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SUMMARY

The ambulance-planning problem includes operatiasdisions such as
choice of dispatching policy, strategic decisionshsas where ambulances
should be stationed and at what times they shopktabe, and tactical
decisions such as station location selection. Swilytion to this problem
requires careful balancing of political, economitdamedical objectives.
Quantitative decision processes are becoming istrgly important in
providing public accountability for the resourcecid®ns that have to be
made. We discuss a simulation and analysis softicarie’'BARTSIM’ that
was developed as a decision support tool for udghirwithe St. John
Ambulance Service (Auckland Region) in New Zeal¢8t Johns). The
novel features incorporated within this study iigu

- the use of a detailed time-varying travel model feodelling travel
times in the simulation,

- methods for reducing the computational overheadcis®d with
computing time-dependent shortest paths in thektraodel,

- the direct reuse of real data as recorded in abdséa (trace-driven
simulation), and

- the development of a geographic information sultesygs(GIS) within
BARTSIM that provides spatial visualisation of both higtar data and
the results of what-if simulations.

Our experience with St. Johns, and discussions evitargency operators in
Australia, North America, and Europe, suggest #rmergency services do
not have good tools to support their operations agament at all levels
(operational, strategic and tactical). Our expure has shown that a
customized system such agfSIM can successfully combine GIS and
simulation approaches to provide a quantitativasilat support tool highly
valued by management. Further evidence of theevaluour system is
provided by the recent selection ofaA®rSIM by the Metropolitan
Ambulance Service for simulation of their operatoin Melbourne,
Australia. This work has led to the developmenBaRTSIM’s successor,
SIREN (Simulation for Improving Response times in EmagyeNetworks),
which includes many enhancements to handle theegreamplexities of the
Melbourne operations.
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4.1 INTRODUCTION

In 1997 we were contacted by the St. Johns Ambel&wervice (Auckland
region) in New Zealand, henceforth referred to &sJs8hns. St. Johns
wanted assistance in developing rosters for theliudance personnel. This
initial contact led to our study of ambulance seewinanagement, and to the
development of a comprehensive simulation and aisakpol to assist in
decision making. (We should emphasize that hesewtbrd “simulation”
refers to a computer software tool, and not to ré@ication of realistic
incident conditions where volunteers pretend toehesrtain injuries.) This
chapter reviews some of the issues faced by ShsJoianagers, and indeed
ambulance service managers all over the world,disclisses the methods
and tools that we developed to assist them.

The manager of an ambulance service faces a hodgliffafult policy
guestions related to operation of the service. filewing list is only a
sample.

— How many ambulances should be employed and wétevald they be
stationed?

— What policies and procedures should be followedalls for assistance
are received in order to ensure rapid responsealts while obtaining
quality information to allow appropriate dispatain

— Should ambulances be used for non-urgent patemifers in addition to
the usual emergency response function?

— How should dispatching decisions be made whertipieilvehicles are
available for dispatch?

— How can one examine the tradeoffs associated s¥itiring a limited
number of ambulances between a high-demand meitaparea and a
low-demand rural area? Here the issue is “fairneéssthe sense of
coverage, versus “efficiency” in the sense of plgcambulances where
they will be in high demand.

This is a rather daunting list of problems, to wha great deal of research
effort has been focused in the past. Swersey [jiges a survey of work in
emergency service planning that serves as an ertcahtry point for the
literature. There is a very large literature ochsproblems, so one might
very well ask, what is the motivation for revisgithese problems?

A key difference between the ambulance-plannindlera as faced before
1994 and the problem as faced today is the presmlehdata. Virtually all
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ambulance operations now employ some form of coamgaitled dispatch
(CAD) system that automatically logs the details aafls as they are
received. This information is a veritable goldmifee planners! Without

CAD data, ambulance studies typically relied on ua@rcollection of data;

see, for example, Swoveland et al. [2], where sofitbe required data was
manually recorded over a period of two weeks.

A second factor that motivated much of the develepis discussed in this
chapter is the difference in the questions thatoaieg asked. Much of the
early development of ambulance theory focused engtiestions of where
and when ambulances should be operated. Whilgjthastion is central to
much of what we do, we are also motivated by “figeanularity” questions
such as how call taking and dispatching shoulddstopmed.

To answer these and other questions at St. Jolensleweloped a discrete-
event simulation of ambulance operations. By malaijng the parameters
of the simulation, it is possible to address, guantitative manner, many of
the questions mentioned earlier. The flexibilifydgscrete-event simulation
means that one can avoid simplifying assumptioasdre otherwise needed
to obtain performance measure predictions usingrothethods, such as
queueing theory or Markov chain analysis. Perhlapdiggest advantage of
simulation is that it is easy to explain as a denisool to both managers and
frontline personnel, so that after they understiéwiedmodel, they place great
store in its results. Obtaining this “buy-in” fromhecision makers and
frontline personnel is crucial in moving from mogeédictions to decisions
and implementation.

