under a near-optimal deployment policy for various arrival scaling factors \(s \), overlaid with the analogous curve from the MDP model.

All of the curves in Figure 7 exhibit the same trend: a relatively sharp increase for small values of \(N_A \), followed by rapidly diminishing marginal returns. The curves obtained from the IP model almost completely overlap when \(N_A \) is less than about 30, as ALS ambulances in the corresponding systems are overwhelmed by high-priority calls. Scaling factors have very little effect on the optimal policies of the corresponding MDPs, and so we obtain very similar values for \(\phi \). As we move towards an all-ALS fleet, we observe a decline in performance for more extreme values of \(s \). This is because
in a heavily-loaded system, the dispatcher may prefer to reserve ALS ambulances for high-priority calls (which are more likely to occur when s is large), resulting in smaller values of ϕ. However, this translates into an overly conservative dispatching policy, and thus lower performance, within the context of the IP model. Nonetheless, it is encouraging that our findings are not particularly sensitive to the dispatching policy that we employ in the IP model, as captured by the parameter ϕ. In the experiments that follow, we restrict our attention to the case when $s = 2$.

Another observation we draw from Figure 7 is that the IP and MDP models yield very different numerical results, particularly for smaller values of N_A. This may again be due to the effects of resource pooling; in the MDP model, any ambulance can respond to any call, whereas in the IP model, this is not the case. To test this hypothesis, we consider a collection of IP instances in which we artificially magnify the effects of resource pooling, to see whether we obtain quantitative results that are more consistent with those from the MDP.

In our IP model, the degree of resource pooling is captured by a single input parameter: the response time threshold T. Increasing this threshold increases the number of ambulances that can cover a given demand node. By letting T grow sufficiently large (in this case, to 45 minutes), we obtain a system with complete resource pooling, as in the MDP model. Thus, we proceed by taking the 71 problem instances generated above, and constructing modified instances in which T is increased, but all other parameters are unchanged. Figure 8 illustrates the curves we obtain by setting T to 18 and 45 minutes, respectively.

As we increase T, the gap between the two curves narrows, but interestingly, for larger values of T, the IP model yields objective values larger than those obtained by the MDP model, particularly when N_A is small. This can partly be attributed to our assumption that ambulances are busy independently of one another. In particular, during periods of congestion, this assumption could lead to optimistic estimates of ambulance availability. Indeed, our extended IP model, which employs correction factors, improves the fit slightly; see Online Appendix B.3.

The above experiments suggest that our two models yield similar qualitative results, and that much of the observed discrepancy in our quantitative results can be accounted for by resource
pooling. Thus, we contend that our models are generally in agreement, and that both support our claim of rapidly diminishing marginal returns associated with biasing a fleet towards all-ALS.

6.3. Sensitivity Analysis

We begin with a sensitivity analysis with respect to C_A that similar to that in Section 4; Figure 9 below is analogous to Figure 4. We again observe the same general trends. This theme recurs if we
perform sensitivity analyses with respect to rewards or arrival rates, suggesting that the agreement between our two models is also robust to changes to our input parameters.

We conclude this section with a sensitivity analysis with respect to ambulance travel speeds. Because ambulances must arrive on scene within a response time threshold T, changes to these speeds can affect the distance an ambulance can travel to cover a call. While we examined this to an extent in Figure 8, we consider a more realistic range of values here. Figure 10 below illustrates the curves we obtain for speeds ranging from 21.43 to 38.57 mph. We choose these values so that the resulting ambulance coverage radii, in miles, are integer multiples of 0.5. (Recall that we discretized the service area into 0.5×0.5 mile squares.) We observe that the profile of the curves does not change dramatically with the speed at which ambulances travel. This is encouraging, as travel speed can depend on the time of day, as well as on geographical factors. While we assume away these effects in our IP, Figure 10 suggests that doing so does not substantially change our results.

Figure 10 Long-run average reward as a function of vehicle mix for several choices of ambulance travel speeds (or alternatively, for several choices of response radii).

change dramatically with the speed at which ambulances travel. This is encouraging, as travel speed can depend on the time of day, as well as on geographical factors. While we assume away these effects in our IP, Figure 10 suggests that doing so does not substantially change our results.

