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SUMMARY 

The ambulance-planning problem includes operational decisions such as 
choice of dispatching policy, strategic decisions such as where ambulances 
should be stationed and at what times they should operate, and tactical 
decisions such as station location selection.  Any solution to this problem 
requires careful balancing of political, economic and medical objectives.  
Quantitative decision processes are becoming increasingly important in 
providing public accountability for the resource decisions that have to be 
made. We discuss a simulation and analysis software tool ‘BARTSIM ’ that 
was developed as a decision support tool for use within the St. John 
Ambulance Service (Auckland Region) in New Zealand (St. Johns).  The 
novel features incorporated within this study include 

- the use of a detailed time-varying travel model for modelling travel 
times in the simulation, 

- methods for reducing the computational overhead associated with 
computing time-dependent shortest paths in the travel model, 

- the direct reuse of real data as recorded in a database (trace-driven 
simulation), and 

- the development of a geographic information sub-system (GIS) within 
BARTSIM  that provides spatial visualisation of both historical data and 
the results of what-if simulations.   

Our experience with St. Johns, and discussions with emergency operators in 
Australia, North America, and Europe, suggest that emergency services do 
not have good tools to support their operations management at all levels 
(operational, strategic and tactical).  Our experience has shown that a 
customized system such as BARTSIM  can successfully combine GIS and 
simulation approaches to provide a quantitative decision support tool highly 
valued by management.  Further evidence of the value of our system is 
provided by the recent selection of BARTSIM  by the Metropolitan 
Ambulance Service for simulation of their operations in Melbourne, 
Australia.  This work has led to the development of BARTSIM ’s successor, 
SIREN (Simulation for Improving Response times in Emergency Networks), 
which includes many enhancements to handle the greater complexities of the 
Melbourne operations.   
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4.1  INTRODUCTION 

In 1997 we were contacted by the St. Johns Ambulance Service (Auckland 
region) in New Zealand, henceforth referred to as St. Johns.  St. Johns 
wanted assistance in developing rosters for their ambulance personnel.  This 
initial contact led to our study of ambulance service management, and to the 
development of a comprehensive simulation and analysis tool to assist in 
decision making.  (We should emphasize that here the word “simulation” 
refers to a computer software tool, and not to the replication of realistic 
incident conditions where volunteers pretend to have certain injuries.)  This 
chapter reviews some of the issues faced by St. Johns managers, and indeed 
ambulance service managers all over the world, and discusses the methods 
and tools that we developed to assist them.   

The manager of an ambulance service faces a host of difficult policy 
questions related to operation of the service.  The following list is only a 
sample. 

– How many ambulances should be employed and where should they be 
stationed? 

– What policies and procedures should be followed as calls for assistance 
are received in order to ensure rapid response to calls while obtaining 
quality information to allow appropriate dispatching? 

– Should ambulances be used for non-urgent patient transfers in addition to 
the usual emergency response function? 

– How should dispatching decisions be made when multiple vehicles are 
available for dispatch? 

– How can one examine the tradeoffs associated with sharing a limited 
number of ambulances between a high-demand metropolitan area and a 
low-demand rural area? Here the issue is “fairness” in the sense of 
coverage, versus “efficiency” in the sense of placing ambulances where 
they will be in high demand. 

This is a rather daunting list of problems, to which a great deal of research 
effort has been focused in the past. Swersey [1] provides a survey of work in 
emergency service planning that serves as an excellent entry point for the 
literature.  There is a very large literature on such problems, so one might 
very well ask, what is the motivation for revisiting these problems? 

A key difference between the ambulance-planning problem as faced before 
1994 and the problem as faced today is the prevalence of data.  Virtually all 
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ambulance operations now employ some form of computer-aided dispatch 
(CAD) system that automatically logs the details of calls as they are 
received. This information is a veritable goldmine for planners! Without 
CAD data, ambulance studies typically relied on manual collection of data; 
see, for example, Swoveland et al. [2], where some of the required data was 
manually recorded over a period of two weeks. 

A second factor that motivated much of the developments discussed in this 
chapter is the difference in the questions that are being asked.  Much of the 
early development of ambulance theory focused on the questions of where 
and when ambulances should be operated.  While this question is central to 
much of what we do, we are also motivated by “finer granularity” questions 
such as how call taking and dispatching should be performed. 

To answer these and other questions at St. Johns, we developed a discrete-
event simulation of ambulance operations.  By manipulating the parameters 
of the simulation, it is possible to address, in a quantitative manner, many of 
the questions mentioned earlier.  The flexibility of discrete-event simulation 
means that one can avoid simplifying assumptions that are otherwise needed 
to obtain performance measure predictions using other methods, such as 
queueing theory or Markov chain analysis.  Perhaps the biggest advantage of 
simulation is that it is easy to explain as a decision tool to both managers and 
frontline personnel, so that after they understand the model, they place great 
store in its results.  Obtaining this “buy-in” from decision makers and 
frontline personnel is crucial in moving from model predictions to decisions 
and implementation.   