To reinforce these points, consider the hyperculbeleinas surveyed in
Larson and Odoni [3], and the specialization of thiodel to ambulance
planning in Brandeau and Larson [4]. The hypercubedel, while
possessing great predictive power, also requirgsrakassumptions with
regard to the way that ambulances are dispatcheds gnly steady-state
results, and requires certain assumptions aboufotime of “service time”
distributions, at least in the case where callugughen all units are busy.
Moreover, explaining how it works to managers isanewhat daunting
task, so that it is hard to instill a feeling oinfidence in decision makers as
to its predictions. In spite of these disadvargageseems to work very well
in practice, so it remains a powerful modeling apgh that, for a subset of
the questions considered here, is a viable aliemed simulation.

Of course, simulation is not new to the ambulaneeing problem. Early
examples are Savas [5] for ambulance operatioridein York City, and
Fitzsimmons [6, 7] for operations in the San FedwarValley in Los
Angeles. Swoveland et al. [2] used simulationitaHe parameters of a
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metamodel that predicts expected ambulance responee The expected
response time as predicted by the metamodel was apémized using

branch and bound. Simulation was used by Fujivearal. [8] to carefully

examine a small number of alternative plans thatewsbtained from an
optimization model developed in Daskin [9]. Lubiaad Mielczarek [10]

developed a simulation model of rural ambulanceratpns in Poland.

Ingolfsson, Erkut and Budge [11] used simulatiomédp in siting a "single-

start station,” i.e., a station from which multienbulances begin their
shifts. In addition, the use of simulation as al to validate the selections
of optimization models is almost universal in titerhture, and continues to
this day. For recent examples see Erkut et al}, [Harewood [13] and

Ingolfsson, Budge and Erkut [14]. For a recent syrof optimization

methods in ambulance location problems see Broggdraporte and Semet
[15]. Larson and Odoni ([3], Chapter 7) discussegal considerations
related to the simulation of problems similar irrnfioto the ambulance-
planning problem.

So what is new in this study?

First, our simulation directly reuses the data reed in the CAD database.
Real calls are fed through the simulation, rath@ntcalls generated using
the usual simulation techniques. Justification dor use of trace-driven
simulation and discussion of some of the key issa@sbe found in Section
4.3. Such an approach resolves many difficultiesjuding accurate

modeling of the complex dependence structure ofrtftmation related to

calls including time of occurrence, location, néedtransport and so forth.
Of course, it also introduces other problems.

Second, we employ a sophisticated model, adapted & model developed
and used by the Auckland Regional Council [16] fegional planning
purposes, to compute travel times. These tranediare used to determine
which ambulance to dispatch to a call, the traweétfor the ambulance to
reach the call, and so forth. The effort we devotthis topic is justified by
the great sensitivity of results to travel timeussptions, as noted both by
the authors in a preliminary queueing analysis, lan@ large proportion of
the papers dealing with ambulance planning. Farmgte, Carson and Batta
[17] describe how the 30% savings predicted byrthedel turned into a
6% savings in actual tests, primarily due to thedetonot effectively
capturing a certain travel time/distance relatignshThe use of a simpler
model based on the “square root law” [18, 19] treotapproximations leads
to rather large errors due to the highly irreggleography of Auckland; it is
basically an isthmus between two oceans, contaimagy dormant volcano
vents. The complex waterways and vents provideifsignt barriers to
travel, leading to a somewhat convoluted road neétwo A further
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complication is that travel times are heavily tidependent. The simulation
makes extensive use of the travel model, and wedagnggveral heuristics to
reduce the computational effort involved. Manyttod techniques used here
could be used in other applications requiring trawee calculations where
the travel time is time-dependent.

Third, we employ a geographic information systemiS)Gto display
simulation results and to examine historical perfance calculated from
real data. To our surprise, none of the ambulaeceice providers that we
have talked with have used such tools in the pastli all have been
tremendously excited by their potential. This leasurred in spite of the
growing number of sites where a GIS is being usedraw insights from
recorded data; see Peters and Hall [20]. Of cous®s have been used
many times to obtain input for simulation modeksg(se.g., [21]), but GISs
are not often used for displaying discrete-eveniustion output. The
graphical displays produced by GIS programs all@eigsion makers to
digest copious amounts of information that werevipngsly given in large
tables. GIS output displays are currently undéizat in discrete-event
simulation studies, perhaps because of the fortheomodels involved. But
as the ability to link discrete-event simulationfteare, databases, and
standard GIS packages together increases, the fuGSooutput display
should become more prevalent.

We have been contacted many times by individudkrested in applying
BARTSIM methodology to planning problems in the other emecy
services, namely fire and police departments. &lee many potential
applications to these areas from the work presdmteg, and we believe that
such extensions could be tremendously helpful floenpractical standpoint.
However, it is important to recognize some of thtal\differences in these
problems from the ambulance-planning problem. &hdifferences mean
that substantial effort would be required to tatlee planning methods used
here. For example, the utilization rates of fippleances are typically on the
order of a few percent, while it is not uncommon have ambulance
utilization rates, at least in metropolitan areafNew Zealand, as high as
60%. In terms of police patrol planning, an impattfunction of police
patrols is to maintain police visibility, so theoptems one faces can be quite
different.