7. Conclusion

In this paper, we studied the effects of the vehicle mix decision on the performance of an EMS system. Inherent in this decision is a trade-off between improving the quality of service provided to
high-priority calls, and increasing the size of the fleet. We analyzed this trade-off via two complementary optimization models of decision making in a tiered EMS system. Specifically, we formulated a Markov decision process that examined the operational problem of ambulance dispatching, as well as an integer program that modeled the tactical problem of deploying ambulances within a geographical region. To aid decision-making, we assigned rewards for individual responses to emergency calls, which formed the basis of a performance measure allowing quantitative comparisons between vehicle mixes to be made. Numerical experiments suggest that while ALS ambulances are essential components of EMS fleets, a wide range of mixed fleets can perform comparably to (or occasionally, outperform) all-ALS fleets. This was corroborated by both of our models, and appears to be robust to reasonable changes to the values of our input parameters. As a consequence, when constructing an ambulance fleet, secondary considerations, such as those described in the introduction, can be weighed into the decision-making process without significantly decreasing performance. Mathematically modeling these considerations, and their effects on the performance of a given vehicle mix, may be a direction for future research.

While our focus in this paper was to construct models that can be used to quickly obtain basic insights, a natural question to ask is what additional insights can be drawn from a more sophisticated model. Another possible direction for future research would be to consider the problem of dispatching in a tiered EMS system, when geographical locations of ambulances factor into decision-making. The resulting decision problem would have a considerably larger state space, but may be approachable using Approximate Dynamic Programming (ADP), as in Maxwell et al. (2010) or in Schmid (2012). This model could incorporate a wider range of system dynamics, such as time-varying call arrival rates, multiple call priority classes, and patient transport to a hospital.

Acknowledgements

This work was partially supported by National Science Foundation Grant CMMI-1200315.

References

Budge, S., A. Ingolfsson, E. Erkut. 2009. Approximating vehicle dispatch probabilities for emergency service systems with location-specific service times and multiple units per location. *Operations Research* 57(1) 251–255.

A An Extended MDP Model

In this section, we consider an extension of our MDP model from Section 3 that allows low-priority calls to queue, and ALS units to assist a BLS first response to a high-priority call. We continue to assume that high-priority and low-priority calls arrive according to independent Poisson processes with rates λ_H and λ_L, respectively, and that service times are exponentially distributed with rate μ. While we could incorporate priority-dependent and ambulance-dependent service times, using a single service rate allows us to use a lower-dimensional state space, as we demonstrate below.

If a low-priority call arrives when all BLS units are busy, and does not immediately receive an ALS response, it is placed into a queue with capacity C, to be served when the system becomes less congested. If a high-priority call arrives when only BLS units are available, we assume that with probability p, the call cannot adequately be treated on-scene. In this case, the BLS unit remains on scene in a “limbo” state, during which it cannot respond to other calls. When an ALS unit becomes available, it is immediately brought on scene, freeing the BLS unit, and allowing the high-priority patient to leave the system after an exponentially distributed service time (again, with rate μ). We continue to assume that high-priority calls do not queue, as such a queue would only be utilized when all ambulances are busy, in which case, external resources would likely be brought in.

A.1 State Space

The state of the system can be fully characterized by four quantities: the number of busy ALS ambulances, the number of busy BLS ambulances, the number of low-priority calls in queue, and the number of BLS units in limbo. However, but by leveraging our assumption that service times are identically distributed, a two-dimensional state space suffices. Define

$$\mathcal{S}_0 = \{0,1,\ldots,N_A, N_A+1,\ldots,N_A+N_B\} \times \{0,1,\ldots,N_B, N_B+1,\ldots,N_B+C\},$$

and suppose $(i,j) \in \mathcal{S}_0$. If $i \leq N_A$ and $j \leq N_B$, we can interpret (i,j) as before. If $i > N_A$, then BLS units are in limbo, and if $j > N_B$, then the queue is nonempty. Specifically, if the system is in state (i,j), where $i = N_A + i'$ and $j = N_B + j'$ for some $i', j' > 0$, then all ALS units are busy, i' BLS units are in limbo, $N_B - i'$ BLS units are busy serving low-priority calls, and j' low priority calls are
in queue. This construction is valid because we assumed that BLS units will only be dispatched to
high-priority calls when all ALS units are busy, and low-priority calls queue only when all BLS units
are busy.

Not all states in S_0 are reachable: for instance, the state $(N_A + 1, 0)$. More generally, if the system
is in state (i, j), where $i > N_A$, then $j \geq i - N_A$ must hold. Thus, we redefine our state space to be
$S = \{(i, j) \in S_0 : j \geq (i - N_A)^+\}$, where for a real number x, we define $x^+ = \max\{x, 0\}$.

