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Abstract

We propose a mean-variance framework to analyze the optimal quoting policy of an option market

maker. The market maker’s profits come from the bid-ask spreads received over the course of a

trading day, while the risk comes from uncertainty in the value of his portfolio, or inventory. Within

this framework, we study the impact of liquidity and market incompleteness on the optimal bid and

ask prices of the option. First, we consider a market maker in a complete market, where continuous

trading in a perfectly liquid underlying stock is allowed. In this setting, the market maker may remove

all risk by Delta hedging, and the optimal quotes will depend on the option’s liquidity, but not on the

inventory. Second, we model a market maker who may not trade continuously in the underlying stock,

but rather sets bid and ask quotes in the option and this illiquid stock. We find that the optimal

stock and option quotes depend on the relative liquidity of both instruments as well as on the net

Delta of the inventory. Third, we consider an incomplete market with residual risks due to stochastic

volatility and large overnight moves in the stock price. In this setting, the optimal quotes depend on

the liquidity of the option and on the net Vega and Gamma of the inventory.
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I Introduction

We study the optimal bid and ask prices at which an options dealer, or market maker, sets his quotes.

The market maker is committed to dynamically update bid and ask quotes in the options market,

and is thus at the heart of the option pricing problem. By understanding the dealer’s sources of risk

and return, we may formulate his “optimal” quoting policy and thus gain insight in the dynamics of

option prices. We capture fluctuations in the supply and demand for options by modeling the arrival

intensity of orders as a function of how far the dealer’s quotes are from the option’s mid price. This

approach leads to a quoting policy that depends on the risk of the dealer’s inventory position as well

as the liquidity of the stock and options market.

From an empirical perspective, we are inspired by papers describing the behavior of option dealers.

For instance, in Garleanu, Pedersen and Poteshman (2006), the authors find that the net demand for

options exerts pressure on option prices, when perfect replication is impossible. They derive the

sensitivity of option prices with respect to net demand and they find that it depends on the standard

“Greeks”, Gamma and Vega. The price effect of risk due to discrete time hedging is dependent on the

option’s Gamma, while the price effect of risk due to stochastic volatility depends on Vega. A related

insight may be found in Jameson and Wilhelm (1992), who show that Gamma and Vega contribute

significantly to the bid-ask spread.

From a theoretical perspective, our stochastic control problem can be viewed as an inventory

management problem, where the order flow depends on the bid and ask prices. This type of problem

was first studied by Ho and Stoll (1981) and an empirical analysis was applied to the options market

by Ho and Macris (1984). These authors show that if a dealer’s goal is to maximize expected utility,

he will adjust his quotes in response to inventory positions. As one would expect, when the dealer’s

inventory is positive, the quotes should be lowered and when the inventory is negative, the quotes

should be raised. This simple risk-management mechanism helps the dealer keep inventory positions

under control. Another related optimization problem is solved in Minina and Vellekoop (2008), which

models an options trader whose risk is a function of the portfolio’s Greeks.

There are some important differences between our model and those described above. First, we

consider a dealer in the option market who provides liquidity with limit orders in the form of bid and

ask quotes. If the underlying stock is illiquid, the dealer may also control his quotes on the stock. This
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approach allows us to model the relative liquidity of the option and stock markets and to determine the

optimal policy for the dealer by solving the stochastic control problem. On the other hand, Garleanu,

Pedersen and Poteshman (2006) consider the net demand pressure only on the options and derive the

competitive equilibrium valuations of all options in the economy without focusing on optimal dealer

policy or evolution of bid and ask quotes.

Second, we construct our model in a mean-variance framework in contrast to general expected

utility model in Ho and Stoll (1981) and exponential utility model with consumption in Garleanu,

Pedersen and Poteshman (2006). This type of objective has enjoyed a revival in the optimal order

execution literature (see Almgren and Chriss (2001), Engle and Ferstenberg (2006)) and is a natural

choice to address optimal market making strategies. Indeed, we find that a fast numerical procedure

can be implemented to determine the optimal bid and ask prices, without resorting to asymptotic

expansions, as is often the case in stochastic control problems of this nature.

Third, we choose an investment horizon of one day, and explicitly separate the problem into a

day of trading, followed by an overnight move in the stock and option prices. The advantage of our

approach is that we can capture the often observed fact that dealers tend to “go home flat” (see

Hasbrouck (2007)). By framing our problem in a twenty-four-hour horizon, we find that the optimal

dealer will move his quotes more aggressively towards the end of the day, so as to avoid keeping

excessive inventory overnight.

In Section 2, we present the complete market version of our framework, where the option may be

perfectly hedged by continuously trading in the underlying. The main result of this section is that the

market maker’s quotes do not depend on inventory. In Section 3, we solve a version of the model where

the underlying is illiquid and the market maker updates quotes on both the stock and options market.