The remainder of this chapter is organized as Vi@lo In Section 4.2 we
discuss some of the particulars of the St. Johoblgm, and outline the
process that is followed when St. Johns receivesmagrgency call. Section
4.3 provides an overview of the simulation modedentying BARTSIM and

describes some of the data-reuse issues alludebdwe. Section 4.4
describes the travel model and the heuristics tsedduce computational
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overhead. In Section 4.5 we introducerRBSIM itself, outline some of its
GIS-based analysis capabilities, and describe heset analysis capabilities
were used to provide useful insights into severtigons faced by St.
Johns. Conclusions and suggestions for futureareBeare offered in
Section 4.6.

Further details on BRTSIM can be found on the ARTSIM web site
(www.esc.auckland.ac.nz/stjohn).

4.2 THE PROBLEM FACED BY ST. JOHNS

St. Johns contracts to Crown Health Enterprisesupply emergency

medical transport. The contracts stipulate thad&tns supplies a minimum
level of service as specified by certain perforneatargets. These targets
relate to response time, which is defined as thee tinterval between

receiving a call to the time that an ambulancd &rsives at the scene. The
performance targets are broken down by the locatidhe call (whether the

call is in metropolitan Auckland, or in a rural ayeand the priority of the

call. St. Johns classifies its emergency callgmmsed to patient transfers
and other non-emergency calls, into two levelsorRy 1 calls are those for

which an ambulance should respond at all possji#ed; including the use
of lights and sirens. Priority 2 calls are calts Wwhich an ambulance may
respond at standard traffic speeds. The perforengengets that St. Johns
faces are shown in Table 4.1.

Table 4.1 Contractual service targets

Priority 1 Priority 2
Metropolitan 80% in 10 minutes 80% in 30 minutes
95% in 20 minutes
Rural 80% in 16 minutes 80% in 45 minutes

95% in 30 minutes

It is interesting to note that no guidance is giwenhe contract as to how
these figures need to be interpreted. Interprdtiegargets as applying, for
example, to the entire Auckland area over the entgar in aggregate will
lead to far lower resource requirements than assyndr example, that the
targets must be met in each suburb during eachdfaach day. One of the
goals of this project has been to develop toolsadsist management in
exploring performance under a range of possiblerpmetations of the
contract.
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St. Johns uses a computer-aided dispatch (CADkmyshat logs, in a

database, information on every call that is reakiveThe database then
enables St. Johns to prepare monthly reports thsdridbe how well they

meet their performance targets. When St. Johss dontacted us, these
reports indicated that the organization was findingore and more difficult

to meet its service targets. It was (and continiadse) believed that this is
primarily due to increasing congestion on Aucklanalds.

Figure 4.1 The ambulance dispatch and service delivery process

Ambulance waiting at station

| A: New cIaII arrives |
I

Respons | B: Call allocated to cI:Iosest free ambulanzfe

Time | C: Ambulance departs for incident scené
L
[
| D: Ambulance arrives at scene |
I
Service | E: Ambulance departs for hospital |
I

Time |

U

F: Ambulance arrives at hospital |
[

I
| G: Ambulance departs for station |
I

1
| H: Ambulance dispatched to new call |

|
| I: Ambulance arrives back at station |

T
Ambulance waiting at station

To fully understand these service targets it isessary to understand the
ambulance dispatch and service delivery procesgur&i4.1 shows this
process, and identifies the contractual respomse tiiscussed earlier. This
flowchart also helps to explain the key steps #rat captured within the
simulation model. When a call arrives at St. Joltef in the control room
identify an available ambulance (i.e., an ambulaeiteer idle at its base
station or returning from a previous job) and dispathis vehicle to the
scene. After initial treatment at the scene, thbwdance typically transports
the patient to a hospital, performs a ‘handoverhtspital staff, and then
returns to its base station. If transport is mofired, the ambulance returns
directly to its base from the scene. In eitherecéise vehicle is considered
available to receive calls as soon as it begingmitg to base.
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4.3 THE SIMULATION MODEL

The simulation model is written using a high-lepebgramming language
without using specialist simulation software. Himulation is trace-driven,
and ambulances are routed using a time-dependerdl tmodel. Each of
these aspects of the simulation is now discussetbiie detail.

