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Choosing the decision variables 

to optimize some (expected) 

performance measure. 

What is Simulation Optimization?

Other names: “Simulation-based Optimization” or 

“Optimization via Simulation”.

Simulation

Simulation Model

+

Having uncertainty in the 

objective and/or constraints.

Optimization

Optimization Model

+
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Simulation Optimization is Hard

• Mathematical: Cannot evaluate the objective and/or constraints 
exactly.

– The noisy evaluation of a function is small. Is the function really small?

• Computational: Simulation/optimization alone is 
computationally expensive.

• More in the coming section…

So why not replacing all random variables with estimates of their 

means?

Simulation

Search for the 

next candidate 

solution

Simulation

Search for the 

next candidate 

solution

…..

1 day 1 day
10 min 10 min
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The Flaw of Averages: Deadly Highway

(Savage, 2015)

Random Position:

Vital Status:

“Alive” “Dead”

Consider a drunk person wandering on a divided highway:
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Consider the normally distributed demand    . 

The mean µ = 1000, and stdev σ = 300, p=$5, c=$3.

It can be shown with Jensen’s Inequality that replacing the demand by its 

mean would always overestimate the expected profit.

The difference seems small – but it is 40% of the profit!

(the actual avg. profit with x = 1000 is ~$1220.)

Donald, the newsboy, is deciding how many newspaper    to stock 

at the beginning of the day so he can maximize the expected 

profit                                                               wrt/ a random 

demand   . 

The Flaw of Averages: Newsvendor
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What We Talk About When We Talk About 

Simulation Optimization

Quantiles:

e.g. Minimize the value-at-risk of a 

portfolio

Expected Values:

e.g. Maximize the expected return of a 

portfolio

: the randomness in the system (e.g. demand)

: the set of decision variables (e.g. stock)

: the output for the objective for one replication of the simulation logic 

(e.g. profit for a day)

: the search space (e.g. stock>0)
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Problem

Newsvendor Demand Starting inventory (-) Daily profit

Financial Optimization Stock 

Price

Portfolio (-) Return

Supply Chain Inventory (s-S) Demand Base stock level 

(Order-up-to level)

Inventory holding 

cost

Queuing System, e.g. Call 

centers

Arrivals Number of Servers Waiting time

Healthcare, e.g. Ambulance Call

Arrivals

Base locations Response time

Applications of Simulation Optimization
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Scope and Other References

• In this tutorial:
– What is simulation optimization?

– Some common issues one encounters when solving such problems

– Tools and principles

– Using simulation optimization: a bike-sharing example

• Not in this tutorial: Detailed methodology, and advanced stuff… 
please come to the talks in the Simulation Optimization or Analysis 
Methodology tracks!

• Other references for further interest:
– Previous WSC tutorials: Fu 2001, Fu, Glover, and April 2005, Fu, Chen, 

and Shi 2008, Chau, Fu, Qu, and Ryzhov 2014

– Book chapters (Intro): Chapter 12 of Banks, Carson, Nelson, and Nicol 
2010

– Book (Advanced): Fu 2015

– See our paper for more!
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Local vs. Global Solutions

Minimum???

• Similar to finding the lowest point in the US, but:

－ in heavy fog: only local information available

－ with a broken altimeter: can only measure altitude with noise

－ and a teleporter machine: can sample anywhere

How to differentiate The Grand Canyon from Death Valley?

• Searching on a function:

– Global optimum: the true minimum/maximum on the entire domain.

– Local optimum: the point where no nearby improvement can be found.
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Local vs. Global Solutions

• Unless the function is convex, the best an algorithm can 

promise is to locate a local minimum.

• Solution: Can use random restart:

– Not-too-rolling landscape: may be effective

– Very-rolling landscape: will visit the global minimum eventually… after 

lots of restarts!

Start 1

End 1

Start 2

End 2

Start 3

Start 4

End 4

(3)
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Many Decision Variables = 

Huge Search Space

• Consider a call center:

– = call arrivals

– = number of shifts

– = number of agents at shift i, 

– =  cost per agent     

– = average speed of answer minus the cost of labor

• possible values of    :

– If d = 24 and n = 10, 11^24 = 9849732675807611094711841!!
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Huge Search Space: What can we do?