We illustrate the fact that our mean-variance problem allows us to trace out the efficient frontier for

a dealer, in analogy with the classic Markowitz approach. In Section 4, we introduce a version of the

model where the dealer is subject to residual risks due to stochastic volatility and overnight moves

in the stock price. We find that the bid and ask quoting policy depends on the net Gamma and

Vega of the dealer. This affects long and short maturity options differently and we illustrate this by

numerically computing the dealer’s optimal policies. We present our conclusions in Section 5, and the

proofs are all included in the appendix.
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II Complete market

The market dynamics. We choose to model the stock price as a martingale under the historic

probability measure, to reflect the idea that the dealer has no information or view on the future

direction of the stock price. The dealer considers the market price to be the ‘true’ value of the stock

at all times. On a technical level, the assumption that the stock price is a martingale will also turn out

to be essential in establishing the dynamic programming principle for our mean-variance objective.

If we assume that the interest rate, r, equals zero, the stock and option price dynamics must also

be martingales under the risk neutral measure to avoid arbitrage opportunities. Effectively, we choose

a model where the dynamics under the historic and risk-neutral probability measures coincide in order

to focus on the effects of a stochastic inventory on the dealer’s quotes.

The continuous time dynamics of the stock mid price is given by

(1) dSt = σStdWt.

The dealer makes markets in a European call option with maturity Tmat ≫ T and strike K, whose

mid price follows

(2) dC(S, t) = Θtdt + ∆tdSt +
1

2
Γt(dSt)

2 = ∆tσStdWt

where the function C(S, t) is given by the Black Scholes formula and Θt, ∆t and Γt are the standard

greeks, Theta, Delta and Gamma, respectively.

The liquidity. The dealer will trade exclusively with limit orders in the form of bid and ask quotes

“pegged” around the option’s mid price,

pb,o
t = Ct − ǫb,o

t

pa,o
t = Ct + ǫa,o

t

He stands ready to trade one option lot at the prices above, where ǫa,o
t and ǫb,o

t are the premiums

obtained by the market-maker. If we only admit premiums that are greater than zero, these prices
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represent an improvement over the mid price of the option. Note that as long as the mid price

specifications are arbitrage free, as is the case in (1) and (2), the dealer’s quotes cannot be arbitraged.

The bid and ask quotes, or equivalently the premiums, ǫa,o
t and ǫb,o

t , indirectly influence the inventory

held by the market maker, since they affect the arrival rates of orders. We will let λo(ǫ) be the Poisson

arrival rate of option orders. λo(ǫ) needs to obey certain restrictions for the existence of an optimal

policy.

The dealer’s state variables and controls. The dealer may continuously control the wealth in

stock πt and the bid and ask premiums ǫa,o
t and ǫb,o

t on the option. The number of options bought and

sold before time t, respectively N b,o
t and Na,o

t , are Markov modulated Poisson processes with rates

λ(ǫb,o
t ) and λ(ǫa,o

t ).

qo
t = N b,o

t − Na,o
t

is the inventory in options.

The marked-to-market wealth Xt is given by

Xt = π0
t + πt + qo

t Ct

where π0
t is the dollar amount in cash. It follows that

dXt = σπtdWt + ǫa,o
t dNa,o

t + ǫb,o
t dN b,o

t + qo
t dCt.

We may decompose this wealth process into the returns obtained from transactions

dZt = ǫa,o
t dNa,o

t + ǫb,o
t dN b,o

t

and the inventory value

dIt = σπtdWt + qo
t dCt.

The objective. We consider the stochastic control problem of a dealer who sets bid and ask prices
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throughout the trading day. The value function is

(3) v(Z0, S0, q
o
0, 0) = max

πt,ǫ
a,o
t ,ǫ

b,o
t ,0≤t≤T

(E[ZT ] − γVar[IT ])

where γ is dealer’s parameter of risk aversion. The dealer wishes to maximize profit from transactions,

with a penalty proportional to the variance of cumulated inventory risk.

The following result illustrates that if the options can be dynamically replicated with the stock,

the quoting policy is independent of the inventory.

Theorem 1. The optimal dollar amount of stock in (3) is given by

πt = −St∆tq
o
t

and optimal quoting policy is given by the implicit equations

ǫa,o
t = −λo(ǫ

a,o
t )

λ′

o(ǫ
a,o
t )

and

ǫb,o
t = −λo(ǫ

b,o
t )

λ
′

o(ǫ
b,o
t )

Note that optimal premiums are well-defined if the revenue function, R(ǫ) = ǫλo(ǫ), has a maxi-

mizer. Using the necessary conditions for optimality, we need

ǫλ
′′

o(ǫ) + 2λ
′

o(ǫ) ≤ 0

Therefore, an appropriate choice for λo(ǫ) would be a decreasing linear function. In the sequel, we let

(4) λo(ǫ) =







C − Dǫ if 0 ≤ ǫ < C/D

0 otherwise

be the Poisson arrival rates of option orders. This choice of decreasing function with respect to ǫ

also coincides with the empirical fact that the closer the quotes are to the mid price, the higher the
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probability of their execution in a given time interval. We introduce cut-offs to capture the fact that

there is a minimum spread that must be quoted by the market maker at all times.