We decided not to use an "off-the-shelf" packagesfmulating St. Johns'
operations for several reasons. First, the logioatplexity of the decisions
that must be made within the model would be diffito code in a standard
package. For example, the dispatcher may redaecambulance that is
responding to a Priority 2 call to a Priority 1lcaBuch a decision requires
detailed knowledge of travel times, ambulance looatand so forth. This
decision is far easier to code using custom soéhviraia high-level language
(C) than standard simulation packages. The sepsambn was speed. The
simulation must be very fast to facilitate the Brgumber of what-if
analyses that need to be performed. Consequewvdldecided to code the
simulation in C, and then embed the simulation pmogwithin a custom-
developed Microsoft Visual C++ application to pmeia user-friendly
interface. Third, this approach has allowed ustightly couple the
simulation with specialized data visualization (B1®ols, providing
integration benefits that would have been hardctiewve using any of the
off-the-shelf systems that were available at theeti (Since the software
development was completed, simulation softwarerhade great strides in
allowing integration with database software andecgdgments written in
other languages.)

We were very lucky in that several years’ worthhidftorical data was made
available to us. We used this data by runningetdriven simulations: the
calls that we simulate are real calls that are nedtbm a stored file. See p.
133 of Bratley, Fox and Schrage [22] for a discusf issues relating to
the direct reuse of historical data from the gelnpeaspective of discrete-
event simulation. We confine our remarks to spexifrelated to the
ambulance-planning problem.

The data used from each call are call arrival tioad, priority, call location,
time spent by an ambulance at the scene, destin@iovhich the patient
was transported (if any) and time spent at theims#n. The use of this
historical data obviates the need to develop &ttatl model for generating
calls. This is a decisive advantage, as the aioel structure of calls, both
temporally and spatially, is rather complex; sew, dxample, Lubicz and
Mielczarek [10]. For example, the location of d asomewhat correlated
with the time of day at which it is received.
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Of course, if we were to useaABTSIM for long-range planning (say more
than 2 years into the future), we might be moreyvedrout using historical

data, because the existing data may not be repatisenof conditions in the

future. In such a case, one might want to usepgmoach similar to that

used in the development of the United Network fogad Sharing Liver

Allocation Model [23]. That model uses non-homogms Poisson

processes to generate “arrival times”; other infation about the “arrival” is

obtained through a bootstrapping procedure.

An area of concern that arises in using historizah in this fashion is data
validity. Indeed, many of the logged calls contamtries that are difficult to
believe. For example, it is not uncommon to semtihns of 1 second for
the time spent at the scene of an incident. Dgons with ambulance
personnel revealed that this can occur when peetdorget to notify the
CAD system (through a button situated on the deasttbof an ambulance)
that they have arrived at the scene. When theljzeetheir error, they
“catch up” by pushing the button multiple timeshid sort of error not only
corrupts the recorded time spent at the scenglboitany surrounding times,
such as travel times, that are used elsewherentifglag such errors and
devising methods for dealing with them are impdrtasearch areas that we
have not explored. Instead, we adopted an ad-famegure where the data
for a particular call is “cleaned” if it is “closeb being reasonable, or the
call is deleted if the logged data is beyond rep&f course, if too many
calls require cleaning or deletion then we showddcbncerned, and this is
the reason why more research is required in tleig.aFortunately, in the St.
Johns application such calls appear to occupy ysreall percentage of the
total calls processed, so they cannot greatly shaapverall results.

The use of trace-driven simulation allows one tal ddfectively with many

other issues, such as that of multiple-responds. cMultiple response calls
occur, for example, because the personnel whaoaliyitrespond are not
legally qualified to administer needed drugs, ocdwse the number of
injured parties is large. Each response to a pieltesponse call is logged
in the St. Johns CAD database and linked to preventries. Within our

simulation we simply replay these calls. This veiyple approach could
lead to potential errors when the personnel thatally respond in the

simulation are qualified to assist the patient,tisat further ambulance
responses are not necessary. A more sophisticiteaation approach
might avoid such errors by carefully analyzing ttega record, but we did
not do this. In any case the number of such maltipsponse calls is quite
small.

Ambulance availability is specified in terms of whend where an
ambulance is to be brought into operation, and wihés to be removed
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from circulation. This allows shifts to be effe@ily captured, along with
(for example) meal breaks that must be held atathbulance's base and
have a certain minimum duration.

A vital component of the simulation is a travel émmodel that computes
travel times between any pair of locations in Aackl at any time. An
important step in this project has been to estabtisllaborative links
between St. Johns and the Auckland Regional Cqumddcal government
body actively involved in developing strategic pglifor the city of
Auckland. The Auckland Regional Council made aldé a road network
model that details both road layout information #édel times along roads
(arcs) at various times of the day, including thermng and evening rush
periods. The use of this data in®'SIM is discussed in more detail in the
next section.

It is possible to run the simulation and see amimdaoperations unfolding
on the screen. In particular, one sees ambulanaesling along the road
network to and from calls. As calls arrive, theg plotted on the screen in a
color indicating their priority. As calls are agsed to an ambulance, the
calls change color, indicating that they are beiagved. This animation is
extremely useful for verification and validationrpases, and for visualizing
St. Johns' operations. It is also tremendouslpfbkin getting St. Johns
personnel to accept the simulation model as a nedd® reflection of
reality, and has proven invaluable in communicatig work to staff and
management throughout the organization. This aggebe simulation may
seem somewhat trivial from a theoretical point oéwy but has been
absolutely critical in obtaining “buy in” from thiecision makers. We view
this selling point as a key advantage of simulatimer other operations
research methodologies for the ambulance-plannioblgm. The BRTSIM
approach is intuitive and easy to understand faplgewith non-technical
backgrounds.