• Exploit domain knowledge

– Start searching from the current shift schedule

• Use an algorithm that is aware of the function structure

– The average speed of answer is decreasing in    .

– There is diminishing returns wrt increasing    .

• Be patient

• Parallel programming can greatly reduce 

the computational time!

– But can you defeat the curse of dimensionality?

– Having two shift alternatives: 11^48 values!
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Continuous vs. Discrete Decision Variables

• Continuous decision variables:

– There are efficient local search algorithms that can exploit 

continuity and differentiability.

– “Close” points are expected to have “close” function values.

• Discrete decision variables:

– “Continuity” doesn’t come naturally.
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Optimizing in the Presence of Noise

• Suppose in replication i, we obtain output             . Let the 

objective be denoted as                               .  

• How far is                                       from         ?

• If                           , does it imply                        ?

• Solution: We can increase the runlength at      and      to be 

more sure. 

– But how about other     values?
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• When the difference in the simulation noise is bigger than the 
difference in the function values:

• Solutions:

– Carefully choose the runlength to ensure statistically 
significant differences

– Use Common Random Numbers

x2x1

Simulation Noise can Swamp the Signal

17

True f 

(unknown)

Smaller??
CI for the sample means

Estimation errors of the sample average

f(x1)

f(x2)



Simulation Noise can Swamp the Signal

• Carefully choose the runlength to ensure statistically significant 

differences:
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x1 x2

True f 

(unknown)100 replications

10 replications

CI for the mean (true f) from:

Statistically significant 

differences



Common Random Numbers (CRN)

• Idea: Use the same set of to evaluate            and            .

• E.g. Consider the newsvendor problem: 
– Comparing starting stocks       and  .

– CRN means comparing the two with exact the same demands.

• To use: Many software has random number stream 
implemented. Use the same stream to simulate the systems 
being compared.

19
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Failing to Recognize an Optimal Solution

Even if we visited every point in the solution space, how do we 

know which one is optimal, given we can only obtain noisy 

evaluations of the objective?

• Again, carefully choose runlength.

• Use ranking & selection to “clean up” the solutions! † (later)

† : Hong, Nelson, and Xu 201520



Poor Estimates of the Optimal Value

• For the optimal solution      of a minimizing problem, 

the min of the estimates underestimates the true min:

• Solution: take      and run a longer simulation using 

independent sample (new random stream).

Xstar

True f 

(unknown)

fn (estimates)

Underestimated minimum
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When to stop?

• Since objective is noisy, it is hard to differentiate noise from the 

actual progress. Usually most algorithms are stopped when a 

computational budget is reached.

• “Smarter” ways to stop:

– Start the optimization algorithm with a small number of 

replications.

– Then sequentially increase the sample size to “refine” the 

solution until “steady”.
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Model Madness

“Textbook”:

A Succession of Models:

Optimize!

• Build a sequence of models with 

increasing complexity, and each 

one answers the question to 

some degree. 

Optimize!

learning learning

learning
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Summary

We talked about issues arising from:

• Nonlinear Optimization:
– Local vs. Global solutions

– Huge search space

– Discrete vs. Continuous variables

• Simulation Noise:
– Optimizing in the presence of noise

– Simulation noise can swamp the signal

– Failing to recognize an optimal solution

– Getting poor estimates of the objective of the estimated optimal solution

– When to stop

• Modeling:
– Model Madness
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Sample Average Approximation

• Idea: Use sample average (                                 ) to estimate 

the expectation (                      ). 

– If the inputs                   are fixed, optimizing       is a deterministic 

program.

• To use: Assign a stream of random numbers     to rep i. 

• Pros: Very flexible, works on constrained problems, and reliable 

when n is large

• Cons: User needs to choose the deterministic optimization 

algorithm.

• Example: Call center:
– Wish to optimize the expected customer waiting time

– Use the average customer waiting time over 1000 simulated days as an estimate

– Optimize this average with different staffing schedules over the same 1000 days 

(using CRN)
More: Kim, Pasupathy, and Henderson 2015. 26



Metamodeling

• Also called Response Surface Methodology.

• Idea: Based on some design points, approximate the true 

function     by some simple-to compute function     (e.g. 

polynomial), and optimize     instead.

f (unknown)

f-bar
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• Global metamodel: Used when the search space is small.

• Local metamodel: Used to move to the next candidate solution.