In the next section, we consider a setting where the underlying stock is illiquid and the dealer

makes markets in both the stock and the option.

III Incomplete market due to illiquidity in the underly-

ing stock

Illiquidity in the stock price may be modeled as a proportional transaction cost, as in Davis, Panas

and Zariphopoulou (1993). In such models, the agent crosses the bid-ask spread in order to reduce

risk in a static options position, and the state space may be decomposed into a trade and a no-trade

region. Our approach here will be to model the market maker’s transactions in stocks in the same

way as the options transactions described in the previous section. In other words, the dealer will now

control the premiums that the dealer charges around the option mid price, ǫa,o
t and ǫb,o

t , as well as

around the stock mid price, ǫa,s
t and ǫb,s

t where

pb,s
t = St − ǫb,s

t

pa,s
t = St + ǫa,s

t .

If we assume arrival rates for the stock transactions to be linear with respect to premiums as in the

case of option trades,

(5) λs(ǫ) =







A − Bǫ if 0 ≤ ǫ < A/B

0 otherwise

we may adjust the constants, A, B, C and D, to capture the relative liquidity of the stock and option

markets.

The wealth now follows

dXt = ǫa,s
t dNa,s

t + ǫb,s
t dN b,s

t + qs
t dSt + ǫa,o

t dNa,o
t + ǫb,o

t dN b,o
t + qo

t dCt.
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We may decompose this wealth process into the returns obtained from transactions

dZt = ǫa,s
t dNa,s

t + ǫb,s
t dN b,s

t + ǫa,o
t dNa,o

t + ǫb,o
t dN b,o

t

and the inventory risk

dIt = qs
t dSt + qo

t dCt.

We now consider the stochastic control problem of a dealer who sets bid and ask prices on the stock

and the option throughout the trading day. The value function is

(6) v(Z0, S0, q
s
0, q

o
0, 0) = max

ǫ
a,s
t ,ǫ

b,s
t ,ǫ

a,o
t ,ǫ

b,o
t ,0≤t≤T

E[ZT ] − γVar[IT ].

The discrete time problem. The difficulty in solving problem (6) is that we may no longer reduce

the variance term to zero, by dynamically adjusting the stock position, as in the previous section. Our

approach will be to discretize the problem to obtain a numerical solution.

We divide the trading day into n sessions 0 = t0 < t1 < ... < tn. At the beginning of every session,

the dealer sets bid and ask quotes on the stock (pb,s
i and pa,s

i ) and on the option (pb,o
i and pa,o

i ) for

0 ≤ i ≤ n − 1, and waits for market orders to arrive.

At the end of the nth session, the market is closed and no trading occurs in the interval (tn, T ].

There is an overnight move in the asset prices, where T , tn+1 represents the beginning of the following

trading day. The explicit modeling of this overnight move is an important ingredient of our modeling.

Because the dealer is unable to trade in the interval (tn, T ], the bid and ask quotes will turn out to

be more sensitive to the inventory positions as the end of the day approaches. This feature differs

from the inventory models of Ho and Stoll (1981), where the sensitivity of the quotes with respect to

inventory decreases as the horizon T approaches.

Conditional probabilities associated with transactions returns and changes in inventory can be
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approximated up to terms of order o(∆t) by

(7)

P (∆Zi = 0|Fi) = P (∆qs
i = 0,∆qo

i = 0) = 1 −
(

λs(ǫ
b,s
i ) + λs(ǫ

a,s
i ) + λo(ǫ

b,o
i ) + λo(ǫ

a,o
i )
)

∆t

P (∆Zi = ǫb,s
i |Fi) = P (∆qs

i = 1,∆qo
i = 0) = λs(ǫ

b,s
i )∆t

P (∆Zi = ǫa,s
i |Fi) = P (∆qs

i = −1,∆qo
i = 0) = λs(ǫ

a,s
i )∆t

P (∆Zi = ǫb,o
i |Fi) = P (∆qs

i = 0,∆qo
i = 1) = λo(ǫ

b,o
i )∆t

P (∆Zi = ǫa,o
i |Fi) = P (∆qs

i = 0,∆qo
i = −1) = λo(ǫ

a,o
i )∆t

where Fi denotes the available information at time ti.

If we use the convention that trades happen immediately after time ti, the change in the market

value of the inventory is given by

(8) ∆Ii , qs
i+1∆Si + qo

i+1∆Ci

and we assume without loss of generality that I0 = 0. Note that since no trading occurs in the period

(tn, T ), ∆Zn , ZT − Zn = 0 and

(9) ∆In , IT − In = qs
n(ST − Sn) + qo

n(CT − Cn).

Since the increments ∆Ii are independent, the discretized version of our problem may be written as

(10) v(Z0, S0, q
s
0, q

o
0, t0) = max

ǫ
a,s
i ,ǫ

b,s
i ,ǫ

a,o
i ,ǫ

b,o
i ,0≤i≤n−1

(

E[ZT ] − γ

n
∑

i=0

Var[∆Ii]

)

.

