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Abstract

We develop models that lend insight into how to design systems that enjoy economies
of scale in their operating costs, when those systems will subsequently face disruptions
from accidents, acts of nature, or an intentional attack from a well-informed attacker.
The systems are modeled as parallel M/M/1 queues, and the key question is how to
allocate service capacity among the queues to make the system resilient to worst-case
disruptions. We formulate this problem as a three-level sequential game of perfect
information between a defender and a hypothetical attacker. The optimal allocation of
service capacity to queues depends on the type of attack one is facing. We distinguish
between deterministic incremental attacks, where some, but not all, of the capacity of
each attacked queue is knocked out, and zero-one random-outcome (ZORO) attacks,
where the outcome is random and either all capacity at an attacked queue is knocked
out or none is. There are differences in the way one should design systems in the face
of incremental or ZORO attacks. For incremental attacks it is best to concentrate
capacity. For ZORO attacks the optimal allocation is more complex, typically, but not
always, involving spreading the service capacity out somewhat among the servers.

1 Introduction

In this paper we model decision problems where a centralized planner, also known as the
defender, wishes to design parallel service channels (queues) with the knowledge that an
attacker (representing worst-case disruptions, either intentional or otherwise) will attempt,
in a single attack, to maximize disruption to the system. Economies of scale incentivize
the defender to concentrate service capacity, which seems at odds to the goal of avoiding
disruption caused by the attacker.
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Our model considers situations where the attacker focuses on server capacity. For exam-
ple, in designing the hospital network for a community one might ask whether it is better
to have two small hospitals or one large hospital. There are often economies of scale that
make a single large hospital the more attractive option from the perspective of operating
costs. However, when one considers the potential for disruptions such as accidents or inten-
tional attacks that could remove some or all of a hospital’s capacity, one might not be so
quick to “put all the eggs in one basket.” Perhaps the multiple-small-hospital solution is
better in that it is more resilient to a range of disruptions. This argument might be applied
recursively, leading a risk-averse planner to prefer many small hospitals to one large one.
Other situations supported by our model are jamming of wireless communication networks,
where the attacker increases the noise to signal ratio, de facto reducing server capacity, and
physical attacks on server farms for national security data.

We model the service channels as M/M/1 queues, where capacity is synonymous with the
service rates of the queues. We model the competition between the defender and attacker
as a three-stage sequential game of perfect information. In the first stage, the defender
chooses the initial service rates of the parallel queues. In the second stage the attacker, with
full knowledge of the service rates of the parallel queues, then attacks the queues, reducing
the service rates. In the third and final stage, the defender then routes traffic through the
queues, attempting to maximize throughput subject to a bound on the mean steady-state
volume of traffic in the system. This bound on the mean steady-state volume of traffic in
the system is meant to capture the defender’s desire to ensure a certain quality of service
for customers of the service system, while also allowing us to capture the economies of scale
in queueing systems.

Our model only considers the case in which an adversary will attack our network of
queues once; if the defender believes that the attacker is capable of sustaining a campaign
of repeated attacks over a long time horizon then our model is not appropriate. An analysis
based on a repeated game might be slightly better suited to the situation, but we are of
the opinion that, in a case where the attacker has such resources at his disposal, both the
attacker and defender are probably concerned with larger, strategic issues, and that the
defense of one set of servers would only constitute a small part of a much larger conflict. In
such a case, the optimal allocation of scarce defensive resources among different sites would
require a different (although almost certainly still game-theoretic) model.

We break up our analysis of the three-stage sequential game between defender and at-
tacker by analyzing the last, or innermost, stage first. This is the traffic routing, or flow
allocation, problem, and will be solved by the defender after the capacity allocation de-
cision has been made by him, and also after the attacker makes any capacity reduction
decision. After we determine characteristics of solutions to this innermost problem, we move
one step outward to formulate the attacker’s problem of determining optimal service rate
reduction, and the corresponding optimal routing, for a given (fixed) capacity allocation by
the defender. Finally, we analyze the entire problem of determining the optimal capacity
assignment, given that for any capacity allocation an optimal capacity reducing attack, and
its corresponding optimal flow allocation, will follow.

Steady-state analysis is used throughout for simplicity. Indeed, explicit expressions for
the mean steady-state volume of traffic are available, and thus we can obtain a complete
solution to the sequential game. If we were to attempt to use transient analysis, our results
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would necessarily depend on the initial state of any queues and other very specific information
that seems overly detailed given that our goal is to obtain insights from a stylized model.

Extensions to this model could include actions like repair of attacked queues. We elect
not to take that path because the current model is already challenging to analyze, and reveals
important insights that are the goal of the paper.

As we will show, the optimal initial allocation of capacity among the service channels
by the defender depends on the types of disruptions, or “attacks,” that are expected. We
consider two types of attacks.

Incremental attacks involve a deterministic reduction in the service capacity of queues
selected by the attacker. The total reduction in service capacity is constrained. Such attacks
are meant to model small-scale attacks on structures that may leave the structure still
partially functional. For example, a hospital may still be able to function, albeit with
a limited set of services, if some but not all of its wards are rendered unusable through
destruction or contamination. Similarly, a bridge may still conduct a limited traffic flow if
some of its lanes are rendered unusable. For incremental attacks we find, perhaps surprisingly,
that the defender’s optimal first-stage decision is to concentrate all capacity in one of the
queues. Upon reflection this is quite intuitive, because the defender attempts to maximize
throughput subject to a bound on the mean steady-state number of customers in the system
(mean occupancy). Larger-capacity queues exhibit economies of scale with respect to mean
occupancy, and so all else being equal, the defender prefers to concentrate capacity. Since
incremental attacks simply reduce capacity by a fixed amount, it is optimal for the defender
to concentrate capacity.

A well-equipped attacker may be able to wreak more destruction than we model with
incremental attacks, so we also consider zero-one random-outcome (ZORO) attacks. Here
the attacker may divide attacking effort between multiple queues. With some probability,
related to the attacker’s effort and the capacity of the queue that is being attacked, the
queue’s service capacity is entirely lost, but otherwise it remains fully functional. Again
the defender wishes to maximize throughput subject to a bound on the mean steady-state
volume of traffic in the system. The optimal first-stage decision for the defender often involves
distributing the service capacity more than for incremental attacks as intuition might suggest,
although there are situations where it is again optimal to concentrate capacity.