A.2 Action Space

As in the original MDP, we assume that whenever possible, the system provides ALS responses to
high-priority calls, and BLS responses to low-priority calls. We assume if a BLS unit completes
service while the queue is nonempty, the unit immediately begins service on a queued call. If an ALS
unit becomes free while a BLS unit is in limbo and a low-priority call is in queue, assisting the BLS
unit takes priority.

Thus, there are only decisions to be made when ALS units are available, all BLS units are busy
with low-priority calls, and the queue is nonempty—that is, in states where $i < N_A$ and $j > N_B$. In
this case, the decision-maker must choose between dispatching an ALS unit to a queued low-priority
call (Action 1), or reserving system resources for future high-priority calls (Action 0). We assign
all other states a dummy action (Action 0). Given the above, we define $A = \cup_{(i, j) \in S} A(i, j)$, where
$A(i, j) = \{0, 1\}$ if $i < N_A$ and $j > N_B$, and $\{0\}$ otherwise.

We make two remarks about our construction of A. First, when $i < N_A$ and $j = N_B$, an arriving
low-priority call enters the queue. However, Action 1 can be taken immediately following a transition
into state $(i, N_B + 1)$, in which case, the call spends no time in queue. Second, we need not consider
situations where multiple ALS units are simultaneously dispatched to queued calls, as a dispatch
would have been performed when the previous low-priority call entered the queue.

A.3 Uniformization

Our extended MDP is also uniformizable; without loss of generality, assume $\Lambda = 1$. If the system
begins a uniformized time period in state $(i, j) \in S$, then the next event is

- With probability λ_H, the arrival of a high-priority call,
- With probability λ_L, the arrival of a low-priority call,
- With probability $\min\{i, N_A\} \mu$, an ALS unit service completion,
- With probability $\min\{j, N_B\} - (i - N_A)^+ \mu$, a BLS unit service completion
• With probability \((N_A - i)^+ \mu + [(N_B - j)^+ + (i - N_A)^+] \mu\), a dummy transition.

The fourth probability follows because if \(i > N_A\), then \(i - N_A\) BLS units are in limbo, implying that only \(\min\{j, N_B\} - (i - N_A)\) BLS units can complete service.

A.4 Rewards

Define \(R_{HA}\), \(R_{HB}\), and \(R_L\) as before. We assume that the system collects a reward \(R_{HB}\) from each BLS response to a high-priority call, regardless of whether or not an ALS unit provides assistance. We also assume that the system collects reward when serving queued low-priority calls, but also incurs a holding cost \(h\) per unit time for each such call in queue. Assuming that actions take effect at the start of the period, and events at the end, we obtain the one-stage rewards

\[
R((i, j), a) = \begin{cases}
\lambda_H R_{HA} + \lambda_L R_L & \text{if } i < N_A, j < N_B, a = 0, \\
\lambda_H R_{HB} + \lambda_L R_L & \text{if } i \geq N_A, j < N_B, a = 0, \\
I(i < N_A)\lambda_H R_{HA} - h(j - N_B) + I(j > N_B)N_B \mu R_L & \text{if } i \leq N_A, j \geq N_B, a = 0, \\
I(i + 1 < N_A)\lambda_H R_{HA} + R_L & \text{if } i < N_A, j > N_B, a = 1, \\
+ I(j - N_B > 1)N_B \mu R_L - h(j - N_B - 1) & \text{if } i < N_A, j > N_B, a = 1, \\
N_A \mu R_L + (N_B - (i - N_A)) \mu R_L - h(j - N_B) & \text{if } i \geq N_A, j > N_B, a = 0.
\end{cases}
\]

The first two terms are straightforward. The third term follows because the system collects reward from incoming high-priority calls only if an ALS unit is available, and incurs holding cost from queued low-priority calls. If a BLS service completion is the next event to occur, a dispatch is immediately made to a call in queue, and the system collects an additional reward \(R_L\).

In the fourth term, the system collects a reward \(R_L\) from performing Action 1, and the size of the queue shrinks by one. The system may collect an additional reward \(R_L\) if there is another call in queue, and a BLS service completion occurs at the end of the period. If taking Action 1 results in all ALS units becoming busy, then the system would not collect reward from incoming high-priority calls. In the fifth term, all ambulances are busy, the queue is nonempty, and BLS units are in limbo. The system pays holding costs, but may collect a reward \(R_L\) if a BLS unit becomes free.