A One-period model

Let us first solve the one-period version of our model. To keep notation coherent with the rest of the

paper, we consider the dealer’s problem at the beginning of the last trading session, assuming that he

may only trade in the interval (tn−1, tn). The dealer chooses bid and ask quotes at time tn−1, defined

through the controls ǫa,s
n−1, ǫb,s

n−1, ǫa,o
n−1 and ǫb,o

n−1. These quotes influence the probabilities of the four

possible transactions (see (7)) over the time interval (tn−1, tn). We initially assume that the stock and

the option prices do not change in the last trading session, i.e., Sn = Sn−1 and Cn = Cn−1, but may

change in the overnight interval (tn, T ).
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The dealer’s objective is to maximize expected marked to market wealth at time T , with a penalty

term that is proportional to the variance of the change in value of the inventory. This mean-variance

objective therefore strikes a balance between the desire to maximize the marked to market profits

made from the bid-ask spread and the risk associated with changes in market prices.

The value function can be written as

(11) v(Zn−1, Sn−1, q
s
n−1, q

o
n−1, tn−1) = max

ǫ
a,s
n−1

,ǫ
b,s
n−1

,ǫ
a,o
n−1

,ǫ
b,o
n−1

(E[ZT |Fn−1] − γVar[∆In|Fn−1]) .

The dealer’s objective is to determine the optimal bid and ask quotes on the stock and options market.

Theorem 2. The optimal policy for the dealer is given by

(12)

ǫa,s
n−1 = max

(

0,min
(

A
B

, A
2B

− γσ2(T − tn)S2
n

(

qs
n−1 + qo

n−1∆n − 1
2

)))

ǫb,s
n−1 = max

(

0,min
(

A
B

, A
2B

+ γσ2(T − tn)S2
n

(

qs
n−1 + qo

n−1∆n + 1
2

)))

ǫa,o
n−1 = max

(

0,min
(

C
D

, C
2D

− γσ2(T − tn)S2
n∆n

(

qs
n−1 + qo

n−1∆n − 1
2∆n

)))

ǫb,o
n−1 = max

(

0,min
(

C
D

, C
2D

+ γσ2(T − tn)S2
n∆n

(

qs
n−1 + qo

n−1∆n + 1
2∆n

)))

In contrast to the complete market setting, the optimal premiums are piecewise linear functions

of inventory. In the risk neutral case where γ = 0, the objective is to maximize terminal wealth and

the optimal premiums are

ǫa,s
n−1 = ǫb,s

n−1 =
A

2B

ǫa,o
n−1 = ǫb,o

n−1 =
C

2D

regardless of inventory. If the dealer is risk-averse, i.e. γ > 0, he adjusts or “tilts” all his quotes away

from the revenue maximizing solution by an amount proportional to qs
n−1 + qo

n−1∆n which is the net

Delta.

B Multi-period model

We now consider a multi-period model where the stock price does not move during the day and the

only inventory risk comes from the possibility of an overnight move. This simplifies the problem, since

most of the variance terms in (10) drop out and the only source of uncertainty during the trading day

10



comes from the transactions. In this setting the stock and option premiums ǫa,s, ǫb,s, ǫa,o and ǫb,o can

be computed recursively as functions of time and inventory (see Theorem 3.2).

The stock price is fixed at Si = S for i ≤ n and

ST = S + σS(WT − Wtn).

Likewise, the option price remains constant at Ci = C throughout the day and then becomes

CT = C + σS∆n(WT − Wtn).

The objective (10) simplifies to

v(Z0, S0, q
s
0, q

o
0, t0) = max

ǫ
a,s
i ,ǫ

b,s
i ,ǫ

a,o
i ,ǫ

b,o
i ,0≤i≤n−1

(E[ZT ] − γVar[∆In]) .

If we define

(13) vj(Zj , q
s
j , q

o
j ) = max

ǫ
a,s
i ,ǫ

b,s
i ,ǫ

a,o
i ,ǫ

b,o
i ,j≤i≤n−1

(

E[ZT |Fj ] − γVar[∆In|Fj ]
)

we may use the tower property of conditional expectations and the conditional variance formula

(14)

E[ZT |Fi] = E[E[ZT |Fi+1]|Fi]

Var[∆In|Fi] = E[Var[∆In|Fi+1]|Fi] + Var[E[∆In|Fi+1]|Fi]

= E[Var[∆In|Fi+1]|Fi]

to obtain the dynamic programming principle

vi(Zi, q
s
i , q

o
i ) = max

ǫ
a,s
i ,ǫ

b,s
i ,ǫ

a,o
i ,ǫ

b,o
i

E[vi+1(Zi+1, q
s
i+1, q

o
i+1)|Fi].

Note that (14) depends on the fact that the stock price is a martingale.

The computational task of building a non-recombining pentanomial tree to solve such a problem

seems daunting. Fortunately, the value function vi can be expressed as the linear combination of (i)

the marked to market wealth Zi accumulated until time i and (ii) a function of inventory in net Delta.