Our work is an outgrowth of Brown et al. [2006], where 3-stage sequential games are
used to analyze various potential attacks. In contrast to that work, we deal mainly with
continuous decision variables and nonlinear mathematical programs. Zhuang and Bier [2007]
and Golany et al. [2007] compare strategies for preparing for “probabilistic” and “strategic”
threats. Probabilistic threats are those that arise from chance alone such as natural disasters,
while strategic threats arise from design such as through terrorist attacks. Our analysis
can be viewed as further work on strategic threats, where we distinguish different types of
strategic threats, and is similar to Bier et al. [2007] in the sense that we develop insights
through stylized models. The distinction between probabilistic and strategic threats has
been studied for some time; see, e.g., Garrick [2002], and game theory is accepted as a useful
theoretical framework to study strategic threats; see the survey Bier [2005]. The models
described in Woo [2002] and Major [2002] are similar in some respects to our ZORO model,
with that of Woo [2002] suggesting that low-utility targets are more attractive for attack, and
that of Major [2002] suggesting that successful attacks are more likely to be on smaller targets
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than larger ones. Paté-Cornell and Guikema [2002] describe a comprehensive computational
framework using influence diagrams to prioritize threats and countermeasures.

Our analysis is also related to existing results in queueing theory. In particular, the
third stage of our analysis of incremental attacks is similar to the flow assignment problem
described in Kleinrock [1976, p. 340]. Kleinrock treats general networks, and therefore gives
an algorithmic solution due to Fratta et al. [1973]. In contrast we have a (very) specific net-
work and are therefore able to give an explicit solution. Our inner problem is also similar to
Kleinrock’s capacity-assignment problem where the flows are given and one wishes to choose
capacities, but the capacity-assignment problem is more straightforward. The observation
that some queues will remain unused in the third stage of our analysis of incremental attacks
is similar to a well-known phenomenon in queues with multiple heterogeneous servers where
sufficiently slow servers remain unused; see, e.g., Rubinovitch [1985] and Cabral [2005].

Relative to these earlier contributions, the key contributions of our work are that we
analyze models that describe how to design parallel service systems that exhibit economies
of scale, in that larger systems are more efficient than smaller systems, in the face of attacks
of different types, and we show that the defender’s design decisions are heavily influenced
by the type of attacks they anticipate.

The remainder of this paper is organized as follows. In Section 2 we analyze deterministic
incremental attacks on queues. Section 3 deals with zero-one random attacks on queues, and
in Section 4 we present the conclusions of the paper.

2 Incremental Attacks on Queues

Consider n parallel M/M/1 queues, where the ith queue has mean arrival rate λi and service
rate µi, i = 1, . . . , n. Throughout, we assume that the goal of the defender, who operates the
queues, is to adjust the arrival rates to the servers so as to maximize the total throughput,∑

i λi, with a restriction on the total mean steady-state number of jobs in the system, Q.
We can therefore define the feasible region for the arrival rate vector as L = {λi ≥ 0 :∑n

i=1 λi/(µi − λi) ≤ Q}. If we define λ as the vector of arrival rates, the defender’s decision
problem is then stated as:

max
λ∈L

n∑
i=1

λi. (1)

We have made the modeling choice of allowing the defender to select the service rates
subject to a bound on the expected number of jobs in the system. This setup reflects the
situation where the defender has considerable flexibility and control over how to direct traffic
to the various queues. We impose a bound on the mean steady-state number of jobs in the
system, which is similar in effect to bounding the total traffic that can be routed through
the queues, but in contrast to bounding the total traffic it also reflects the economies of scale
present in queueing systems.

We can rewrite the optimization problem (1) from the point of view that choosing an
arrival rate for a queue is equivalent to choosing the mean steady-state number of jobs in
the queue, and make a change of variables qi = λi/(µi − λi) to represent the problem in
terms of q, the vector of queue lengths. The feasible region for q is the simplex Q = {qi ≥
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0 :
∑n

i=1 qi ≤ Q}, and the resulting optimization problem for the defender is:

max
q∈Q

n∑
i=1

µi
qi

1 + qi
. (2)

We now posit an attacker who can modify the service rates at the servers, where we
restrict the attacker’s actions by the simple constraint

n∑
i=1

µi = M,

for some (predetermined) M > 0. Letting µ denote the vector of service rates, we can
represent this constraint, together with the requirement that µ be nonnegative, as µ ∈ M
for an appropriately defined simplex M. Given the attacker’s selection of service rates, the
defender then selects the mean number of jobs q to attempt to maximize the total throughput
through the queues, subject to a bound on the mean steady-state number of jobs in the full
system. The optimization problem for the attacker is therefore

min
µ∈M

g(µ), (3)

where

g(µ) = max
q∈Q

n∑
i=1

µi
qi

1 + qi
.

2.1 Solving the Inner Problem

Consider the inner maximization, where the goal is to compute g(µ) for a fixed µ. The
feasible region Q is convex, and the objective function is strictly concave in q. Therefore, a
unique global maximum exists. For now suppose that µ ∈ M is fixed. We assume, without
loss of generality, that µ1 ≥ µ2 ≥ · · · ≥ µn.

The vector (q∗, w∗) ∈ Rn+1 is an optimal solution-Lagrange multiplier pair if and only if
w∗ ≥ 0, w∗(

∑n
i=1 q

∗
i −Q) = 0, and the Lagrange condition

q∗ = arg max
qi≥0

{
n∑
i=1

(
µi

qi
1 + qi

− w∗qi
)

+ w∗Q

}
holds; see pp. 490 of Bertsekas [1999] for the general theory. Due to the separable nature of
the objective function, the Lagrange condition becomes

q∗i = arg max
qi≥0

{
µi

qi
1 + qi

− w∗qi
}
, (4)

for i = 1, . . . , n.
Solving (4) for w ≥ 0 arbitrary results in

qi(w) =

{ (
µi
w

)1/2 − 1 if µi > w
0 if µi ≤ w

, (5)
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where we define qi(0) = ∞. If we assume the first k servers receive traffic, then forcing the
condition w(

∑n
i=1 qi(w)−Q) = 0 leads to

w(k) =

(∑k
i=1

√
µi

Q+ k

)2

,

and, defining ν(k) =
∑k

i=1

√
µi, we get (cf. Eq. (5))

k∗ = max

{
k ≥ 1 : µk >

(
ν(k)

Q+ k

)2
}

is the index of the smallest (i.e. slowest) server that gets any traffic. The ordering assumption
of the µi’s guarantees that k∗ is well-defined.