To reinforce these points, consider the hypercube model as surveyed in 
Larson and Odoni [3], and the specialization of this model to ambulance 
planning in Brandeau and Larson [4].  The hypercube model, while 
possessing great predictive power, also requires several assumptions with 
regard to the way that ambulances are dispatched, gives only steady-state 
results, and requires certain assumptions about the form of “service time” 
distributions, at least in the case where calls queue when all units are busy.  
Moreover, explaining how it works to managers is a somewhat daunting 
task, so that it is hard to instill a feeling of confidence in decision makers as 
to its predictions.  In spite of these disadvantages, it seems to work very well 
in practice, so it remains a powerful modeling approach that, for a subset of 
the questions considered here, is a viable alternative to simulation. 

Of course, simulation is not new to the ambulance-planning problem.  Early 
examples are Savas [5] for ambulance operations in New York City, and 
Fitzsimmons [6, 7] for operations in the San Fernando Valley in Los 
Angeles.  Swoveland et al. [2] used simulation to fit the parameters of a 
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metamodel that predicts expected ambulance response time.  The expected 
response time as predicted by the metamodel was then optimized using 
branch and bound.  Simulation was used by Fujiwara et al. [8] to carefully 
examine a small number of alternative plans that were obtained from an 
optimization model developed in Daskin [9].  Lubicz and Mielczarek [10] 
developed a simulation model of rural ambulance operations in Poland.  
Ingolfsson, Erkut and Budge [11] used simulation to help in siting a "single-
start station," i.e., a station from which multiple ambulances begin their 
shifts.  In addition, the use of simulation as a tool to validate the selections 
of optimization models is almost universal in the literature, and continues to 
this day.  For recent examples see Erkut et al. [12], Harewood [13] and 
Ingolfsson, Budge and Erkut [14]. For a recent survey of optimization 
methods in ambulance location problems see Brotcorne, Laporte and Semet 
[15].  Larson and Odoni ([3], Chapter 7) discuss general considerations 
related to the simulation of problems similar in form to the ambulance-
planning problem. 

So what is new in this study? 

First, our simulation directly reuses the data recorded in the CAD database.  
Real calls are fed through the simulation, rather than calls generated using 
the usual simulation techniques.  Justification for our use of trace-driven 
simulation and discussion of some of the key issues can be found in Section 
4.3.  Such an approach resolves many difficulties, including accurate 
modeling of the complex dependence structure of the information related to 
calls including time of occurrence, location, need for transport and so forth.  
Of course, it also introduces other problems. 

Second, we employ a sophisticated model, adapted from a model developed 
and used by the Auckland Regional Council [16] for regional planning 
purposes, to compute travel times.  These travel times are used to determine 
which ambulance to dispatch to a call, the travel time for the ambulance to 
reach the call, and so forth.  The effort we devote to this topic is justified by 
the great sensitivity of results to travel time assumptions, as noted both by 
the authors in a preliminary queueing analysis, and by a large proportion of 
the papers dealing with ambulance planning.  For example, Carson and Batta 
[17] describe how the 30% savings predicted by their model turned into a 
6% savings in actual tests, primarily due to the model not effectively 
capturing a certain travel time/distance relationship.  The use of a simpler 
model based on the “square root law” [18, 19] or other approximations leads 
to rather large errors due to the highly irregular geography of Auckland; it is 
basically an isthmus between two oceans, containing many dormant volcano 
vents.  The complex waterways and vents provide significant barriers to 
travel, leading to a somewhat convoluted road network.  A further 
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complication is that travel times are heavily time-dependent.  The simulation 
makes extensive use of the travel model, and we employ several heuristics to 
reduce the computational effort involved.  Many of the techniques used here 
could be used in other applications requiring travel time calculations where 
the travel time is time-dependent. 

Third, we employ a geographic information system (GIS) to display 
simulation results and to examine historical performance calculated from 
real data.  To our surprise, none of the ambulance service providers that we 
have talked with have used such tools in the past, and all have been 
tremendously excited by their potential.  This has occurred in spite of the 
growing number of sites where a GIS is being used to draw insights from 
recorded data; see Peters and Hall [20].  Of course, GISs have been used 
many times to obtain input for simulation models (see, e.g., [21]), but GISs 
are not often used for displaying discrete-event simulation output.  The 
graphical displays produced by GIS programs allow decision makers to 
digest copious amounts of information that were previously given in large 
tables.  GIS output displays are currently under-utilized in discrete-event 
simulation studies, perhaps because of the form of the models involved.  But 
as the ability to link discrete-event simulation software, databases, and 
standard GIS packages together increases, the use of GIS output display 
should become more prevalent. 

We have been contacted many times by individuals interested in applying 
BARTSIM  methodology to planning problems in the other emergency 
services, namely fire and police departments.  There are many potential 
applications to these areas from the work presented here, and we believe that 
such extensions could be tremendously helpful from the practical standpoint.  
However, it is important to recognize some of the vital differences in these 
problems from the ambulance-planning problem.  These differences mean 
that substantial effort would be required to tailor the planning methods used 
here.  For example, the utilization rates of fire appliances are typically on the 
order of a few percent, while it is not uncommon to have ambulance 
utilization rates, at least in metropolitan areas in New Zealand, as high as 
60%.  In terms of police patrol planning, an important function of police 
patrols is to maintain police visibility, so the problems one faces can be quite 
different. 