It follows that the optimal bid and ask premiums are piecewise linear in net Delta. This is summarized
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Figure 1: Optimal quoting policy of a dealer with low risk aversion in the case of no intraday movement in the stock price.
As net inventory increases (qo in this case), the premiums ǫa,s

i and ǫa,o

i decrease. The rate of decrease (mi) is much higher at
the end of the day. (γ = 0.006, qs = 0, A = 40, B = 2000, C = 40, D = 200, S = 100, K = 100, σ = 0.01, n = 100, t0 = 0,
tn = 1, T = 1.5, Tmat = 400.)

in the following theorem.

Theorem 3. The optimal bid and ask premiums at time ti are given by

ǫa,s
i = max

(

0,min
(

A
B

, A
2B

+ mi+1

(

qs
i + ∆nqo

i − 1
2

)))

ǫb,s
i = max

(

0,min
(

A
B

, A
2B

− mi+1

(

qs
i + ∆nqo

i + 1
2

)))

ǫa,o
i = max

(

0,min
(

C
D

, C
2D

+ mi+1∆n

(

qs
i + ∆nqo

i − 1
2∆n

)))

ǫa,o
i = max

(

0,min
(

C
D

, C
2D

− mi+1∆n

(

qs
i + ∆nqo

i + 1
2∆n

)))

where mi is the slope coefficient of the “tilting” and is calculated with the following recursion

mi = mi+1 + ∆t
(

BIi + D∆2
nJi

)

m2
i+1

with the terminal condition mn = −γσ2S2(T−tn) and the auxiliary variables, Ii =
(

11{0<ǫ
a,s
i < A

B
} + 11

{0<ǫ
b,s
i < A

B
}

)

and Ji =
(

11{0<ǫ
a,o
i < C

D
} + 11

{0<ǫ
b,o
i < C

D
}

)

.

In Figures 1 and 2, we illustrate the extent to which the amount of options in inventory, qo, affects

the ask premium on the stock, ǫa,s
i and on the option ǫa,o

i , for two different levels of risk aversion

γ = 0.006 and γ = 0.1. Note that we are setting qs = 0. We chose values of the liquidity parameters

(A = 40, B = 2000, C = 40, D = 200) that lead to spreads on the stock and the option of 2 and

20 cents respectively. Figure 1 illustrates that as qo increases, the premiums ǫa,s
i and ǫa,o

i decrease,
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Figure 2: Optimal quoting policy of a dealer with high risk aversion in the case of no intraday movement in the stock price.
Compared to Figure 1, the tilting in the quotes is much more aggressive. (γ = 0.1, qs = 0, A = 40, B = 2000, C = 40,
D = 200, S = 100, K = 100, σ = 0.01, n = 100, t0 = 0, tn = 1, T = 1.5, Tmat = 400.)

indicating that the ask quote moves closer to the market mid price. This effect is most dramatic on

the stock quotes, where an inventory of 10 options causes the dealer to lower his ask quote aggressively

to the mid price of the stock (i.e. ǫa,s
i = 0). In Figure 2, we see that for a very risk-averse dealer

(γ = 0.1), the policy on the stock is essentially in two states: an aggressive sell state when ǫa,s
i = 0

and a no-trade state when ǫa,s
i = 0.02.

Also worthy of note is the time-of-the-day effect: near the end of the day (tn ≈ 1), the ask quotes

are more sensitive to small changes in inventory, than at the beginning of the day (mn ≫ m0). This

reflects the fact that at the beginning of the day, the dealer has more chances to trade in and out of

a position, while at the end of the day, he is most likely to get stuck with his marginal inventory.

For each level of risk aversion, there is an optimal quoting strategy, given by the premiums ǫa,s
i ,

ǫb,s
i , ǫa,o

i and ǫb,o
i . By simulating 1000 days with initial inventory equal to zero, we obtain an efficient

frontier (see Figure 3). This frontier describes the tradeoff between the expected daily profit and the

standard deviation of the inventory value, for various levels of risk aversion. The discontinuities in

the frontier are due to our particular modeling of the functions λs and λo in (4) and (5). The profit

maximizing point (γ = 0) is obtained by a risk neutral dealer whose bid-ask quotes are symmetric

around the mid price, regardless of inventory.

We identify two qualitatively different regions of the frontier, of which our choices of γ = 0.006 and

γ = 0.1 are representative. The low risk aversion dealer, γ = 0.006 essentially treats the stock and the
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Figure 3: Efficient frontier. There are qualitatively two different regions of the frontier. The low risk aversion dealer,
γ = 0.006, treats the stock and the option as two similar instruments by slightly moving quotes on the stock and the option.
The highly risk-averse dealer, γ = 0.1, uses the stock mainly as a hedging instrument by aggressively moving the stock quotes
and abandons his role as a market maker in the stock. (A = 40, B = 2000, C = 40, D = 200, S = 100, K = 100, σ = 0.01,
n = 100, t0 = 0, tn = 1, T = 1.5, Tmat = 400.)

option as two similar instruments by slightly moving quotes on the stock and the option, for moderate

levels of inventory (as illustrated in Figure 1). The highly risk-averse dealer, γ = 0.1, uses the stock

mainly as a hedging instrument by aggressively moving the stock quotes when his Delta is non-zero

(as illustrated in Figure 2). This type of dealer would be likely to hedge options very frequently, even

at the cost of crossing the spread, essentially abandoning his role as a market maker in the stock. We

will in fact revisit dealers of this type in Section 4, by modeling a dealer who only makes markets in

the options and delta-hedges his position at every time-step. This will require a more sophisticated

modeling of the option dynamics and will highlight the role of higher order risks, Gamma and Vega.