To recap, we have w(k∗) > 0, qi(w(k∗)) satisfies Eq. (5), and w(k∗)(
∑k∗

i=1 qi(w(k∗))−Q) =
0. We have shown the following result.

Proposition 1. The optimal solution to the inner maximization problem is w∗ = w(k∗) and
q∗i = qi(w

∗), where

q∗i =

{
(Q+ k∗)

√
µi

ν(k∗)
− 1 if i ≤ k∗

0 if i > k∗
. (6)

The optimal solution is interesting in that it does not necessarily use all of the servers.
Specifically, it may ignore servers with a very low service rate. This follows because the
marginal costs (measured in mean steady-state volume of traffic) are the same for all servers,
and the traffic is initially allocated to servers for which the marginal gain in throughput is
largest. Since the derivative with respect to qi of the function µiqi/(1 + qi) at 0 is µi, this
means that the large servers are the first to get any traffic.

2.2 Solving the Outer Problem

If we substitute the result of Proposition 1 into the objective function of (2), we get that the
optimal objective value of the inner problem is

g(µ) =
n∑
i=1

λi(µ) =

k(µ)∑
i=1

µi −
ν2(k(µ))

Q+ k(µ)
, (7)

where we write λ(µ) and k(µ) for the solution of the inner problem corresponding to a given
µ ∈M. This is a nontrivial optimization problem, because the summation index k(µ) in (7)
depends on µ.

The proof is constructive, and works as follows. We start with an arbitrary solution
µ ∈ M with µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0 and “smooth” the service rates so that the objective
function continuously decreases, eventually reaching the equal-rate solution. In essence, we
provide a path from any arbitrary µ to the equal-rate solution where the objective function
increases along the path. The smoothing increases the minimal service rates and decreases
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the maximal service rates in such a way that the sum of the rates remains constant. The
smoothing continues until all of the service rates are equal.

More precisely, suppose that there are m maxima among µ1, . . . , µn, i.e., µ1 = · · · =
µm > µm+1, where m < n. Suppose further that there are ` minima among µ1, . . . , µn, i.e.,
µn−` > µn−`+1 = · · · = µn, where ` > 0. We then decrease the maximal service rates at
a single rate, and increase the minimal service rates at a (possibly different) single rate so
that M , the sum of the rates, remains constant. We continue this smoothing until one of
two stopping conditions arises. One such condition is that the set of maxima, or minima,
gets larger. In this case we simply adjust m or ` and continue.

We need the following lemma related to the smoothing operation, the proof of which may
be found in the Appendix.

Lemma 1. Let x1 ≥ x2 ≥ · · · ≥ xj ≥ 0 and let `,m > 0 be such that ` + m ≤ j. Let the
vector y have components

yi =


xi − `δ i ≤ m

xi m < i ≤ j − `
xi +mδ j − ` < i ≤ j,

, (8)

so that the sum of the components in y and x are identical. Here δ > 0 is small enough
that the components of y remain nonnegative and ordered from largest to smallest. Let
h : [0,∞)→ < be concave and increasing. Then

j∑
i=1

h(yi) ≥
j∑
i=1

h(xi).

We now show that smoothing can only increase k(µ), the number of servers that receive
non-zero traffic. The proof may be found in the Appendix.

Lemma 2. Let µ ∈M with µ1 ≥ µ2 ≥ · · · ≥ µn. Then smoothing µ in the manner described
above can only increase k(µ).

We now show that the attacker’s optimal strategy is to balance the service rates. We
provide a constructive proof that builds on the smoothing ideas in the Appendix. The proof
shows that the optimal solution is unique and, moreover, yields the insight that the attacker
can continuously improve the objective function through smoothing of the service rates.

Proposition 2. The solution to (3) is µ1 = · · · = µn = M/n.

Proof. Let µ ∈M with µ1 ≥ · · · ≥ µn, and suppose that the n rates are not all equal.
If k(µ) = n, then smoothing leaves k(µ) = n, the sum of the µi’s remains constant, and

Lemma 1 (with j = n) shows that ν(n) increases. Therefore, from (7) we see that g decreases
until the smoothing completes with the service rates being all equal.

If k(µ) = m, the number of maximal service rates, so that µ1 = µ2 = · · · = µm, then the
objective function is given by

mµ1 −
m2µ1

Q+m
=
Qmµ1

Q+m
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which decreases as µ1 decreases, at least until k(µ) is poised to increase.
Suppose that m < k(µ) ≤ n− `, and let k = k(µ). Let x = µ and let y be the smoothed

x as in (8). Then smoothing decreases the first m (maximal) components of x by `δ, while
components m + 1 through n − ` are unchanged. Then, defining S =

∑k
i=m+1

√
xi, we see

that

g(y)− g(x) = −m`δ +
(m
√
x1 + S)2

Q+ k
− (m

√
x1 − `δ + S)2

Q+ k

= −m`δ +
m2`δ

Q+ k
+

2mS
(√

x1 −
√
x1 − `δ

)
Q+ k

. (9)

Now, since xi ≤ x1 − `δ for i > m, it follows that

S
(√

x1 −
√
x1 − `δ

)
≤ (k −m)

√
x1 − `δ

(√
x1 −

√
x1 − `δ

)
= (k −m)(

√
x1(x1 − `δ)− (x1 − `δ)). (10)

The bound
√
x(x− a)− (x− a) < a/2 for 0 < a < x then shows that (10) is bounded above

by (k −m)`δ/2. This, together with (9), establishes that

g(y)− g(x) ≤ −m`δ +
m2`δ

Q+ k
+
m(k −m)`δ

Q+ k

=
−Qm`δ
Q+ k

establishing that g decreases while smoothing, at least until k(µ) is poised to increase.
It is possible that several arrival rates are simultaneously poised to become positive, i.e.,

ν(k + j)− (Q+ k + j)
√
µk+j = 0

for j = 1, . . . , j∗, and that this is not true for j = j∗ + 1. From (7) and the fact that λ(µ) is
continuous in µ we see that the function g is continuous in µ. Therefore, we can write

g(µ) =

k+j∗∑
i=1

µi −
ν2(k + j∗)

Q+ k + j∗
.

The argument we have already given establishes that this expression decreases as the smooth-
ing progresses. Therefore, g continues to decrease as we move through points where k(µ)
increases, and this completes the proof.