The remainder of this chapter is organized as follows.  In Section 4.2 we 
discuss some of the particulars of the St. Johns problem, and outline the 
process that is followed when St. Johns receives an emergency call.  Section 
4.3 provides an overview of the simulation model underlying BARTSIM  and 
describes some of the data-reuse issues alluded to above.  Section 4.4 
describes the travel model and the heuristics used to reduce computational 
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overhead.  In Section 4.5 we introduce BARTSIM  itself, outline some of its 
GIS-based analysis capabilities, and describe how these analysis capabilities 
were used to provide useful insights into several decisions faced by St. 
Johns.  Conclusions and suggestions for future research are offered in 
Section 4.6. 

Further details on BARTSIM can be found on the BARTSIM  web site 
(www.esc.auckland.ac.nz/stjohn). 

4.2  THE PROBLEM FACED BY ST. JOHNS 

St. Johns contracts to Crown Health Enterprises to supply emergency 
medical transport.  The contracts stipulate that St. Johns supplies a minimum 
level of service as specified by certain performance targets.  These targets 
relate to response time, which is defined as the time interval between 
receiving a call to the time that an ambulance first arrives at the scene.  The 
performance targets are broken down by the location of the call (whether the 
call is in metropolitan Auckland, or in a rural area) and the priority of the 
call.  St. Johns classifies its emergency calls, as opposed to patient transfers 
and other non-emergency calls, into two levels.  Priority 1 calls are those for 
which an ambulance should respond at all possible speed, including the use 
of lights and sirens.  Priority 2 calls are calls for which an ambulance may 
respond at standard traffic speeds.  The performance targets that St. Johns 
faces are shown in Table 4.1. 

Table 4.1  Contractual service targets 

 Priority 1 Priority 2 

Metropolitan 80% in 10 minutes 
95% in 20 minutes 

80% in 30 minutes 

Rural 80% in 16 minutes 
95% in 30 minutes 

80% in 45 minutes 

 

It is interesting to note that no guidance is given in the contract as to how 
these figures need to be interpreted.  Interpreting the targets as applying, for 
example, to the entire Auckland area over the entire year in aggregate will 
lead to far lower resource requirements than assuming, for example, that the 
targets must be met in each suburb during each hour of each day.  One of the 
goals of this project has been to develop tools to assist management in 
exploring performance under a range of possible interpretations of the 
contract. 
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St. Johns uses a computer-aided dispatch (CAD) system that logs, in a 
database, information on every call that is received.  The database then 
enables St. Johns to prepare monthly reports that describe how well they 
meet their performance targets.  When St. Johns first contacted us, these 
reports indicated that the organization was finding it more and more difficult 
to meet its service targets.  It was (and continues to be) believed that this is 
primarily due to increasing congestion on Auckland roads. 

Figure 4.1  The ambulance dispatch and service delivery process 

 Ambulance waiting at station 

Ambulance waiting at station 

I: Ambulance arrives back at station 

E: Ambulance departs for hospital 

F: Ambulance arrives at hospital 

H: Ambulance dispatched to new call 

G: Ambulance departs for station 

A: New call arrives 

B: Call allocated to closest free ambulance 

C: Ambulance departs for incident scene 

D: Ambulance arrives at scene 

Response  
Time 

Service 
Time 

 

 
To fully understand these service targets it is necessary to understand the 
ambulance dispatch and service delivery process. Figure 4.1 shows this 
process, and identifies the contractual response time discussed earlier.  This 
flowchart also helps to explain the key steps that are captured within the 
simulation model. When a call arrives at St. Johns, staff in the control room 
identify an available ambulance (i.e., an ambulance either idle at its base 
station or returning from a previous job) and dispatch this vehicle to the 
scene.  After initial treatment at the scene, the ambulance typically transports 
the patient to a hospital, performs a ‘handover’ to hospital staff, and then 
returns to its base station.  If transport is not required, the ambulance returns 
directly to its base from the scene.  In either case, the vehicle is considered 
available to receive calls as soon as it begins returning to base. 
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4.3  THE SIMULATION MODEL 

The simulation model is written using a high-level programming language 
without using specialist simulation software.  The simulation is trace-driven, 
and ambulances are routed using a time-dependent travel model.  Each of 
these aspects of the simulation is now discussed in more detail. 

We decided not to use an "off-the-shelf" package for simulating St. Johns' 
operations for several reasons.  First, the logical complexity of the decisions 
that must be made within the model would be difficult to code in a standard 
package.  For example, the dispatcher may redirect an ambulance that is 
responding to a Priority 2 call to a Priority 1 call.  Such a decision requires 
detailed knowledge of travel times, ambulance locations and so forth.  This 
decision is far easier to code using custom software in a high-level language 
(C) than standard simulation packages.  The second reason was speed.  The 
simulation must be very fast to facilitate the large number of what-if 
analyses that need to be performed.  Consequently, we decided to code the 
simulation in C, and then embed the simulation program within a custom-
developed Microsoft Visual C++ application to provide a user-friendly 
interface.  Third, this approach has allowed us to tightly couple the 
simulation with specialized data visualization (GIS) tools, providing 
integration benefits that would have been hard to achieve using any of the 
off-the-shelf systems that were available at the time.  (Since the software 
development was completed, simulation software has made great strides in 
allowing integration with database software and code segments written in 
other languages.) 