When one wishes to collect performance measures,attimation is an
unnecessary computational overhead. In this Gagmation is turned off,
and the simulation proceeds without graphical faedb We do not report
confidence intervals for our performance measurgkis is mostly due to
the fact that the theory of error estimation frawce-driven simulations is
not well understood, so that it is not clear howdevelop confidence
intervals. This is an area where more researcld aautainly help.

A simulation model on the scale oRBTSIM requires a great deal of effort
in verification and validation to ensure that theodml that has been
implemented is indeed what was desired, and tlwattbdel appropriately
represents reality. Instead of entering into adidcussion of our efforts in
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this regard, which are mostly direct applicatioristiee usual methods as
outlined in Law and Kelton [24], we content ourgswvith a few examples.

The animation facilities of BRTSIM proved invaluable in verifying the
model. By watching simulated ambulance operatawes extended periods,
many errors in the database of real calls weretifteth As well as

replaying existing calls, ARTSIM also has a facility for interactively
generating calls. This was used to place callsti@tegic locations for
checking that the ambulance responses were astegpeShortest paths
were generated and displayed over the road netteovkrify the quality of

the chosen routes.

The validation of a model involves ensuring that thodel appropriately
represents reality. In this regard, we worked w&@ogely with a number of
individuals at St. Johns. These people were gloselolved in the
development phase, and also assisted in perfortesiguns. Furthermore,
we demonstrated the software and described thdatiou model to groups
of ambulance drivers, who provided feedback ongihality of the model.
These steps also helped in the accreditation afnbeel, where the model is
accepted and trusted by decision makers. The idecimakers were so
closely involved in the development and testinghaf model that they felt
some form of “ownership” over the system.

4.4 THE TRAVEL TIME MODEL

Auckland is built around two large harbors betwésn coastlines, and is
dotted with dormant volcano vents. Consequentlyag a highly irregular
topology. Any plausible simulation of road trawnnot rely on ‘as the
crow flies’ routes, or simple modifications of teet take into account a
moderate number of obstacles, but must incorpdmadeviedge of the road
network including the effects of motorways and majbighways.
Furthermore, the model must also incorporate ttenafiramatic changes in
travel times that arise from varying congestiorelsvacross the day and the
week.

We obtained road data from the Auckland Regionalin€d detailing a
network with about 2,200 nodes and 5,000 directed.a This Auckland
Regional Transport Model (ART) is a relatively dieta transport model
developed for medium term (15-25 years) project policy planning and
evaluation of regional transport strategy [16]. affic volumes are
determined in ART using equilibrium solutions drivly origin-destination
trip demands. Because the trip demands are detednuising an underlying
demographic model, travel times can be predictest amy planning horizon
for which population forecasts are available. Tatdity to perform long-
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term planning is most useful when evaluating sgiatdecisions such as the
location of ambulance bases.

We denote the ART road network Bg(V,A), whereV is the set of nodes,
andA is the set of directed ardsj) from nodeillV to jOV. By entering trip

demands for different times of the day, a rangecfilibrium solutions can
be found, each with different travel times for thes. The ARC data
includes the 8 a.m. morning peak travel titﬁe 12 p.m. midday travel time
ti?,
combinations of these times are used to estimatdrével timetiz‘ during
any other houh of the day. The weights are chosen using regnessmdels
based on actual travel times available in the@ind database.

and 5 p.m. evening peak travel tir‘qﬁ for each arci(j). Weighted

We could use this model to compute dynamic shopatts for ambulances
based on time-dependent travel times wheneveritigation requires such
paths. However, this would be a time-consuming matation that would
greatly slow down the simulation. As a reasonadgproximation, we
instead pre-compute and store a range of shorétlss @s follows. Of the
2,200 nodes in the network, 1,435 are used toapatocate bends in the
roads, while 765 are ‘decision nodes’ that defiom{s at which a driver has
a choice of direction (ignoring U-turn options). ok formally, a nodg
belongs to the sdd of decision nodeg[1D, if there exists both an arg, (
j)OA and two distinct arcs frof (j, ki) CA, (j, ko) DA with ki#j andk,#j.

For each pair of decision nodé3D andj0D, we pre-compute three shortest
paths, R, PB* and R/" using the morning peak, midday and evening peak

’ iJ )
travel times respectively. This decision-node pafbrmation is stored in
memory.

During the simulation we need to find the shorfesth S— F between any
arbitrary start poing and arbitrary finish poirfE. The shortest path process
we use is heuristic, but nevertheless appears duida a good level of
accuracy.