2.3 Upper Bounds on the Service Rates

In the previous sections we studied a version of our problem where the attacker could allocate
service capacity arbitrarily across the n servers. In general however, the attacker attacks an
established system with current service rates given by the vector µ̃, say. We assume, without
loss of generality, that µ̃1 ≥ · · · ≥ µ̃n. The attack then takes the form of reducing the service
rate vector. We constrain the attacker so that the sum of the service rate reductions is
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some constant M̃ . Define M =
∑n

i=1 µ̃i − M̃ and redefine the feasible region for the outer
optimization to be

M = {0 ≤ µ ≤ µ̃ :
n∑
i=1

µi = M}.

The difference with our previous analysis is that we now have upper bounds on the individual
service rates.

The solution remains almost exactly the same as before. The attacker’s optimal strategy
is to attack the fastest server(s), leaving the defender with a system where the service rates
are as equal as possible, modulo the upper bound constraints on µ.

Proposition 3. The optimal solution to the upper-bounded version of the problem is to set
µi = µ̃i for i > k∗ and

µ1 = µ2 = · · · = µk∗ =

(
M −

n∑
j=k∗+1

µ̃j

)
/k∗,

where

k∗ = max

{
1 ≤ k ≤ n :

(
M −

n∑
j=k+1

µ̃j

)
/k ≤ µ̃k

}
.

The proof of Proposition 3 in the Appendix follows the same lines as the smoothing proof
of Proposition 2, except that service rates are increased only until they hit their bounds and
are then fixed.

2.4 Preparing for Incremental Attacks

Now consider the defender’s initial choice of configuration µ̃ of an n-server system as a third,
outermost layer to the problem. The interpretation is as follows: The defender chooses an
initial configuration µ̃ with total service capacity Γ, knowing that an attacker will subse-
quently reduce the total service capacity to M ≤ Γ in an attempt to minimize the throughput
the defender can achieve after the attack. Theorem 1 below shows that the optimal design
from the defender’s perspective is to concentrate capacity. The proof yields the insight that
the defender can monotonically improve the three-level objective function to the optimal
value from any configuration by concentrating capacity in a certain way. Let f(µ̃) be the
objective value associated with the solution given in Proposition 3.

Theorem 1. The solution to the optimization problem

max f(µ̃)
s.t.

∑n
i=1 µ̃i = Γ

µ̃ ≥ 0

is to concentrate all server capacity into one arbitrary server.
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Proof. We begin from an arbitrary µ̃ (assuming, without loss of generality, that µ̃1 ≥ µ̃2 ≥
· · · ≥ µ̃n) that is nonnegative and sums to Γ and perform a “reverse smoothing,” whereby the
minimal positive service rate µ̃j is reduced to zero while µ̃1 simultaneously increases, giving
µ̃′ say. Proposition 3 gives the form of the optimal solutions, µ and µ′ say, corresponding to
µ̃ and µ̃′ respectively. Then µ′i = 0 for i ≥ j. Furthermore, the maximal rates of µ that are
not hard on their bounds µ̃ are strictly increased in µ′. This is again a form of smoothing,
and an application of our earlier results on smoothing establishes that g(µ) ≤ g(µ′), i.e.,
f(µ̃) ≤ f̃(µ′). We continue this reverse smoothing, continuously increasing f until µ̃1 =
Γ.

Theorem 1 establishes that the max-min-max configuration is to have a single, very
large, server. This is the complete opposite of the (perhaps more intuitive) solution where
the service capacity is spread equally among the n servers. To understand why this is
optimal, note that the attacker attacks service capacity, attempting to equalize the service
rates as much as possible. By ensuring that a single queue holds the entire service capacity,
no equalization is possible, and the system capacity remains concentrated (but reduced) in
a single queue. This leads to the efficiency that arises from using a single fast server as
opposed to several slower servers that is a classical result in queueing theory. Essentially
we are taking advantage of the economies of scale that are present in high-capacity service
systems.

But what if an attacker were to completely wipe out the first server? The answer is that
our formulation considered incremental attacks where the service capacities are reduced by
a given total amount, so that completely destroying a single fast server is not possible. But
in many settings, attacks do have the capability to destroy an entire service channel.

3 Zero-One Random-Outcome (ZORO) Attacks

Now suppose that there are n service channels with capacities given by the vector µ. The
attacker again attacks these service channels, with the result that either the entire channel
is destroyed (with probability pi), or it remains untouched (with probability 1 − pi). The
outcomes of the attacks on different service channels are independent. A fraction xi of the
attacker’s total effort is allocated to service channel i, and pi is a function p(xi, µi).

The optimization problem we now consider is how the defender allocates server capacity,
knowing that the attacker allocates effort in order to minimize the expected throughput and
the defender gets to respond by maximizing the throughput subject to a constraint on the
mean steady-state number of jobs in the system. In other words, we consider the problem

maxµ∈Mminx E[g(µr)]
s.t.

∑n
i=1 xi ≤ 1

0 ≤ xi ≤ x̄(µi) ∀i,
(11)

where g is defined in (7), µr is the random vector of remaining capacities after the attacks,
and x̄(µi) = inf{x ≥ 0 : p(x, µi) = 1}. We can write

µr = (µ1I(U1 > p1), . . . , µnI(Un > pn)),
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where (U1, . . . , Un) is a vector of i.i.d. U(0, 1) random variables and I(·) is the indicator
function that equals 1 if its argument is true and 0 otherwise. Let V = {(xi, µi) : 0 ≤
xi ≤ min{1, x̄(µi)}, 0 ≤ µi ≤ M} be the two-dimensional set formed by all possible ef-
fort/capacity combinations. Throughout this section we make the following assumption:

(A1) Over V , the function p is differentiable in xi and µi, increasing as a function of xi, and
decreasing with µi.

Assumption (A1) is intended to capture the plausible notions that the destruction prob-
ability p should be increasing in the attacker’s effort xi and decreasing in the queue capacity
µi. One could argue for other relationships between destruction probability and queue ca-
pacity, but this seems to be a reasonable starting point. It follows from the definition that
x̄(·) is concave in µi when p is a (jointly) convex function that meets assumption (A1).

Evidently, a positive resource allocation xi > 0 may be optimal only if µi > 0. Hence,
when the defender has a single large server, only that server is bound to be attacked. This
can be used to obtain a lower bound for Problem (11), because in this situation the defender
can never have an expected throughput smaller than (1 − p(1,M))M/(1 + 1/Q), where
M/(1 + 1/Q) is the largest allowable single-server throughput in Q. On the other hand,
the defender can never have an expected throughput larger than M/(1 + 1/Q). This follows
because having a single large server maximizes expected throughput when all service capacity
remains intact (e.g., when the attacker only attacks servers with µi = 0). Indeed,

max
q∈Q, µ∈M

n∑
i=1

µi/(1 + q−1
i ) = M max

q∈Q
1/(1 + q−1

i ),

for some i = 1, . . . , n, and the latter equals M/(1 +Q−1). Hence, having a single server with
maximal rate M is defender-optimal when there are no attacks. We summarize these results
in the next proposition.