A.5 Transition Probabilities

Because the probabilities \(P((i', j')|(i, j), a)\) are fairly cumbersome, we do not fully specify them here, and instead restrict our attention to the two most interesting cases.
Case 1: If \(i < N_A, j > N_B, \) and \(a = 0, \) the system immediately enters state \((i + 1, j - 1),\) and

\[
P((i', j')|(i, j), 1) = \begin{cases}
I(i + 1 < N_A)\lambda_H & \text{if } (i', j') = (i + 2, j - 1), \\
\lambda_L & \text{if } (i', j') = (i + 1, j), \\
(i + 1)\mu & \text{if } (i', j') = (i, j), \\
N_B\mu & \text{if } (i', j') = (i + 1, j - 2), \\
I(i + 1 = N_A)\lambda_H + (N_A - i - 1)\mu & \text{if } (i', j') = (i + 1, j - 1).
\end{cases}
\]

We use an indicator here because if \(i + 1 = N_A, \) then all ALS units in the system become busy after Action 1 is performed, and any subsequent high-priority call arrivals are redirected.

Case 2: If \(i > N_A \) and \(j < N_B, \) only Action 0 is available, and

\[
P((i', j')|(i, j), 0) = \begin{cases}
p\lambda_H & \text{if } (i', j') = (i + 1, j + 1), \\
(1 - p)\lambda_H + \lambda_L & \text{if } (i', j') = (i, j + 1), \\
N_A\mu & \text{if } (i', j') = (i - 1, j - 1), \\
[j - (i - N_A)]\mu & \text{if } (i', j') = (i, j - 1), \\
(i - N_A)\mu & \text{if } (i', j') = (i, j).
\end{cases}
\]

The \((i - N_A)\) BLS units in limbo trigger dummy transitions. All arriving calls receive a BLS response, and with probability \(p\lambda_H, \) the responding unit is brought into limbo. If an ALS unit becomes idle, a BLS unit is immediately freed from limbo and becomes idle.

A.6 Long-Run Average Reward

To maximize long-run average reward, we can again restrict our attention to policies that are stationary, deterministic mappings \(\pi : S \rightarrow \{0, 1\}. \) Since our extended MDP is also irreducible, it can be solved via a set of optimality equations analogous to those specified in (2).

A.7 Computational Study

We base our study on the same hypothetical EMS considered in Section 4, and again select \(R_{HA} = 1, R_{HB} = 0.5, R_L = 0.6, \mu = 0.75, C_A = 1.25, \) and \(C_B = 1 \) as our base values. Again, to compensate for the effects of resource pooling, we introduce congestion in our system by shrinking the operating budget \(B \) to 43.75. The input parameters \(p, h, \) and \(C \) cannot be readily estimated from our dataset,
so we select $p = 0.5$, $h = 0.6$, and $C = 10$. We choose h so that our system does not collect any reward from a low-priority call if it spends more than one hour in queue.

Evaluating long-run average reward in both MDP models for each vehicle mix in the set $\Gamma = \{(N_A, N_B) : N_A \leq 70$ and $N_B = \lfloor 43.75 - 1.25N_A \rfloor\}$, we obtain Figure 6 in the main paper. As previously noted, both models yield similar quantitative results, but the extended MDP model more heavily penalize vehicle mixes operating too few ALS ambulances. Sensitivity analyses with respect to our input parameters yield similar results. Figure A.1 below illustrates the curves we obtain as we vary C_A, and is analogous to Figure 4 in Section 4, which we reproduce here for reference. As in

![Figure A.1: Long-run average reward vs. vehicle mix for several choices of C_A, for both MDP models.](image)

Figure 6, the extended MDP predicts a lower performance for fleets operating too few ALS ambulances. The model also penalizes fleets expending too much of the budget on ALS ambulances when C_A is large. If we restrict our attention to more carefully chosen fleets, we again observe the same general trends. We obtain similar results when performing other sensitivity analyses, which we omit for brevity. Taken together, our experiments suggest that our qualitative conclusions may not be particularly sensitive to our modeling assumptions.

B An Extended IP Model

In formulating our IP model in Section 5, we assumed that ambulances are busy independently of one another. However, knowing that a particular ambulance is busy may indicate that the system is congested, thus increasing the probability that other ambulances may be busy. Indeed, some studies
have suggested that this assumption may lead to optimistic estimates of coverage; see, for instance [1] and [2]. In this section, we consider an IP model in which we relax the independence assumption using correction factors, in a manner similar to that of [3].