We were very lucky in that several years’ worth of historical data was made 
available to us.  We used this data by running trace-driven simulations: the 
calls that we simulate are real calls that are read in from a stored file.  See p. 
133 of Bratley, Fox and Schrage [22] for a discussion of issues relating to 
the direct reuse of historical data from the general perspective of discrete-
event simulation.  We confine our remarks to specifics related to the 
ambulance-planning problem. 

The data used from each call are call arrival time, call priority, call location, 
time spent by an ambulance at the scene, destination to which the patient 
was transported (if any) and time spent at the destination.  The use of this 
historical data obviates the need to develop a statistical model for generating 
calls.  This is a decisive advantage, as the correlation structure of calls, both 
temporally and spatially, is rather complex; see, for example, Lubicz and 
Mielczarek [10].  For example, the location of a call is somewhat correlated 
with the time of day at which it is received. 
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Of course, if we were to use BARTSIM  for long-range planning (say more 
than 2 years into the future), we might be more wary about using historical 
data, because the existing data may not be representative of conditions in the 
future.  In such a case, one might want to use an approach similar to that 
used in the development of the United Network for Organ Sharing Liver 
Allocation Model [23].  That model uses non-homogeneous Poisson 
processes to generate “arrival times”; other information about the “arrival” is 
obtained through a bootstrapping procedure. 

An area of concern that arises in using historical data in this fashion is data 
validity.  Indeed, many of the logged calls contain entries that are difficult to 
believe.  For example, it is not uncommon to see durations of 1 second for 
the time spent at the scene of an incident.  Discussions with ambulance 
personnel revealed that this can occur when personnel forget to notify the 
CAD system (through a button situated on the dashboard of an ambulance) 
that they have arrived at the scene.  When they realize their error, they 
“catch up” by pushing the button multiple times.  This sort of error not only 
corrupts the recorded time spent at the scene, but also any surrounding times, 
such as travel times, that are used elsewhere.  Identifying such errors and 
devising methods for dealing with them are important research areas that we 
have not explored.  Instead, we adopted an ad-hoc procedure where the data 
for a particular call is “cleaned” if it is “close” to being reasonable, or the 
call is deleted if the logged data is beyond repair.  Of course, if too many 
calls require cleaning or deletion then we should be concerned, and this is 
the reason why more research is required in this area.  Fortunately, in the St. 
Johns application such calls appear to occupy a very small percentage of the 
total calls processed, so they cannot greatly sway the overall results. 

The use of trace-driven simulation allows one to deal effectively with many 
other issues, such as that of multiple-response calls.  Multiple response calls 
occur, for example, because the personnel who initially respond are not 
legally qualified to administer needed drugs, or because the number of 
injured parties is large.  Each response to a multiple response call is logged 
in the St. Johns CAD database and linked to previous entries.  Within our 
simulation we simply replay these calls.  This very simple approach could 
lead to potential errors when the personnel that initially respond in the 
simulation are qualified to assist the patient, so that further ambulance 
responses are not necessary.  A more sophisticated simulation approach 
might avoid such errors by carefully analyzing the data record, but we did 
not do this.  In any case the number of such multiple response calls is quite 
small. 

Ambulance availability is specified in terms of when and where an 
ambulance is to be brought into operation, and when it is to be removed 
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from circulation.  This allows shifts to be effectively captured, along with 
(for example) meal breaks that must be held at the ambulance's base and 
have a certain minimum duration. 

A vital component of the simulation is a travel time model that computes 
travel times between any pair of locations in Auckland at any time.  An 
important step in this project has been to establish collaborative links 
between St. Johns and the Auckland Regional Council, a local government 
body actively involved in developing strategic policy for the city of 
Auckland.  The Auckland Regional Council made available a road network 
model that details both road layout information and travel times along roads 
(arcs) at various times of the day, including the morning and evening rush 
periods.  The use of this data in BARTSIM is discussed in more detail in the 
next section.   

It is possible to run the simulation and see ambulance operations unfolding 
on the screen.  In particular, one sees ambulances traveling along the road 
network to and from calls.  As calls arrive, they are plotted on the screen in a 
color indicating their priority.  As calls are assigned to an ambulance, the 
calls change color, indicating that they are being served.  This animation is 
extremely useful for verification and validation purposes, and for visualizing 
St. Johns' operations.  It is also tremendously helpful in getting St. Johns 
personnel to accept the simulation model as a reasonable reflection of 
reality, and has proven invaluable in communicating our work to staff and 
management throughout the organization.  This aspect of the simulation may 
seem somewhat trivial from a theoretical point of view, but has been 
absolutely critical in obtaining “buy in” from the decision makers.  We view 
this selling point as a key advantage of simulation over other operations 
research methodologies for the ambulance-planning problem.  The BARTSIM 
approach is intuitive and easy to understand for people with non-technical 
backgrounds. 