IV Incomplete market due to stochastic volatility and

jump risk

In this section, we introduce Gamma risk, by considering the risk due to an overnight jump in the stock

price, and Vega risk, by directly modeling the stochastic implied volatility of the option. However, we

also simplify the problem, by abandoning the dealer’s control of the bid and ask quotes (or equivalently

the controls ǫa,s and ǫb,s) and assuming that the delta of his option inventory is set to zero at the

beginning of every trading period ti.
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The market dynamics. The continuous time dynamics of the stock mid price is given by

dSt = σtStdWt

where the volatility σt is stochastic. Here we follow the approach of Schönbucher (1999) by directly

modeling the implied volatility of the option as

(15) dσ̂ = αdW 1
t

where the Brownian motions Wt and W 1
t are assumed to be independent for the sake of simplicity.

The dealer makes markets in a European call option with maturity Tmat and strike K, whose mid

price follows

dC(S, t) = Θtdt + ∆tdSt +
1

2
Γt(dSt)

2 + Cσdσ̂t +
1

2
Cσσ(dσ̂t)

2

where the function C(S, t) is given by the Black Scholes formula and Θt, ∆t and Γt are the standard

greeks. Schönbucher (1999) shows that for the choice (15), the stochastic volatility of the stock must

be related to the implied volatility through the relation

σ2
t = σ̂2

t − α2

σ̂2
t

(

(

ln

(

S

K

))2

− 1

4
(Tmat − t)2σ̂4

t

)

in order to satisfy

0 =

(

Θt +
1

2
σ̂2

t S
2
t Γt

)

dt +

(

1

2

(

σ2
t − σ̂2

t

)

S2
t Γt +

1

2
Cσσα2

)

dt

and thus ensure absence of arbitrage opportunities. Our expression for the change in option value,

thus, becomes

(16) ∆Ci = ∆iσiSiu
√

∆t +
1

2
Γiσ

2
i S

2
i (u2 − 1)∆t + Cσαη

√
∆t

where u and η are standard normal random variables. The second term is a standard second order

approximation (see Boyle and Emanuel (1980)), which captures the risk of discrete hedging. The third

term captures the risk of a stochastic implied volatility. Using (16), the relationship between Gamma

15



and Vega

(17) Cσ = ΓS2σ(Tmat − t)

and assuming that the options are delta-hedged at every time step, i.e., qs
i = −qo

i ∆i, we may use (8)

to obtain

(18) ∆Ii = qo
i+1

(

1

2
Γiσ

2
i S

2
i (u2 − 1)∆t + ΓiσiαS2

i (Tmat − ti)η
√

∆t

)

.

and

(19) ∆In = qo
n

(

1

2
Γnσ2

nS2
n(u2 − 1)∆t + ΓnσnαS2

n(Tmat − tn)η
√

∆t

)

.

Expression (18) highlights the fact that for long maturity options the stochastic volatility contribution

is likely to dominate, while for short maturity options, the risk contribution of discrete hedging will

be more important.

The advantage of directly modeling the implied volatility is that it is observable and that statistics

on its volatility α can readily be obtained. Moreover, this approach can be generalized to a model of

the entire volatility surface (see Cont and Da Fonseca (2002)).

A One-period model

We initially assume that the stock and the option prices and implied volatility do not change in the

last trading session, i.e., Sn = Sn−1, Cn = Cn−1 and σn = σn−1, but may change in the overnight

interval (tn, T ). In this framework, the value function can be written as

v(Zn−1, Sn−1, q
s
n−1, q

o
n−1, tn−1) = max

ǫ
a,o
n−1

,ǫ
b,o
n−1

E[ZT |Fn−1] − γVar[∆In|Fn−1]

The dealer’s objective is to determine the optimal bid and ask quotes on the options market. Notice

that the value function depends on two controls ǫa,o
i and ǫb,o

i , but the inventory risk now depends on

higher order terms given in (18) and (19).
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Theorem 4. The optimal policy for the dealer is given by

ǫa,o
n−1 = max

(

0,min
(

C
D

, C
2D

− γk
(

qo
n−1 − 1

2

)))

ǫb,o
n−1 = max

(

0,min
(

C
D

, C
2D

+ γk
(

qo
n−1 + 1

2

)))

where k =
(

1
2σ2

n(T − tn) + α2(Tmat − tn)2
)

Γ2
nS4

nσ2
n(T − tn)

As in the case of illiquidity in the underlying stock, a risk-neutral dealer, i.e. γ = 0, sets optimal

premiums equal to the revenue maximizing solution

ǫa,o
n−1 = ǫb,o

n−1 =
C

2D

regardless of inventory. However, in contrast to the that case, a risk-averse dealer, i.e. γ > 0, “tilts”

his quotes away from the revenue maximizing solution by an amount proportional to the net option

position, qo
n−1 where the constant of proportionality is a function of Gamma and volatility of implied

volatility.