B.1 Formulation

Suppose demand node i is covered by a ALS and b BLS ambulances. The system obtains reward from this node at a rate $\lambda^H R_H(a, b) + \lambda^L R_L(a, b)$ per unit time. Under our original IP model:

$$R_H(a, b) = R_{HA} (1 - (p_A)^a) + R_{HB} (p_A)^a (1 - (p_B)^b)$$

$$R_L(a, b) = R_L [1 - (p_B)^b + \phi (p_B)^b (1 - (p_A)^a)]$$

Let $p_{HA}(a, b)$ be the long-run proportion of high-priority calls receiving an ALS response, provided the corresponding demand node is covered by a ALS and b BLS ambulances. We define $p_{HB}(a, b)$, $p_{LA}(a, b)$, and $p_{LB}(a, b)$ in a similar fashion. This allows us to rewrite (1) and (2) as follows:

$$R_H(a, b) = R_{HA} p_{HA}(a, b) + R_{HB} p_{HB}(a, b)$$

$$R_L(a, b) = R_L [p_{LA}(a, b) + p_{LB}(a, b)].$$

Consider first the probability $p_{HA}(a, b)$. If we assume independence, then

$$p_{HA}(a, b) = 1 - (p_A)^a = \sum_{j=0}^{a-1} (p_A)^j (1 - p_A).$$

The jth term in the above sum represents the probability that the first j ambulances the dispatcher tries to assign to a call are busy, but the next ambulance considered is available. Following [3], we multiply each term in the right-hand side of (5) by a correction factor. To do so, consider an $M/M/a/a$ queueing system with arrival rate λ and service rate μ. Letting P_0 and P_a denote the long-run probability that all servers are idle and busy, respectively, it is straightforward to show

$$P_0 = \left(\sum_{i=0}^{a} \frac{(a\rho)^i}{i!} \right)^{-1}$$

$$P_a = \frac{(a\rho)^a}{a!} P_0,$$

where $\rho = \lambda/a\mu$ is the offered load of the system. If servers are sampled without replacement while the system is in steady state, the probability that j busy servers are selected before an idle one is
found is \(Q(a, \rho, j) p^j (1 - p) \), where \(p = \rho (1 - P_a) / a \) denotes average server utilization, and

\[
Q(a, \rho, j) = P_0 \sum_{k=j}^{a} \frac{(a - j - 1)! (a - k) \rho^k p^{k-j}}{(k-j)! a! (1 - \rho)}.
\]

(6)

Here, \(Q(a, \rho, j) \) can be viewed as a multiplicative constant that corrects the probability we would have obtained, had we incorrectly assumed that servers are busy independently of one another. These factors have been applied to IP models of ambulance deployment, to relax the independence assumption; see, for instance, [4]. In our setting, we could replace equation (5) with

\[
p_{HA}(a, b) = \sum_{j=0}^{a-1} Q(a, \rho_A, j) (p_A)^j (1 - p_A).
\]

(7)

To compute the above probability, we need to determine \(\rho_A \), the load offered to ALS ambulances in the system. This is nontrivial, as ALS ambulances respond to calls of both priorities, and the workload they receive depends on the dispatching policy. We approximate \(\rho_A \) using a procedure that we describe in Appendix B.2 below. Reasoning similar to the above yields the approximation

\[
p_{LB}(a, b) = \sum_{j=0}^{b-1} Q(b, \rho_B, j) (p_B)^j (1 - p_B),
\]

(8)

where \(\rho_B \) denotes the offered load associated with BLS ambulances in the system; again, see Appendix B.2. We next consider the proportion of low-priority calls receiving ALS responses. With probability \(1 - p_{LB}(a, b) \), all BLS ambulances are busy when a low-priority call arrives. Conditional on this occurring, we use \(p_{HA}(a, b) \) to approximate the probability that at least one ALS ambulances is available. This is a simplification, but it is milder than our original independence assumption. Since an ALS ambulance is dispatched to a proportion \(\phi \) of these calls, we obtain the approximation

\[
p_{LA}(a, b) = \phi p_{HA}(a, b) [1 - p_{LB}(a, b)].
\]

(9)

Reasoning in a similar fashion yields

\[
p_{HB}(a, b) = p_{LB}(a, b) [1 - p_{HA}(a, b)].
\]