• Pros: The metamodel is structured and thus easy to optimize.

• Cons: Relies on the experiment design, needs smoothness to 

work well

Metamodeling

More: Barton 2009, Kleijnen 2015.
28
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Stochastic Approximation (SA) and Gradient 

Estimation

• Idea: Similar to the Steepest Descent Algorithm, SA iteratively 

step into the (estimated) negative gradient direction. 

local min global min

x0 x1 x2 x3
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• Applies to: finding the local optimum of a smooth function 

over a continuous space



Stochastic Approximation (SA) and Gradient 

Estimation

• Gradient Estimation                   :

– e.g. Finite differences (easiest, but biased): make a small perturbation in each 

dimension

– Others yield unbiased estimates in special cases.

• Pros: Fast, works on (simple) constrained problems

• Cons: Performance greatly depends on the choice of the step size

• To use: Need to code it directly

More: Chau and Fu 2015.

In a perfect world Stepsize too small Stepsize too large

30



Ranking and Selection

• Idea: Exhaustively test all solutions and rank them. The goal is 
to return the system with the lowest mean.

• A common frequentist procedure:

1. Start by obtaining a small sample (say, 10) on each system.

2. Use the initial sample to decide how much to further simulate each 
system.

• The procedures differs by the allocation of samples and the 
statistical guarantee provided.

• The total sample sizes can be different for each system!

– The choice of sample sizes can be quite complicated.

– Usually it is larger for the system with higher variance and/or closer 
to the optimum.

31



• Algorithms providing PCS/PGS guarantees are usually very conservative.

• Other methods that are more efficient but without guarantee:

－ “Optimal Computing Budget Allocation” for maximizing PCS/PGS †.

－ “Expected Value of Perfect Information” for the most “economic” 

choice ‡.

Ranking and Selection: Statistical Guarantee

User input:

• Probability of correct selection (PCS): 

– Guarantees (say, w.p. 95%) to choose the best 

system only if it is better than the second best 

by at least 

– is called the “indifference zone” parameter.

• Probability of good selection (PGS):

– Guarantees (say, w.p. 95%) the selected system 

is worse than the best system by at most    

†:‡: see Chen, Chick, and Lee 2015; More: Kim and Nelson 2006. 32

Guarantees if

Guarantees



Ranking and Selection

• Applies to: A finite and “small” (say, <500) search space, so 

each solution can be estimated by at least a few simulation 

runs.

• The recent development of using parallel computing in R&S can 

handle larger search space (e.g. 10^6 systems) †.

• Example: Clean up step after an initial search

• To use: Implemented in some commercial software packages

33†: see Luo and Hong 2011, Luo et al. 2015, Ni et al. 2015



• Idea: Iteratively choose the next sample point based some 

sampling strategy, and move to that point if it shows evidence 

of improvement.

• Applies to: any problem

Random Search Methods

34

x0

x1

x2?

x2

x3?

x3?

x3

x4?

f large

f small

x generated uniformly at random

E.g. Pure Random Search



Random Search Methods

• The sampling strategy:

– deterministic or randomized

– depends on the information of all the previous points, only a few 

previous points, or only the most recent point

– trades off exploration vs. exploitation

• Pros: Easy to implement, no requirement for problem structure

• Cons: Few or no statistical guarantee, not using any model 

information

• Widely used in most commercial packages.

More: Andradottir 2015, Hong, Nelson, and Xu 2015, Fu, Glover, 

and April 2005, Olafsson 2006. 35
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Problem Statement

• Citibike in NYC has approximately 330 stations and 6000 bikes.

• Users check out bikes at a station and return bikes to another 

station.

• Unhappy bikers are those who don’t find a bike when they want 

one, or don’t find a rack when they want one.

• In the event of a full rack, users go to a nearby bike station. A 

bike may be abandoned after a few attempts.

†: www.siegelgale.com, www.voltaicsystems.com, socialmediaweek.org

†
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A Simulation Optimization Problem

(the expected number of unhappy 

bikers during morning rush)

x = #bikes to allocate to each station overnight

(total budget of bikes)

(Station capacities)
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Stages of Modeling

We built a sequence of more and more complex models to obtain 

intuition on how the system behaves and the form of a good 

allocation:

0.   Half-full Stations

1. Fluid Model

2. Continuous-Time Markov Chain Model

3. Discrete Event Simulation

Optimize!

learning learning

learning

1

2

3
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Let’s make every station half full

In fact, this was the original plan of Citibike. 