B Multi-period model

Much like in Section 3.2, we may use the dynamic programming principle to solve the multi-period

model in the setting with no intraday movement. The value function simplifies to

v(Z0, S0, q
s
0, q

o
0, t0) = max

ǫ
a,o
i ,ǫ

b,o
i ,0≤i≤n−1

E[ZT ] − γVar[∆In]

and can be computed by applying the following result, analogous to Theorem 3.2.

Theorem 5. The optimal bid and ask premiums at time ti are given by

ǫa,o
i = max

(

0,min
(

C
D

, C
2D

+ mi+1q
o
i − 1

2mi+1

))

ǫb,o
i = max

(

0,min
(

C
D

, C
2D

− mi+1q
o
i − 1

2mi+1

))

.

where mi is the slope coefficient of the “tilting” and is calculated with the following recursion

mi = mi+1 + ∆t
(

Dm2
i+1Ji

)
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Figure 4: Optimal quoting policy for a long maturity option with α = 0 and α = 0.00035. In this scenario, the magnitude
of α has a significant impact on the sensitivity of the quotes with respect to inventory. (γ = 0.1, A = 40, B = 2000, C = 40,
D = 200, S = 100, σ0 = 0.01, n = 100, t0 = 0, tn = 1, T = 1.5, Tmat = 400.)

Figure 5: Optimal quoting policy for a very short maturity option with α = 0 and α = 0.00035. Gamma risk dominates
in this scenario and the magnitude of α has no effect on the sensitivity of the quotes with respect to inventory. (γ = 0.1,
A = 40, B = 2000, C = 40, D = 200, S = 100, σ0 = 0.01, n = 100, t0 = 0, tn = 1, T = 1.5, Tmat = 2.)

with the terminal condition mn = −γσ2
nS2Γ2

n (T − tn)
(

1
2σ2

nS2(T − tn) + α2S2(Tmat − tn)2
)

and the

auxiliary variable, Ji =
(

11{0<ǫ
a,o
i < C

D
} + 11

{0<ǫ
b,o
i < C

D
}

)

.

In Figure 4 and Figure 5, we illustrate the effect of the maturity, Tmat, and the volatility of implied

volatility, α, on the option ask premiums. In Figure 5, we notice that for long maturity options, the

magnitude of α has a significant impact on the sensitivity of the quotes with respect to inventory. This

reflects the fact that Vega risk is more important than Gamma risk for long maturity options. However,

when time-to-maturity is very short, Gamma risk dominates and the α parameter has virtually no
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effect on the optimal quoting policy (see Figure 5).

V Conclusion

We approach the option pricing problem from the point of view of a market maker in European

options. The dealer has control over bid and ask quotes and maximizes expected return, with a

penalty that is proportional to the variance of the inventory value. The solution of this optimization

problem illustrates that, after the purchase of an option lot, it is rational for option market makers

to lower their bid and ask quotes. The extent to which their quotes are adjusted may be expressed in

terms of the liquidity and incompleteness assumptions on the market.

In the complete market model, the dealer simultaneously updates bid and ask quotes on a European

call option and costlessly adjusts the amount of underlying stock he holds. The mid prices of the stock

and the option are related by the Black-Scholes formula. In this setting, every time the market maker

sells or buys options, he is able to remove all risk by trading in the underlying. Consequently, he sets

his quotes around the mid price in order to maximize return, regardless of his inventory position.

However, if the stock is illiquid, the dealer will be unable to trade continuously and may choose to

make markets in the stock as well. In this setting, he will keep the net Delta of the inventory under

control by updating his quotes on the stock and the option. Since we model the liquidity of the stock

to be greater than that of the option, we find that the optimal strategy is to set a large bid-ask spread

around the option mid price and move the stock quotes aggressively as the dealer’s net Delta departs

from zero. By varying the coefficient of risk aversion, we are able to numerically compute the efficient

frontier of the dealer.

Finally, we model a dealer who delta-hedges the option inventory with the stock at every time step,

but is subject to residual risks due to stochastic volatility and unhedgeable overnight moves in the

stock price. These risks highlight the need to keep the Vega and Gamma of the dealer’s inventory under

control, and this is reflected in the dealer’s quoting strategy. We illustrate this optimal quoting policy

for options of varying maturity. We find that the dealer’s net Gamma dominates the quoting policy

for short maturity options, while the net Vega dominates the quoting policy for the long maturity

options.
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Appendix

A Proof of Theorem 1

πt only appears in the variance term. Since E[IT ] = 0, Var[IT ] = E[I2
T ]. Using Ito isometry,

Var[IT ] = E[I2
T ] = E

[
∫ T

0
(σ2π2

t + 2σ2πtSt∆tq
o
t + σ2(qo

t )
2∆2

t S
2
t )dt

]

.