When one wishes to collect performance measures, the animation is an 
unnecessary computational overhead.  In this case, animation is turned off, 
and the simulation proceeds without graphical feedback.  We do not report 
confidence intervals for our performance measures.  This is mostly due to 
the fact that the theory of error estimation from trace-driven simulations is 
not well understood, so that it is not clear how to develop confidence 
intervals.  This is an area where more research could certainly help. 

A simulation model on the scale of BARTSIM  requires a great deal of effort 
in verification and validation to ensure that the model that has been 
implemented is indeed what was desired, and that the model appropriately 
represents reality.  Instead of entering into a full discussion of our efforts in 
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this regard, which are mostly direct applications of the usual methods as 
outlined in Law and Kelton [24], we content ourselves with a few examples. 

The animation facilities of BARTSIM proved invaluable in verifying the 
model.  By watching simulated ambulance operations over extended periods, 
many errors in the database of real calls were identified.  As well as 
replaying existing calls, BARTSIM  also has a facility for interactively 
generating calls.  This was used to place calls at strategic locations for 
checking that the ambulance responses were as expected.  Shortest paths 
were generated and displayed over the road network to verify the quality of 
the chosen routes. 

The validation of a model involves ensuring that the model appropriately 
represents reality.  In this regard, we worked very closely with a number of 
individuals at St. Johns.  These people were closely involved in the 
development phase, and also assisted in performing test runs.  Furthermore, 
we demonstrated the software and described the simulation model to groups 
of ambulance drivers, who provided feedback on the quality of the model.  
These steps also helped in the accreditation of the model, where the model is 
accepted and trusted by decision makers.  The decision makers were so 
closely involved in the development and testing of the model that they felt 
some form of “ownership” over the system. 

4.4  THE TRAVEL TIME MODEL 

Auckland is built around two large harbors between two coastlines, and is 
dotted with dormant volcano vents.  Consequently it has a highly irregular 
topology.  Any plausible simulation of road travel cannot rely on ‘as the 
crow flies’ routes, or simple modifications of these to take into account a 
moderate number of obstacles, but must incorporate knowledge of the road 
network including the effects of motorways and major highways.  
Furthermore, the model must also incorporate the often dramatic changes in 
travel times that arise from varying congestion levels across the day and the 
week. 

We obtained road data from the Auckland Regional Council detailing a 
network with about 2,200 nodes and 5,000 directed arcs.  This Auckland 
Regional Transport Model (ART) is a relatively detailed transport model 
developed for medium term (15-25 years) project and policy planning and 
evaluation of regional transport strategy [16].  Traffic volumes are 
determined in ART using equilibrium solutions driven by origin-destination 
trip demands.  Because the trip demands are determined using an underlying 
demographic model, travel times can be predicted over any planning horizon 
for which population forecasts are available.  This ability to perform long-



AMBULANCE SERVICE PLANNING 13
 
term planning is most useful when evaluating strategic decisions such as the 
location of ambulance bases. 

We denote the ART road network by G=(V,A), where V is the set of nodes, 
and A is the set of directed arcs (i,j) from node i∈V to j∈V.  By entering trip 
demands for different times of the day, a range of equilibrium solutions can 
be found, each with different travel times for the arcs.  The ARC data 

includes the 8 a.m. morning peak travel time 8
ijt , 12 p.m. midday travel time 

12
ijt , and 5 p.m. evening peak travel time 17

ijt  for each arc (i,j).  Weighted 

combinations of these times are used to estimate the travel time h
ijt  during 

any other hour h of the day. The weights are chosen using regression models 
based on actual travel times available in the St. Johns database. 

We could use this model to compute dynamic shortest paths for ambulances 
based on time-dependent travel times whenever the simulation requires such 
paths.  However, this would be a time-consuming computation that would 
greatly slow down the simulation.  As a reasonable approximation, we 
instead pre-compute and store a range of shortest paths as follows.  Of the 
2,200 nodes in the network, 1,435 are used to spatially locate bends in the 
roads, while 765 are ‘decision nodes’ that define points at which a driver has 
a choice of direction (ignoring U-turn options).  More formally, a node j 
belongs to the set D of decision nodes, j∈D, if there exists both an arc (i, 
j)∈A and two distinct arcs from j, (j, k1)∈A, (j, k2)∈A with k1≠j and k2≠j.   

For each pair of decision nodes i∈D and j∈D, we pre-compute three shortest 

paths, 8
ijP , 12

ijP  and 17
ijP  using the morning peak, midday and evening peak 

travel times respectively.  This decision-node path information is stored in 
memory. 

During the simulation we need to find the shortest path S→F between any 
arbitrary start point S and arbitrary finish point F.  The shortest path process 
we use is heuristic, but nevertheless appears to provide a good level of 
accuracy. 