We note that andF need not correspond to nodes in the network. fiféte
step in our process is to determine the spatiddiyest non-motorway nodes,

sV and fIV, to S and F, respectively. We next determine the sets of
decision nodesD(s)ID andD(f)D, that are ‘immediately connected’ $o
andf. The set of decision nodBgs) is given byD(s)=Tsn D, whereT1G is

a tree with roots and with branches each constructed by adding ‘anaw
pointing’ arcs until the first decision node ischad. More formally]; is
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initialized with rootTs={s}, and thenTs is grown by iteratively adding each
arc/node pair {( j), j} : iO0 TAD, (i, j)UA. Similarly D(f) is determined from

D(f)=T;nD, whereT; is a tree built at by adding all ‘inward pointing arcs’,
i.e., adding each arc/node pair

{(i,J), i} JOTAD, (i, j)OA.

We then consider all the paths given by

h
P={S-s-0, - - F:dD(s), dOID(f), h({8,12,17}},

whereS- s (andf - F) denotes ‘as the crow flies’ travel frofto s (andf to
F), s— ds denotes the unique path frato dsin T,

h

ds — o

denotes the pre-computed shortest path from decisimleds to decision
noded; at hourh, h[1{8,12,17}, andd; - f denotes the unique path fraftof

in T;. Each of these paths is then evaluated usingntieepolated travel
times for the hour in which the journey begins.e® s andf- F travel is
at some assumed off-network speed. The fastetftesk paths is deemed
the shortest path.

The decision node concept provides two primary fieneFirst, without the
use of this concept, we would need to solve ansfadirtest paths’ problem
on 2,200 nodes for each of the three sets of tweds. An ‘all shortest
paths’ problem om nodes can be solved using the Floyd-Warshall ghgor
in O(n°) time (Papadimitriou and Steiglitz [25], p. 133Vith the decision
node concept, we solve an ‘all shortest paths’ lpralon approximately one
third (765) of the nodes, and therefore reducectimaputational effort by a
factor of 3 = 27. We also reduce the memory required to stereshortest
path solutions by a factor of>®. Second, we consider several paths
involving different combinations of decision nodefien deciding which
route to take between any origin and destinatibinis means that the chosen
route is a compromise between a pre-solved sirgge froute, and the true
shortest path as would be determined by solvingreamhic shortest path
problem while the simulation is running.

When an ambulance responds to a Priority 1 catkaitels at ‘lights and
sirens’ speed. We have captured this effect withan simulation using a
multiplicative factor to decrease travel times franore standard travel
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speeds. This factor was fitted to data availabléhe database. We are
currently exploring other improvements to the modgbf travel speeds.

4.5 BARTSIM

BARTSIM consists of the simulation program, the travel ebodnd various

analysis tools. The simulation and travel modedsehbeen outlined in

previous sections. This section describes theysisalcapabilities of

BARTSIM. These capabilities may be applied to historizth as recorded
by the St. Johns organization, as well as simulafd generated by the
simulation component of ARTSIM. Informed comparisons can then be
generated between alternative strategies for dpgréite ambulance service.
These analysis capabilities have proven very usef@t. Johns' decision
making, several instances of which are mentionéalabe

To protect St. Johns' confidentiality, all figurg®sented in this section are
based on simulated data, rather than actual hislatata. Road travel times
have been perturbed, and all performance figurdgesied to random
perturbation. The number of ambulances operatingpbeach base has also
been modified, with the result that we see a loeeel of performance and
greater variability over the Auckland region innerof response time than is
actually the case with historical data.

We record the response time performance on evdrysoahat a call can be
classified according to which performance targetsehbeen met. These
"micro-statistics" may be aggregated into respdime performance within

every suburb of Auckland, within every half hourtbé week. When a run
consists of multiple weeks of real data (the russgally consist of several
months of real data), then results in the same fereod in different weeks

are accumulated together. Statistics are alsoeatell on ambulance
utilization.

By recording the response time performance on ewalty we can generate
plots such as that given in Figure 4.2. In Figu&a black dot indicates that
a call was answered within the 80% time requiremeigray dot means that
the call was answered within the 95% time requireimand a white dot

indicates that neither of these response time bowas met. (These colors
have been modified from those used in the softwaye improve

reproduction.)  One can visually identify localizeareas of poor

performance. This is a very powerful capabilitattist. Johns have found
extremely useful in allowing management to visuahgrpret data that was
previously only available in aggregated databapertdgables. In particular,
using these plots we were able to verify a beliefitby some at the St.
Johns organization that Silverdale (a suburb of kkarcd) needed more
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resources, perhaps because of the strong recemthgio the region. A
long-dormant station in Silverdale has since beepened.