(10)

We formulate the objective function of our extended IP model by combining (3), (4), and (7) – (10). The constraints do not change, as we did not use the independence assumption to formulate them.
B.2 Approximating Offered Loads

To approximate the systemwide offered loads \(\rho_A \) and \(\rho_B \), we again use the inputs of our IP model to build an instance of the dispatching MDP from Section 3. Let \(\pi^* \) denote the optimal policy, and \(\nu \) the stationary distribution of the Markov chain induced by this policy. Let \(f_{HA} \) denote the long-run proportion of high-priority calls receiving an ALS response under \(\pi^* \). Since this occurs when at least one ALS ambulance is available, the PASTA property implies

\[
f_{HA} = \sum_{i=0}^{N_A-1} \sum_{j=0}^{N_B} \nu(i, j).
\]

Defining \(f_{LB} \), \(f_{LA} \), and \(f_{HB} \) analogously, we obtain

\[
f_{LB} = \sum_{i=0}^{N_A} \sum_{j=0}^{N_B-1} \nu(i, j), \quad f_{LA} = \sum_{i=0}^{N_A} \sum_{j=0}^{N_B} \nu(i, j) I(\pi^*(i, j) = 1), \quad \text{and} \quad f_{HB} = \sum_{j=0}^{N_B-1} \nu(N_A, j).
\]

Approximating the fraction of high-priority and low-priority calls routed to ALS ambulances using the quantities \(f_{HA}/(f_{HA} + f_{HB}) \) and \(f_{LA}/(f_{LA} + f_{LB}) \), respectively, we obtain

\[
\rho_A \approx \frac{1}{\mu} \left[\frac{f_{HA}}{f_{HA} + f_{HB}} \lambda_H + \frac{f_{LA}}{f_{LA} + f_{LB}} \lambda_L \right] \quad \text{and} \quad \rho_B \approx \frac{1}{\mu} \left[\frac{f_{HB}}{f_{HA} + f_{HB}} \lambda_H + \frac{f_{LB}}{f_{LA} + f_{LB}} \lambda_L \right].
\]

B.3 Computational Study

We base our numerical work upon the same hypothetical EMS considered in Section 6. As in previous “base case” experiments, we use \(R_{HA} = 1 \), \(R_{HB} = 0.6 \), \(R_L = 0.5 \), \(C_A = 1.25 \), \(C_B = 1 \), and \(\mu = 0.75 \), and evaluate the set of vehicle mixes in the set \(\Gamma = \{(N_A, N_B) : N_A \leq 70 \text{ and } N_B = \lfloor 87.5 - 1.25N_A \rfloor\} \).

We approximate \(p_A \), \(p_B \), and \(\phi \) using the procedure from Section 5.2 of the main paper. Recall that we approximated \(\phi \) using the output of a modified MDP in which arrivals were scaled up by a factor, to more accurately model how dispatching decisions would be made in a congested system. We use the same MDP to compute \(f_{HA} \), \(f_{HB} \), \(f_{LA} \), and \(f_{LB} \). Solving the resulting IP instances, and plotting the curves alongside those from Figure 7 in Section 6, we obtain Figure B.2 below. While the extended IP model indeed yields less optimistic results than the original IP model, the curves in Figure B.2 have the same basic structure. When we increase the degree of resource pooling in the system (via the response time threshold \(T \)), we see numerical results that more closely match those produced by the MDP; see Figure B.3 below. In the case of complete resource pooling, the extended IP is still optimistic relative to the MDP, suggesting that the correction factors do not completely account for server dependence. Nonetheless, the fit is improved.
Figure B.2: Long-run average reward vs. vehicle mix, under the MDP model and both IP models.

Figure B.3: Long-run average reward under the MDP and both IP models, for two response time thresholds T.

We conclude with a sensitivity analysis with respect to C_A identical to that used to generate Figure 9, and obtain Figure B.4 below. For larger values of C_A, the extended IP model predicts a more aggressive drop in performance as we move towards an all-ALS fleet, but we again see the same qualitative trends. This pattern repeats if we perform sensitivity analyses with respect to ambulance travel speeds and rewards, but we omit plots in the interest of brevity. Taken together, our experiments suggest that both IP models yield similar qualitative insights with respect to the vehicle mix decision: that of rapidly diminishing marginal returns associated with increasing N_A.

9
Figure B.4: Long-run average reward under both IP models, for several choices of C_A.

C References