We note that S and F need not correspond to nodes in the network.  The first 
step in our process is to determine the spatially closest non-motorway nodes, 
s∈V and f∈V, to S and F, respectively.  We next determine the sets of 
decision nodes, D(s)⊆D and D(f)⊆D, that are ‘immediately connected’ to s 
and f.  The set of decision nodes D(s) is given by D(s)=Ts∩D, where Ts⊆G is 
a tree with root s and with branches each constructed by adding ‘outward 
pointing’ arcs until the first decision node is reached.  More formally, Ts is 
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initialized with root Ts={ s}, and then Ts is grown by iteratively adding each 
arc/node pair {(i, j), j} : i∈ Ts\D, (i, j)∈A.  Similarly D(f) is determined from 
D(f)=Tf∩D, where Tf is a tree built at f by adding all ‘inward pointing arcs’, 
i.e., adding each arc/node pair  

{( i, j), j}: j∈Tf\D, (i, j)∈A.   

We then consider all the paths given by  

P={S→s→ds

h

→ df→f→F: ds∈D(s), df∈D(f), h∈{8,12,17}},  

where S→s (and f→F) denotes ‘as the crow flies’ travel from S to s (and f to 
F), s→ds denotes the unique path from s to ds in Ts,  

ds 
h

→  df  

denotes the pre-computed shortest path from decision node ds to decision 
node df at hour h, h∈{8,12,17}, and df→f denotes the unique path from df to f 
in Tf.  Each of these paths is then evaluated using the interpolated travel 
times for the hour in which the journey begins.  The S→s and f→F travel is 
at some assumed off-network speed.  The fastest of these paths is deemed 
the shortest path. 

The decision node concept provides two primary benefits.  First, without the 
use of this concept, we would need to solve an ‘all shortest paths’ problem 
on 2,200 nodes for each of the three sets of travel times.  An ‘all shortest 
paths’ problem on n nodes can be solved using the Floyd-Warshall algorithm 
in O(n3) time (Papadimitriou and Steiglitz [25], p. 133).  With the decision 
node concept, we solve an ‘all shortest paths’ problem on approximately one 
third (765) of the nodes, and therefore reduce the computational effort by a 
factor of 33 = 27.  We also reduce the memory required to store the shortest 
path solutions by a factor of 32=9.  Second, we consider several paths 
involving different combinations of decision nodes when deciding which 
route to take between any origin and destination.  This means that the chosen 
route is a compromise between a pre-solved single fixed route, and the true 
shortest path as would be determined by solving a dynamic shortest path 
problem while the simulation is running. 

When an ambulance responds to a Priority 1 call, it travels at ‘lights and 
sirens’ speed.  We have captured this effect within the simulation using a 
multiplicative factor to decrease travel times from more standard travel 
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speeds.  This factor was fitted to data available in the database.  We are 
currently exploring other improvements to the modeling of travel speeds. 

4.5  BARTSIM 

BARTSIM  consists of the simulation program, the travel model, and various 
analysis tools.  The simulation and travel models have been outlined in 
previous sections.  This section describes the analysis capabilities of 
BARTSIM .  These capabilities may be applied to historical data as recorded 
by the St. Johns organization, as well as simulated data generated by the 
simulation component of BARTSIM .  Informed comparisons can then be 
generated between alternative strategies for operating the ambulance service.  
These analysis capabilities have proven very useful in St. Johns' decision 
making, several instances of which are mentioned below.   

To protect St. Johns' confidentiality, all figures presented in this section are 
based on simulated data, rather than actual historical data.  Road travel times 
have been perturbed, and all performance figures subjected to random 
perturbation.  The number of ambulances operating out of each base has also 
been modified, with the result that we see a lower level of performance and 
greater variability over the Auckland region in terms of response time than is 
actually the case with historical data. 

We record the response time performance on every call, so that a call can be 
classified according to which performance targets have been met.  These 
"micro-statistics" may be aggregated into response time performance within 
every suburb of Auckland, within every half hour of the week.  When a run 
consists of multiple weeks of real data (the runs usually consist of several 
months of real data), then results in the same time period in different weeks 
are accumulated together.  Statistics are also collected on ambulance 
utilization.   

By recording the response time performance on every call, we can generate 
plots such as that given in Figure 4.2.  In Figure 4.2 a black dot indicates that 
a call was answered within the 80% time requirement, a gray dot means that 
the call was answered within the 95% time requirement, and a white dot 
indicates that neither of these response time bounds was met.  (These colors 
have been modified from those used in the software to improve 
reproduction.)  One can visually identify localized areas of poor 
performance.  This is a very powerful capability that St. Johns have found 
extremely useful in allowing management to visually interpret data that was 
previously only available in aggregated database report tables.  In particular, 
using these plots we were able to verify a belief held by some at the St. 
Johns organization that Silverdale (a suburb of Auckland) needed more 
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resources, perhaps because of the strong recent growth in the region.  A 
long-dormant station in Silverdale has since been reopened. 