What can go wrong?

Morning Rush Hour Demand:

Blue stations: bike consumers (more empty)

Red stations: bike producers (more full)

†: O’Mahony and Shmoys 2015

†
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A Fluid Model: Idea

• Ignore the randomness in the arrival and departure processes 

for now and assume that users pick up and drop off bikes at 

constant rates and .

• The level of bikes at a station is linear wrt/ time:  

Cost incurred

Le
ve

l 
o

f 
b

ik
e
s

Time

Inflow stations

Cost incurred

Outflow stations 
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A Fluid Model: Insights

1. For the outflow stations, the min number of bikes  needed 

to ensure happy customers is                 , which is the flow 

imbalance over the rush hour period. 

2. There might be no way to avoid unhappy customers, unless 

we increase the capacity.

3. Adding a bike to any outflow station gives the same 

improvement - all unhappy customers are equal.
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A Fluid Model: Problems

• As we expected, the solution would allocate no bikes to the 

inflow stations, and the minimum number of bikes to the 

outflow stations so they never run out of bikes, if the budget 

allows.

• This model is especially problematic for the near-balanced 

stations:

– If               , then it doesn’t matter how many bikes we put at the station! 

So why not put 0?

Le
ve

l 
o

f 
b

ik
e
s

Time

Actual levels

Le
ve

l 
o

f 
b

ik
e
s

Time

Cost incurred
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A Continuous-Time Markov Chain Model

• Model the flows of customer arrivals at different stations as 

independent time-homogeneous Poisson processes.

• Assume that the stations never run out of bikes, then each 

station can be modeled as a                 queue independent of 

all other stations.

• This is a strong assumption to make!

• This model captures the stochastic nature of bike flows.

– Once a station is full, it will not stay full for the rest of the period.
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A Continuous-Time Markov Chain Model

• When              , the solution                .

• can be computed very efficiently without simulation. 

• Also one can show f(x) is “convex”!

• This CTMC solution can be used as a starting solution for the 

simulation optimization.
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A Discrete Event Simulation Model

• Each station generates trips according to a Poisson process. A 
trip is assigned a destination with probability         and its 
duration is Poisson-distributed.

• A trip can have a few states:
– “trip-start”: there is bike available at the origin

– “failed-start”: otherwise, in which case the trip is cancelled

– “trip-end”: there is dock available at the destination

– “failed-end”: otherwise, in which case a trip to the nearest station is 
generated

– “bad-end”: the user abandons the bike after 3 failed attempts

• The objective is
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A Discrete Event Simulation Model

• The simulation is run for the morning rush hour period (7-

9am). 

• 1 rep = 0.2s. 50 reps gives 10s per fn evaluation.

• ~350 stations:

– Random search (select two stations i and j to move a bike) hopeless:

#ways to select I * #ways to select j = 350*349 = 122,150 possible pairs of 

stations!

– “Gradient” search hopeless: 

350 dimensions to perturb
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A Discrete Event Simulation Model

• Instead, swap bikes between the stations who have the most 

contributions to the objective:

Simulate 

(50 reps)

Improved?

Go with 

it

Move it 

back!

Start the morning rush hours with this allocation

Station i

Most #failed-ends

Station j

Most #failed-starts

Move bike(s)
Y N

Sample Average Approximation

Common Random Numbers
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Search from Different Starts

CTMC path  567+/-11 to 443+/-7

Equal alloc 1096±17 to 493±8
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Station Capacities

50

The size of the capacity at each station.



The Ending Solution (Bike Allocation)

51

The bike allocation solution found by searching from a CTMC solution.



What have we learned?

• A succession of models can greatly assist in making simulation 

optimization possible!

• With huge search space, we need to take advantage of the 

problem structure.

• Common Random Numbers help when comparing different 

solutions.

• Next step: How to optimize dock allocation too?
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Takeaway

1. Simulation optimization is not easy.

2. Don’t try to build one huge model and then optimize it.

3. If using standard tools, stick with low dimensional problems 

(not many variables).

4. Use Common Random Numbers with streams to compare 

systems.
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Thank you!

Nanjing Jian: nj227@cornell.edu
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