Proposition 4. The solution of Problem (11) is bounded by

(1− p(1,M))
M

1 + 1/Q
≤ max

µ∈M
min
x
E[g(µr)] ≤ M

1 + 1/Q
.

When p(1,M) is small, Proposition 4 shows that it is nearly optimal for the defender to
concentrate its capacity into one server. However, when p(1,M) is close to 1, having a single
large server is not necessarily defender optimal. Consider for instance the case p(1,M) = 1
and p(1/2,M/2) < 1, as could occur when p(x, µ) is convex in both arguments. In this case
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E[g(µr)] = 0 if µ1 = M , and setting µ1 = µ2 = M/2 results in

E[g(µr)] = p(x,M/2)(1−p(1−x,M/2))
M

2

Q

1 +Q
+(1−p(x,M/2))p(1−x,M/2)

M

2

Q

1 +Q

+ (1− p(x,M/2))(1− p(1− x,M/2))M
Q

2 +Q

≥ M

2

Q

1 +Q

[
p(x,M/2)(1− p(1− x,M/2)) + (1− p(x,M/2))p(1− x,M/2)

+ (1− p(x,M/2))(1− p(1− x,M/2))

]
=
M

2

Q

1 +Q
(1− p(x,M/2)p(1− x,M/2)) > 0

for any x ∈ [0, 1], since p(1/2,M/2) < 1 and (A1) imply that either p(x,M/2) < 1 or
p(1 − x,M/2) < 1. Therefore, the defender is better off by allocating capacity to at least
two servers. We should point out, however, that in the extreme case where p(y, yM) = 1
for all 0 ≤ y ≤ 1, the attacker destroys all servers regardless of the allocation µ chosen by
the defender. This follows because setting xi = µi/M leads to p(µi/M, µi) = 1 (with µi/M
taking the place of y), and E[g(µr)] = 0.

3.1 Simplifying ZORO: Unconstrained queue lengths

The analysis of the full ZORO case appears difficult, so to get some insight we simplify the
model. Suppose that the ultimate goal is to maximize the expected throughput of the system,
ignoring the length of the queues. In a sense, this regime arises as we let the bound on the
mean steady-state number in system q →∞. It is also a reasonable approximation when all
of the service rates are large, because the difference between the service rate µ1 of a queue
and the optimal flow as computed earlier is of the order

√
µ1, which is small relative to µ1

when µ1 is large.
Our simplified problem is then to select the service rates µ to solve the optimization

problem
maxµ∈Mminx E [

∑n
i=1 µ

r
i ]

s.t.
∑n

i=1 xi ≤ 1
0 ≤ xi ≤ x̄(µi) ∀i,

(12)

where the inner objective function can be computed as

E

[
n∑
i=1

µri

]
=

n∑
i=1

(1− p(xi, µi))µi = M −
n∑
i=1

µip(xi, µi),

which allows for a closed form solution, as we shall momentarily demonstrate.
We analyze two cases: (i) p(xi, µi) is convex in xi and µi over V , and (ii) p(xi, µi) is

concave in xi and µi over V . In the former scenario concentrating attack resources yields
higher expected damage, while diversifying attack resources is more appealing in the latter.
This suggests that the defender is better off spreading out its capacity in case (i), and
consolidating server capacity in case (ii).
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While the scenarios about p are expressed jointly in terms of the attacker effort xi and
capacity µi, p(·, µi) is a manifestation of the attacker’s organizational capabilities and train-
ing, and p(xi, ·) depends on the physical resilience of the server (e.g., hospital or bridge) and
on the kinetics of the attacking device. Therefore, when treated separately, p(·, µi) convex
in xi appears when the attacker enjoys increasing rate of benefits (in terms of probability of
destroying capacity) in his effort; this is plausible for relatively small groups of attackers, but
less so for large groups. The case p(xi, ·) convex means that p(xi, µi) grows at an increasing
rate as µi decreases, which may take place when the server’s physical resistance weakens
faster than its capacity µi.

We start by considering the attacker’s problem, using duality to obtain the optimal
attacker resource allocation, as in Section 2.1. In preparation, to break symmetry and
without loss of generality we impose an ordering on the service rates µ1 ≥ µ2 ≥ · · · ≥ µn. Let
` = max{j ≥ 1 :

∑j
i=1 x̄(µj) ≤ 1} be the maximum number of queues that can be knocked

out completely if the attacker attacks the largest targets first, with ` = 0 if x̄(µ1) > 1.
The vector (x∗, w∗) ∈ Rn+1 is an optimal solution-Lagrange multiplier pair if and only if

w∗ ≥ 0, w∗(
∑n

i=1 x
∗
i − 1) = 0, and the Lagrange condition

x∗ = arg max
0≤xi≤x̄(µi)

{
n∑
i=1

(µip(xi, µi)− w∗xi) + w∗

}
holds. Since the objective function is separable, the Lagrange condition becomes

x∗i = arg max
0≤xi≤x̄(µi)

{µip(xi, µi)− w∗xi} , i = 1, . . . , n. (13)

Proposition 5. Suppose assumption (A1) holds. If
∑n

i=1 x̄(µi) ≤ 1 then x∗i = x̄(µi), for
i = 1, . . . , n. Otherwise, if p(xi, µi) is convex in xi and µi over V and the expected damage
µi p(xi, µi) is non-decreasing in µi, then

x∗i =


x̄(µi) for i = 1, . . . , `

1−
∑`

i=1 x̄(µi) for i = `+ 1
0 for i = `+ 2, . . . , n

, (14)

where ` is defined as above to be the maximum number of queues that can be knocked out
completely if the attacker attacks the largest targets first.