Figure 4.2 Response time performance in the Auckland region (data
is illustrative only)

Key: Response time...
W < 80% target time
O < 95% target time
U > 95% target time

Figure 4.3 Plot of the "reach” of Pitt St. Station during the late
morning/early afternoon period on weekdays (data is illustrative only)
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R
Key: Response time...
W < 80% target time
O < 95% target time
U > 95% target time

BARTSIM has proved to be a useful decision support taoh$sisting with
the allocation of ambulances to stations. Duriegquls of low call demand,
performance targets can be met by using just ad&ons to cover the
entire Auckland region. We can identify the “reaaf a station by
producing plots like that of Figure 4.3.

In this plot, we computed the travel time from ag¢ station to all calls.

By coloring the call locations as above, we obtaiivid picture of the area
that can be covered by positioning an ambulance given station. Since
travel time varies dramatically with the time ofydae can obtain a clearer
picture of the station's reach at a given timeilgring the calls, so that we
only display those arriving during a subset of week. Figure 4.3 contains
only those Priority 1 calls received in the latermiog/early afternoon on
weekdays. By repeating such plots for severalostst we can identify a
suitable subset of stations that may be used tercéwckland during

various times.

As mentioned above, we can filter the calls so dre can "zoom in" on a
particular time, or a particular area of Auckland,both. The performance
measures for the time and area of interest are ¢hlenilated, allowing one
to identify response time performance for centrdlbcated calls, for
example. A sample screenshot of such an analygisven in Figure 4.4.
The small window in the upper screen area conténailed information on
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contractual target performance for a case whereulmbe allocation is too
light, so that the targets are not met.

The plots described above are very useful for pliogi an overview of
performance. In addition, plots such as thoseiguré 4.4 allow one to
provide precise numerical information on performairca localised region.
It is also desirable to be able to summarise ore-firformance (relative to
the contractual targets) over the entire Aucklaagian at once; Figure 4.5 is
an example of such a plot. In this figure, the Waod region has been
broken down into rectangular regions. Within eesffion, we compute the
percentage of Priority 1 calls reached within tlequired time limit (10
minutes for urban calls, 16 minutes for rural gall¥o allow one to focus on
regions containing significant numbers of callgjioas containing a small
number of calls are suppressed in the output. hEurtore, the size (area) of
the rectangles reflects the number of calls receivihin the region. We
can also substitute other performance measurels,asithe number of calls
received, or the percentage of Priority 2 callschea within the required
time limit, in place of the performance measurelusehis example.
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Figure 4.4 Filter applied to results to identify performance in the city
centre (data is illustrative only)

T —— T

psiz
306 daps at 24.0 hre/day = 306.0 davs warth of data
n 18: [40.3%<10 min, 36.4%<20 min) 11.5 mins, 0.4calls/hr (2985 callz)

20 [88.0%=30 min, 88.0%<30 min) 16.9 mins, 0.3calls/hr (2516 callz)

Figure 4.5 is perhaps the most useful of all tresptiescribed thus far in
terms of determining required ambulance allocation®We vary the
ambulance allocations between bases (usually tieatig, but one could
also use optimisation methods), run the simulatarg then observe the
performance in terms of these plots. Using thdsts,pwe can locate areas
with both a poor overall on-time performance anidrge number of calls.
These areas are good candidates for extra ambulaeseurces.
Furthermore, by filtering the calls by time and gwoing the same plots, we
can identify times when extra ambulances are nikslylto have a large
impact on the performance measures.

These plots revealed something unexpected wheriedpjal historical data

for the St. Johns organisation. In one small dodnrarea (not shown), a
disproportionate (relative to neighbouring areasymher of calls were

appearing. Upon investigation it was discoveredt tthere are several
accident and emergency clinics in this area, awti slinics generate many
calls for St. Johns. The St. Johns organisatios a@parently unaware of
this situation, and is considering our recommeiaathat they ensure that
an ambulance be relocated close to this vicinity.
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Figure 4.5 Plot of average service quality (indicated by themerical
values) and the number of calls (indicated by ikhe of the white squares)
for grid areas in Auckland (data is illustrativdyyn

BARTSIM can also produce simple histograms of variousaderistics of
calls, such as response time, time spent by anlamd®miat the scene, and so
forth. One such histogram is given in Figure 4l&wing the time between
a call being received and an ambulance being dispdt for a set of
simulated metropolitan Priority 1 calls. The hgtam shows very clearly
that for many of the calls, a large amount of timespent before an
ambulance is dispatched to a call. Time spenthm dispatch process
reduces the amount of time that an ambulance hasaith the scene of a
callout if it is to meet the contractual performarargets. A plot similar to
this for the historical data recorded by St. Jolas one of our most
important findings for the organisation. Small &ses in these dispatch
times can have (as simulations quantified) a langgact on contractual
performance, so that it is worth devoting considiraffort to determining
ways in which the dispatch time can be reducedpaignt inefficiencies in
the dispatch process can, when considered in vigheoverall goals of the
organization, actually be viewed as efficienciespeeially when the
alternative expense of additional ambulance usit®nsidered.
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being received and an ambulance responding (by radio) that it is en
route (distribution is illustrative only)
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BARTSIM also produces statistics on ambulance utilisatibhese statistics
may be imported into a spreadsheet (we use Midr&afel), and analysed
from there. An example of the type of graphs tiaat be produced is given
in Figure 4.7. This graph depicts the underlyirgndnd near one of the
stations operated by St. Johns. Each row of kedlscts the performance
that can be expected over the week when a giverbeuof ambulances are
stationed at the base. In particular, each indadidar reflects, for a given
number of ambulances and time of the week, theeptaige of time that no
ambulance is available to respond to incoming callis information is