Figure 4.2  Response time performance in the Auckland region (data 
is illustrative only) 

 
 

Figure 4.3  Plot of the "reach" of Pitt St. Station during the late 
morning/early afternoon period on weekdays (data is illustrative only) 

 Key: Response time... 
 ≤ 80% target time 
 ≤ 95% target time 
 > 95% target time 
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BARTSIM  has proved to be a useful decision support tool for assisting with 
the allocation of ambulances to stations.  During periods of low call demand, 
performance targets can be met by using just a few stations to cover the 
entire Auckland region.  We can identify the “reach” of a station by 
producing plots like that of Figure 4.3. 

In this plot, we computed the travel time from a single station to all calls.  
By coloring the call locations as above, we obtain a vivid picture of the area 
that can be covered by positioning an ambulance at a given station.  Since 
travel time varies dramatically with the time of day, we can obtain a clearer 
picture of the station's reach at a given time by filtering the calls, so that we 
only display those arriving during a subset of the week.  Figure 4.3 contains 
only those Priority 1 calls received in the late morning/early afternoon on 
weekdays.  By repeating such plots for several stations, we can identify a 
suitable subset of stations that may be used to cover Auckland during 
various times. 

As mentioned above, we can filter the calls so that one can "zoom in" on a 
particular time, or a particular area of Auckland, or both.  The performance 
measures for the time and area of interest are then calculated, allowing one 
to identify response time performance for centrally located calls, for 
example.  A sample screenshot of such an analysis is given in Figure 4.4.  
The small window in the upper screen area contains detailed information on 

 Key: Response time... 
 ≤ 80% target time 
 ≤ 95% target time 
 > 95% target time 
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contractual target performance for a case where ambulance allocation is too 
light, so that the targets are not met. 

The plots described above are very useful for providing an overview of 
performance.  In addition, plots such as those in Figure 4.4 allow one to 
provide precise numerical information on performance in a localised region.  
It is also desirable to be able to summarise on-time performance (relative to 
the contractual targets) over the entire Auckland region at once; Figure 4.5 is 
an example of such a plot.  In this figure, the Auckland region has been 
broken down into rectangular regions.  Within each region, we compute the 
percentage of Priority 1 calls reached within the required time limit (10 
minutes for urban calls, 16 minutes for rural calls).  To allow one to focus on 
regions containing significant numbers of calls, regions containing a small 
number of calls are suppressed in the output.  Furthermore, the size (area) of 
the rectangles reflects the number of calls received within the region.  We 
can also substitute other performance measures, such as the number of calls 
received, or the percentage of Priority 2 calls reached within the required 
time limit, in place of the performance measure used in this example. 
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Figure 4.4  Filter applied to results to identify performance in the city 

centre (data is illustrative only) 

 
 

Figure 4.5 is perhaps the most useful of all the plots described thus far in 
terms of determining required ambulance allocations.  We vary the 
ambulance allocations between bases (usually heuristically, but one could 
also use optimisation methods), run the simulation, and then observe the 
performance in terms of these plots.  Using these plots, we can locate areas 
with both a poor overall on-time performance and a large number of calls.  
These areas are good candidates for extra ambulance resources.  
Furthermore, by filtering the calls by time and producing the same plots, we 
can identify times when extra ambulances are most likely to have a large 
impact on the performance measures. 

These plots revealed something unexpected when applied to historical data 
for the St. Johns organisation.  In one small suburban area (not shown), a 
disproportionate (relative to neighbouring areas) number of calls were 
appearing.  Upon investigation it was discovered that there are several 
accident and emergency clinics in this area, and such clinics generate many 
calls for St. Johns.  The St. Johns organisation was apparently unaware of 
this situation, and is considering our recommendation that they ensure that 
an ambulance be relocated close to this vicinity. 
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Figure 4.5  Plot of average service quality (indicated by the numerical 
values) and the number of calls (indicated by the size of the white squares) 
for grid areas in Auckland (data is illustrative only) 

 

BARTSIM  can also produce simple histograms of various characteristics of 
calls, such as response time, time spent by an ambulance at the scene, and so 
forth.  One such histogram is given in Figure 4.6, showing the time between 
a call being received and an ambulance being dispatched for a set of 
simulated metropolitan Priority 1 calls.  The histogram shows very clearly 
that for many of the calls, a large amount of time is spent before an 
ambulance is dispatched to a call.  Time spent in the dispatch process 
reduces the amount of time that an ambulance has to reach the scene of a 
callout if it is to meet the contractual performance targets.  A plot similar to 
this for the historical data recorded by St. Johns was one of our most 
important findings for the organisation.  Small decreases in these dispatch 
times can have (as simulations quantified) a large impact on contractual 
performance, so that it is worth devoting considerable effort to determining 
ways in which the dispatch time can be reduced.  Apparent inefficiencies in 
the dispatch process can, when considered in view of the overall goals of the 
organization, actually be viewed as efficiencies, especially when the 
alternative expense of additional ambulance units is considered. 
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Figure 4.6  Distribution of the interval (in minutes) between a call 
being received and an ambulance responding (by radio) that it is en 

route (distribution is illustrative only) 

 

 