Proof. The first statement is true because the attacker gets to destroy all the servers when∑n
i=1 x̄(µi) ≤ 1, which is the best possible attack.
Otherwise, set w∗ = µ`+1p(x

∗
`+1, µ`+1)/x∗`+1 if x`+1 > 0, and w∗ = µ`p(x

∗
` , µ`)/x

∗
` if

x`+1 = 0; in either case we get 0 < w∗ <∞ and w∗(
∑n

i=1 x
∗
i −1) = 0. Observe that p convex

means that the solution to problem (13) is an extreme point.
If x`+1 = 0, the assumptions about p imply that µip(xi, µi)/xi ≤ w∗ for any i > ` and

any feasible xi > 0, and µip(x
∗
i , µi)/x

∗
i ≥ w∗ for any i ≤ `. Therefore setting xi = 0 for i > `

and xi = x̄(µi) for i ≤ ` is a solution to problem (13).
The case x`+1 > 0 can be handled analogously: p convex and the expected damage

increasing with µ implies that µip(xi, µi)/xi ≤ w∗ for any i > `+ 1 and any feasible xi > 0,
and µip(x

∗
i , µi)/x

∗
i ≥ w∗ for any i ≤ `+ 1. Hence, setting xi = 0 for i > `+ 1, xi = x̄(µi) for

i ≤ `, and x`+1 = 1−
∑`

i=1 x̄(µi) is a solution to problem (13).
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As a result of attacking according to (14), the defender ends up (on average) with

h(µ) := E

[
n∑
i=1

µri

]
= µ`+1(1− p(x∗`+1, µ`+1)) +

n∑
i=`+2

µi (15)

remaining server capacity. Hence, in the outermost layer of the problem the defender selects
the initial configuration to maximize h(µ) over µ ∈ M knowing that the attacker follows
(14).

Theorem 2 below treats the outer layer problem. To simplify notation, let ` := `(µ) and
`∗ := `(µ∗).

Theorem 2. Suppose assumption (A1) holds, that p(xi, µi) is convex in xi and µi over V,
and that µi p(xi, µi) is non-decreasing in µi. Then a solution to the optimization problem
(12) is µ∗i = M/n for all i’s.

Proof. We will show that h(µ∗) ≥ h(µ) for an arbitrary server configuration µ 6= µ∗, in three
different scenarios of increasing complexity: (i) ` = `(µ) = n; (ii) ` = 0; and (iii) 0 < ` < n.

In Scenario (i) we have h(µ) = 0 so any feasible allocation cannot further decrease h.
In Scenario (ii), Proposition 5 leads to x̄(µ1) > 1 and h(µ) = M − µ1p(1, µ1). Since x̄(·)

is concave, Jensen’s inequality shows that nx̄(µ∗1) ≥
∑n

i=1 x̄(µi). Hence x̄(µ∗1) > 1/n and
`∗ = b1/x̄(µ∗1)c < n. We thus have

h(µ∗) = M − µ∗1
⌊

1

x̄(µ∗1)

⌋
− µ∗1p

(
1− x̄(µ∗1)

⌊
1

x̄(µ∗1)

⌋
, µ∗1

)
. (16)

The convexity of p and the Second Fundamental Theorem of Calculus lead to

p(1, µ1)− p
(
x̄(µ∗1)

⌊
1

x̄(µ∗1)

⌋
, µ1

)
=

∫ 1

x̄(µ∗1)b1/x̄(µ∗1)c

∂p(x, µ1)

∂x
dx

≥
∫ 1−x̄(µ∗1)b1/x̄(µ∗1)c

0

∂p(x, µ1)

∂x
dx

= p

(
1− x̄(µ∗1)

⌊
1

x̄(µ∗1)

⌋
, µ1

)
.

By Jensen’s inequality

p

(
x̄(µ∗1)

⌊
1

x̄(µ∗1)

⌋
, µ1

)
≥
⌊

1

x̄(µ∗1)

⌋
p (x̄(µ∗1), µ1)

Putting the last two results together

p(1, µ1) ≥
⌊

1

x̄(µ∗1)

⌋
p (x̄(µ∗1), µ1) + p

(
1− x̄(µ∗1)

⌊
1

x̄(µ∗1)

⌋
, µ1

)
. (17)

Also,

µ1p(x̄(µ∗1), µ1)

⌊
1

x̄(µ∗1)

⌋
+ µ1p

(
1− x̄(µ∗1)

⌊
1

x̄(µ∗1)

⌋
, µ1

)
≥ µ∗1

⌊
1

x̄(µ∗1)

⌋
+ µ∗1p

(
1− x̄(µ∗1)

⌊
1

x̄(µ∗1)

⌋
, µ∗1

)
(18)
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since µi p(xi, µi) is non-decreasing in µi and µ1 ≥ µ∗1. Equations (17) and (18) result in
h(µ∗) ≥ h(µ).

In Scenario (iii), suppose that x∗(µ`+1) = 0, so no server is attacked to less than assured
destruction. Let µ̃i = 1/`

∑`
j=1 µj for j = 1, . . . , `, and µ̃i = 1/(n − `)

∑n
j=`+1 µj for

i = `+ 1, . . . , n. We will show that h(µ∗) ≥ h(µ̃) ≥ h(µ). By Jensen’s inequality,

`x̄(µ̃1) ≥
∑̀
i=1

x̄(µi) = 1, (19)

the latter since x∗(µ`+1) = 0. Hence, the effort required to destroy the first ` servers under
µ̃ cannot be smaller than 1, which is the effort needed to destroy the same servers under µ,
allowing us to conclude that h(µ̃) ≥ h(µ).

Another application of Jensen’s inequality leads to

nx̄(µ∗1) ≥ `
∑̀
i=1

x̄(µ̃i) + (n− `)
n∑

i=`+1

x̄(µ̃i).

We must have (n− `)
∑n

i=`+1 x̄(µ̃i) > 0 because ` < n and, by Equation (19), x̄(µ∗1) > 1/n.
Thus `∗ = b1/x̄(µ∗1)c < n and (16) holds true. On the other hand Proposition 5 results in

h(µ̃) = M − µ̃1

⌊
1

x̄(µ̃1)

⌋
− µ̃1p

(
1− x̄(µ̃1)

⌊
1

x̄(µ̃1)

⌋
, µ̃1

)
.