extremely useful for getting a first approximatido the number of

ambulances required at each individual base atrdift times of the week.
Of course, one would cover some proportion of theaks from other

stations, but the plot gives an impression of theenlying demand.
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Figure 4.7 Ambulance utilisation/requirements at one station (data is
illustrative only)
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As a final example of the nontraditional uses eRBSIM, we mention that
at a certain stage St. Johns was considering #hefus dispatching strategy
that was expected to have a number of effectsst, Firwould better match
the skills of the staff with the patient's requiremts at the scene, thus
resulting in better care. Second, it would redualtfewer Priority 1
dispatches being made because the improved ddtctamh would allow
more cases to be classified as Priority 2. Pyi@&itases have a longer target
response time so the performance targets for eeses would appear to be
easier to meet. However, vehicles on Priority sbdtches do not use lights
and sirens, so the time a vehicle spends on aigassases if it is changed
from Priority 1 to Priority 2. The improved cadagsification would come
at the cost of increased dispatch times. Thesagasawere built into the
simulation using approximations for the extent bé teffects, and then
comparisons between the current and proposed systeendrawn based on
the plots discussed in this section. The analptiyed a large role in
determining whether the proposed system would betad.

4.6 CONCLUSOINS

BARTSIM has been used to evaluate several decisions evedidy St.
Johns, including the use of a dedicated non-emeyg@atient transfer
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service, the possible introduction of a new didpiaty method, and changes
to where and when ambulances should be allocaf@te results of these
studies have been used to shape policy at St. Jahdsve continue to work
with them on these and other issues, includingerosd requirements for
their staff. This experience has convinced us $iatlation is a powerful
tool in emergency service planning that is cursenthderutilized. Good
simulation visualization tools have proven invaligahs a communication
tool for describing our work to management andfspéfSt. Johns. The
spatial data visualization capabilities have predidnanagement with a
significantly improved understanding of their cunrg@gerformance and, in
conjunction with the simulation model, allowed résufrom what-if
analyses to be readily communicated and understood.

It is important in vehicle simulation models to ately capture travel time
information. We have developed heuristics thabvallboth accurate

modeling of travel times and rapid simulation rimes. In addition, we

introduced the notion of a decision node, whichhtitically decreases the
time required to compute shortest paths in the oedsv This concept may
be of interest in other applications where shoesiis must be calculated in
large networks.

The travel times predicted by our model are deteistic: the same time is
always predicted for travel from one point to amotht a given time on a
given day. However, travel times can vary tremerstio depending on
unpredictable events such as traffic congestionather, and traffic
accidents. It is our belief, based on some indialysis with very simple
models, that randomness in travel times can haret@rial effect on the
predictions of a model, and this is an area that ase beginning to
investigate. Some care is needed, as it is noteumtely clear how to
generate random travel times. In general, thelleb@i“macro” effects, such
as those described above, which affect many ambel&ips in the same
way, whereas other “micro” effects, such as tralifitit phasing, might be
confined to a single ambulance trip.

The combined simulation and data visualizationgdntroduced here have
been of tremendous help to St. Johns, and sevehsr eambulance
companies have expressed interest in using theersyswithin their
organization. In our experience, the combinatibrCAD databases, GIS
visualization methods and simulation leads to mmf®rmed decision
making, and better utilization of resources, tham firevious state of the art
has supplied.

Since preparing this chapteraBrSIM has been selected in a competitive
tendering process for use in Melbourne, one oldhger cities in Australia.
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As part of this work, BRTSIM has evolved into a more powerful system
known as &REN (Simulation for Improving Response times in Emeye
Networks) (see http://www.optimal-decision.com).nhBncements include
call generation using non-homogeneous Poisson ggesg introduction of
stochastic travel times, more detailed case claatibhs, and more
sophisticated simulation logic to handle the insegboperational complexity
of this new problem. For exampleREN can dispatch several vehicles to a
call, one of which is left at the scene while tihebalance officers travel in
the other vehicle to the hospital. Upon leaving ltlospital, this vehicle then
travels back to the scene where the officers retmttheir original vehicles.
The transport model has also been enhanced to eethee memory
requirements of the pre-computed shortest patlsyialg a network with
6,000 nodes and 14,000 arcs to be handled. Thisorle also allows
shortest distance (in addition to fastest time)tesuo be calculated, and
includes arc-specific times for lights and sireravél. It is pleasing to see
the value that BEN can add being recognized by another ambulance
organization.
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