BARTSIM  also produces statistics on ambulance utilisation.  These statistics 
may be imported into a spreadsheet (we use Microsoft Excel), and analysed 
from there.  An example of the type of graphs that can be produced is given 
in Figure 4.7.  This graph depicts the underlying demand near one of the 
stations operated by St. Johns.  Each row of bars reflects the performance 
that can be expected over the week when a given number of ambulances are 
stationed at the base.  In particular, each individual bar reflects, for a given 
number of ambulances and time of the week, the percentage of time that no 
ambulance is available to respond to incoming calls.  This information is 
extremely useful for getting a first approximation to the number of 
ambulances required at each individual base at different times of the week.  
Of course, one would cover some proportion of these calls from other 
stations, but the plot gives an impression of the underlying demand. 
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Figure 4.7  Ambulance utilisation/requirements at one station (data is 

illustrative only) 
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As a final example of the nontraditional uses of BARTSIM, we mention that 
at a certain stage St. Johns was considering the use of a dispatching strategy 
that was expected to have a number of effects.  First, it would better match 
the skills of the staff with the patient’s requirements at the scene, thus 
resulting in better care.  Second, it would result in fewer Priority 1 
dispatches being made because the improved data collection would allow 
more cases to be classified as Priority 2.  Priority 2 cases have a longer target 
response time so the performance targets for these cases would appear to be 
easier to meet.  However, vehicles on Priority 2 dispatches do not use lights 
and sirens, so the time a vehicle spends on a case increases if it is changed 
from Priority 1 to Priority 2.  The improved case classification would come 
at the cost of increased dispatch times.  These changes were built into the 
simulation using approximations for the extent of the effects, and then 
comparisons between the current and proposed system were drawn based on 
the plots discussed in this section.  The analysis played a large role in 
determining whether the proposed system would be adopted. 

4.6  CONCLUSOINS 

BARTSIM  has been used to evaluate several decisions considered by St. 
Johns, including the use of a dedicated non-emergency patient transfer 
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service, the possible introduction of a new dispatching method, and changes 
to where and when ambulances should be allocated.  The results of these 
studies have been used to shape policy at St. Johns, and we continue to work 
with them on these and other issues, including rostering requirements for 
their staff.  This experience has convinced us that simulation is a powerful 
tool in emergency service planning that is currently underutilized.  Good 
simulation visualization tools have proven invaluable as a communication 
tool for describing our work to management and staff of St. Johns.  The 
spatial data visualization capabilities have provided management with a 
significantly improved understanding of their current performance and, in 
conjunction with the simulation model, allowed results from what-if 
analyses to be readily communicated and understood. 

It is important in vehicle simulation models to accurately capture travel time 
information.  We have developed heuristics that allow both accurate 
modeling of travel times and rapid simulation run times.  In addition, we 
introduced the notion of a decision node, which dramatically decreases the 
time required to compute shortest paths in the networks.  This concept may 
be of interest in other applications where shortest paths must be calculated in 
large networks. 

The travel times predicted by our model are deterministic: the same time is 
always predicted for travel from one point to another at a given time on a 
given day.  However, travel times can vary tremendously depending on 
unpredictable events such as traffic congestion, weather, and traffic 
accidents.  It is our belief, based on some initial analysis with very simple 
models, that randomness in travel times can have a material effect on the 
predictions of a model, and this is an area that we are beginning to 
investigate.  Some care is needed, as it is not immediately clear how to 
generate random travel times.  In general, there will be “macro” effects, such 
as those described above, which affect many ambulance trips in the same 
way, whereas other “micro” effects, such as traffic light phasing, might be 
confined to a single ambulance trip. 

The combined simulation and data visualization tools introduced here have 
been of tremendous help to St. Johns, and several other ambulance 
companies have expressed interest in using the system within their 
organization.  In our experience, the combination of CAD databases, GIS 
visualization methods and simulation leads to more informed decision 
making, and better utilization of resources, than the previous state of the art 
has supplied. 

Since preparing this chapter, BARTSIM has been selected in a competitive 
tendering process for use in Melbourne, one of the larger cities in Australia.  
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As part of this work, BARTSIM has evolved into a more powerful system 
known as SIREN (Simulation for Improving Response times in Emergency 
Networks) (see http://www.optimal-decision.com).  Enhancements include 
call generation using non-homogeneous Poisson processes, introduction of 
stochastic travel times, more detailed case classifications, and more 
sophisticated simulation logic to handle the increased operational complexity 
of this new problem.  For example, SIREN can dispatch several vehicles to a 
call, one of which is left at the scene while the ambulance officers travel in 
the other vehicle to the hospital.  Upon leaving the hospital, this vehicle then 
travels back to the scene where the officers return to their original vehicles.  
The transport model has also been enhanced to reduce the memory 
requirements of the pre-computed shortest paths, allowing a network with 
6,000 nodes and 14,000 arcs to be handled.  This network also allows 
shortest distance (in addition to fastest time) routes to be calculated, and 
includes arc-specific times for lights and sirens travel.  It is pleasing to see 
the value that SIREN can add being recognized by another ambulance 
organization. 
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