Jensen’s inequality yields⌊
1

x̄(µ̃1)

⌋
p

(⌊
x̄(µ̃1)

x̄(µ∗1)

⌋
x̄(µ∗1), µ̃1

)
≥
⌊

1

x̄(µ̃1)

⌋⌊
x̄(µ̃1)

x̄(µ∗1)

⌋
p(x̄(µ∗1), µ̃1). (20)

Having p convex and the Second Fundamental Theorem of Calculus result in⌊
1

x̄(µ̃1)

⌋(
1− p

(⌊
x̄(µ̃1)

x̄(µ∗1)

⌋
x̄(µ∗1), µ̃1

))
+ p

(
1− x̄(µ̃1)

⌊
1

x̄(µ̃1)

⌋
, µ̃1

)
≥
(⌊

1

x̄(µ∗1)

⌋
−
⌊

1

x̄(µ̃1)

⌋⌊
x̄(µ̃1)

x̄(µ∗1)

⌋)
p(x̄(µ∗1), µ̃1) + p

(
1− x̄(µ∗1)

⌊
1

x̄(µ∗1)

⌋
, µ̃1

)
. (21)

Adding the LHS and RHS of Equations (20–21) produces

µ̃1

⌊
1

x̄(µ̃1)

⌋
+ µ̃1p

(
1− x̄(µ̃1)

⌊
1

x̄(µ̃1)

⌋
, µ̃1

)
≥ µ̃1p(x̄(µ∗1), µ̃1)

⌊
1

x̄(µ∗1)

⌋
+ µ̃1p

(
1− x̄(µ∗1)

⌊
1

x̄(µ∗1)

⌋
, µ̃1

)
. (22)

Like in Eq. (18),

µ̃1p(x̄(µ∗1), µ̃1)

⌊
1

x̄(µ∗1)

⌋
+ µ̃1p

(
1− x̄(µ∗1)

⌊
1

x̄(µ∗1)

⌋
, µ̃1

)
≥ µ∗1

⌊
1

x̄(µ∗1)

⌋
+ µ∗1p

(
1− x̄(µ∗1)

⌊
1

x̄(µ∗1)

⌋
, µ∗1

)
(23)
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since µi p(xi, µi) is non-decreasing in µi and µ̃1 ≥ µ∗1. Putting together Equations (22–23)
results in h(µ∗) ≥ h(µ̃).

The proof of Scenario (iii) with x∗(µ`+1) > 0 goes along the same lines as the preceding,
and is omitted.

Thus we find that unlike the incremental attack setting discussed in Section 2, if the
attacker’s ability to cause damage meets the conditions of Theorem 2 then the defender is
better off by diversifying server capacity. Recall that the destruction probability p(xi, µi)
is assumed to be decreasing in µi. If this probability decreases too rapidly, then the op-
timal solution will be to concentrate capacity. Indeed, this can happen if the destruction
probability reaches zero for sufficiently small queue capacities (and therefore all larger queue
capacities). Thus we require an assumption that the destruction probability does not de-
crease too rapidly, and so we assume that µip(xi, µi) is non-decreasing in µi for each fixed xi.
This quantity is the expected amount of destroyed capacity in a queue with capacity µi for
a fixed attacker effort xi, and we are assuming this is non-decreasing in the queue capacity.

If, on the other hand, p is jointly concave in xi and µi over V , then the defender stands
to gain by concentrating capacity because then the difficulty in destroying a target increases
slower than the capacity of a target increases. This result is stated in Theorem 3 below; its
proof follows along the lines of that of Theorem 2, and is consequently omitted.

Theorem 3. Suppose assumption (A1) holds, that p(xi, µi) is jointly concave in xi and µi
over V, and that µi p(xi, µi) is non-increasing in µi. Then a solution to the optimization
problem (12) is µ∗1 = M and µ∗2 = · · · = µ∗n = 0.

It follows that, under the assumptions of Theorem 3, both zero-one random outcome
and incremental attacks yield the same result; namely, concentrating capacity is defender-
optimal.

4 Discussion

If a defender’s main concern is incremental attacks, as might be the case when potential
attackers are viewed as not possessing large-scale destructive capability, then concentrating
capacity to take advantage of the resulting economies of scale is optimal. This sort of
situation might arise in designing hospital systems for example, where small-scale attacks
that could destroy some, but not all, of the service capacity of a hospital are considered far
more likely than large-scale attacks that could destroy an entire hospital.

For ZORO attacks, as might arise with more capable attackers, the optimal defender
design depends on whether the probability of taking down a server is convex or concave
in the effort and server capacity. If it is convex (in the effort xi and capacity µi) then
the attacker finds it worthwhile to concentrate the attacks and the defender responds by
completely distributing capacity. If, instead, the probability of succeeding to destroy a server
is concave in the attacker’s effort and in the server capacity, then the diminishing returns
from larger attacks incentivizes the attacker to distribute their attacks, and the defender
responds by concentrating capacity. So the situation with ZORO attacks is quite complex,
and depends on the structure of the function p(xi, µi).
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One might also consider the case where p is concave and increasing in the effort xi,
and convex and decreasing in the capacity µi, reflecting diminishing returns to both large
attacks and to concentrating capacity to discourage attacks. This case appears to be far
more complex than the situations we have treated, and we have found through numerical
experiments that either concentration or diversification of capacity can be optimal depending
on the specific form of the functions involved.

The question of which of these forms for p is the most appropriate for modeling deliberate
attacks is somewhat debatable and depends heavily on the context. For example, one might
assume diminishing returns from attacker effort, so that p is concave in x. But one could also
argue that an attacker needs to gather sufficient resources to mount an attack that has any
chance whatsover of success, so that p is convex in the attacker’s effort x. The question of
which of these assumptions is most appropriate seems to depend somewhat on the capability
of the attacker. For example, it seems unlikely that an attacker would possess sufficient
material to make multiple radiological weapons, which would suggest that in such a setting
p would be convex in attacker effort. With regard to how p depends on the service capacity
µ, it seems plausible that as capacity µ increases, that p would asymptote toward zero, which
would suggest that p should be convex in µ, at least eventually. However, in some settings
p may not depend heavily on the size of the service capacity for small service capacities, so
that p may be initially concave, and only become convex for larger capacities. Our analysis
does not shed light on such situations, except when the capacities are constrained to a region
of either concavity or convexity, but not both.
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A Proofs

Proof of Lemma 1. For i ≤ m, let si denote the (nonnegative) slope of the line segment
joining (yi, h(yi)) to (xi, h(xi)), and for i > k− ` let si denote the (nonnegative) slope of the
line segment joining (xi, h(xi)) to (yi, h(yi)). (We leave the si’s undefined for m + 1 ≤ i ≤
j− `.) Since h is increasing and concave, it follows that the si’s are increasing in i. We then



July 21, 2011 18

see that

j∑
i=1

h(yi)−
j∑
i=1

h(xi) =
m∑
i=1

[h(yi)− h(xi)] +

j∑
i=j−`+1

[h(yi)− h(xi)]

= −
m∑
i=1

(xi − yi)si +

j∑
i=j−`+1

(yi − xi)si

= −`δ
m∑
i=1

si +mδ

j∑
i=j−`+1

si

= `mδ

(
1

`

j∑
i=j−`+1

si −
1

m

m∑
i=1

si

)
(24)

≥ 0,

where the inequality follows since the si’s are increasing in i.

Proof of Lemma 2. First note that any servers with equal service rates receive the same
quantity of traffic. This follows since the function λ/(µ − λ) is convex in λ. Equally dis-
tributing any arrivals to equal-rate servers reduces the collective mean number of customers
in the system. Therefore, either k(µ) = m, m < k(µ) ≤ n− `, or k(µ) = n, where ` and m
are the number of servers with minimal and maximal service rates respectively.

Recall that
k(µ) = max{1 ≤ k ≤ n : ν(k)− (Q+ k)

√
µk < 0}.

If k(µ) = m, then, since µ1 = · · · = µm throughout the smoothing operation,

ν(m)− (Q+m)
√
µm = −Q√µm < 0.

Hence, k(µ) cannot decrease below m.
Suppose m < k(µ) ≤ n− `, and let k denote the initial value of k(µ). During the process

of smoothing, and before k(µ) changes value, the rates µ1, . . . , µm decrease, so that ν(k)
decreases, while (Q + k)µk remains constant. It follows that ν(k) − (Q + k)

√
µk remains

strictly negative. Therefore, k(µ) cannot decrease below k.
Finally, suppose that k(µ) = n. Let x = µ and suppose that we smooth x by δ to give

y, as in (8) (with j = n). Let ν(n, x) be the value ν(n) evaluated at x, and define ν(n, y)
similarly. Then, from (24) (with j = n),

ν(n, y)− ν(n, x) = `mδ(sxn − sx1−`δ),

where sxn and sx1−`δ are the slopes of chords of the function
√
· between xn and xn + mδ,

and x1 − `δ and x1 respectively. Now, x1 − `δ ≥ xn +mδ, and so sxn ≥ sx1−`δ. So finally,

ν(n, y)− (Q+ n)
√
yn − [ν(n, x)− (Q+ n)

√
xn]

= `mδ(sxn − sx1−`δ)− (Q+ n)(
√
yn −

√
xn)

= `mδ(sxn − sx1−`δ)− (Q+ n)mδsxn
≤ mδ(`− (Q+ n))sxn
≤ 0
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since ` ≤ n andQ > 0. Therefore, ν(n)−(Q+n)
√
µn can only decrease during smoothing.

Proof of Proposition 3. We follow the proof of Proposition 2 closely. Recall that we assume
the ordering µ̃1 ≥ µ̃2 ≥ · · · ≥ µ̃n on the upper bounds. Let µ ∈ M be an arbitrary
feasible solution. We smooth µ in the usual way, uniformly decreasing the maximal values
and uniformly increasing the minimial values that are not at their bounds, in such a way
that the sum of the components remains fixed at M . We will show that this smoothing
continuously decreases g. Eventually, we will arrive at a solution where all maximal rates
are equal, and cannot be decreased further without violating the bounds on the smaller rates.
Since the bounds µ̃i are decreasing in i, it immediately follows that this is the solution given
in the statement of the proposition.

Let µ ∈ M be given. Let π denote the permutation corresponding to decreasing order
of the elements of µ (breaking ties in order of µ̃), so that µπ(1) is the largest of the values in
µ and µπ(n) is the minimal value in µ. Let m be the number of maximal elements of µ, b be
the number of minimal values in µ that are also at their bounds, ` be the number of minimal
elements of µ that are not at their bounds, and d = n−m− `− b be the number of values of
µ that lie strictly between the maximal and minimal values. Hence, in decreasing order, the
maximal elements are µπ(1), . . . , µπ(m), the intermediate elements are µπ(m+1), . . . , µπ(m+d),
the minimal elements not at their bounds are µπ(m+d+1), . . . , µπ(m+d+`) and µn−b+j = µ̃n−b+j
for j = 1, 2, . . . , b are the minimal elements at their bounds. (The minimal elements that
are at their bounds are indeed the last b elements, so that π(n − b + j) = n − b + j for
j = 1, 2, . . . , b.)

Let x = µ and let y be the smoothed vector defined by

yπ(i) =


xπ(i) − `δ if 1 ≤ i ≤ m

xπ(i) if m+ 1 ≤ i ≤ m+ d

xπ(i) +mδ if m+ d+ 1 ≤ i ≤ m+ d+ `, and

xπ(i) if n− b+ 1 ≤ i ≤ n

for some small δ > 0 that preserves the ordering π.
We consider the effects of smoothing in several cases depending on the value of k(µ),

which is defined exactly as before except in terms of the ordering on µ, so that

k(µ) = max{1 ≤ k ≤ n :
k∑
i=1

√
µπ(i) − (Q+ k)

√
µπ(k) < 0}.

The proof of Lemma 2 goes through exactly as before for all cases where k(µ) ≤ n − b so
that k(µ) cannot decrease in this range. However, when k(µ) > n− b, using the same steps
and notation as in that proof, we find that

ν(k(µ), y)− ν(k(µ), x) = `mδ

(
1

`

m+d+`∑
i=m+d+1

sπ(i) −
1

m

m∑
i=1

sπ(i)

)
≥ 0.

Hence, on this range k(µ) cannot increase.
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Consider the impact of smoothing in the different cases. If k(µ) = m then exactly as in
the proof of Proposition 2, g(µ) decreases, at least until the point where k(µ) is poised to
increase. The same is true for the cases m < k(µ) ≤ m+d and k(µ) = n− b. The remaining
case is k(µ) > n − b. In this case, apply Lemma 1 to the subvector (µπ(i) : 1 ≤ i ≤ n − b)
with function h(·) =

√
· to conclude that

∑n−b
i=1

√
µπ(i) increases during the smoothing. Since

the remaining µ values remain constant, it follows that
∑k

i=1

√
µπ(i) increases during the

smoothing. From (7) (appropriately adjusted for the ordering of the µ values) we therefore
conclude that g(·) decreases during the smoothing, at least until k(µ) is poised to decrease.

Finally, exactly as in the proof of Proposition 2, the value of g remains constant as we
redefine the value of k(µ) at the point where it is poised to increase or decrease, and this
completes the proof.
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