Taking first order conditions with respect to πt, we obtain πt = −St∆tq
o
t .

Premium terms only appear in the expectation term. Since E[dNa,o
t ] = λo(ǫ

a,o
t )dt and E[dN b,o

t ] =

λo(ǫ
b,o
t )dt, we obtain

E[ZT ] = E

[
∫ T

0
(ǫa,o

t λo(ǫ
a,o
t ) + ǫb,o

t λo(ǫ
b,o
t ))dt

]

.

This expression attains its maximum when the optimal premiums satisfy the following first order

conditions:

λo(ǫ
a,o
t ) + ǫa,o

t λ
′

o(ǫ
a,o
t ) = 0

λo(ǫ
b,o
t ) + ǫb,o

t λ
′

o(ǫ
b,o
t ) = 0.

Thus, ǫa,o
t = − λo(ǫa,o

t )

λo
′(ǫa,o

t )
and ǫb,o

t = − λo(ǫb,o
t )

λo
′(ǫb,o

t )
. Note that, for the existence of the maximizers, we need

ǫλ
′′

o (ǫ) + 2λ
′

o(ǫ) ≤ 0.

B Proof of Theorem 2

The expected wealth due to transactions conditional on the information at time tn−1 equals

E[ZT |Fn−1] = Zn−1 + E[∆Zn−1|Fn−1]

= Zn−1 + ∆t
(

ǫa,sλs(ǫ
a,s) + ǫb,sλs(ǫ

b,s) + ǫa,oλo(ǫ
a,o) + ǫb,oλo(ǫ

b,o)
)
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where ∆t = tn − tn−1. We then compute the variance terms using Sn−1 = Sn and Cn−1 = Cn.

Var
(

∆In|Fn−1

)

= E

[

Var
(

∆In|Fn

)

|Fn−1

]

= E

[

Var
(

qs
n(ST − Sn) + qo

n(CT − Cn)|Fn

)

|Fn−1

]

= E

[(

qs
nσSn + qo

nσSn∆n

)2
(T − tn)|Fn−1

]

= λs(ǫ
a,s)∆t

(

(qs
n−1 − 1)σSn + qo

n−1σSn∆n

)2
(T − tn) + λs(ǫ

b,s)∆t
(

(qs
n−1 + 1)σSn + qo

n−1σSn∆n

)2
(T − tn)

+λo(ǫ
a,o)∆t

(

qs
n−1σSn + (qo

n−1 − 1)σSn∆n

)2
(T − tn) + λs(ǫ

b,o)∆t
(

qs
n−1σSn + (qo

n−1 + 1)σSn∆n

)2
(T − tn)

+(1 − λs(ǫ
a,s)∆t − λs(ǫ

b,s)∆t − λo(ǫ
a,o)∆t − λo(ǫ

b,o)∆t)
(

(qs
n−1σSn + qo

n−1σSn∆n)
)2

(T − tn)

which equals after cancelations:

= (T − tn)
(

λs(ǫ
a,s)∆t

(

(−2qs
n−1 + 1)σ2S2

n − 2qo
n−1σ

2S2
n∆n

)

+ λs(ǫ
b,s)∆t

(

(2qs
n−1 + 1)σ2S2

n + 2qo
n−1σ

2S2
n∆n

)

+λo(ǫ
a,o)∆t

(

(−2qo
n−1 + 1)σ2S2

n∆2
n − 2qs

n−1σ
2S2

n∆n

)

+ λo(ǫ
b,o)∆t

(

(2qo
n−1 + 1)σ2S2

n∆2
n + 2qs

n−1σ
2S2

n∆n

)

+
(

(qs
n−1)

2σ2S2
n + (qo

n−1)
2σ2S2

n∆2
n + 2qs

n−1q
o
n−1σ

2S2
n∆n

))

Using the above formulas, v(Xn−1, Sn−1, q
s
n−1, q

o
n−1, tn−1) then equals:

max
ǫ
a,s
n−1

,ǫ
b,s
n−1

,ǫ
a,o
n−1

,ǫ
b,o
n−1

{(

Yn−1 + ∆t
(

ǫa,sλs(ǫ
a,s) + ǫb,sλs(ǫ

b,s) + ǫa,oλo(ǫ
a,o) + ǫb,oλo(ǫ

b,o)
))

−γ(T − tn)
(

λs(ǫ
a,s)∆t

(

(−2qs
n−1 + 1)σ2S2

n − 2qo
n−1σ

2S2
n∆n

)

+ λs(ǫ
b,s)∆t

(

(2qs
n−1 + 1)σ2S2

n + 2qo
n−1σ

2S2
n∆n

)

+λo(ǫ
a,o)∆t

(

(−2qo
n−1 + 1)σ2S2

n∆2
n − 2qs

n−1σ
2S2

n∆n

)

+ λo(ǫ
b,o)∆t

(

(2qo
n−1 + 1)σ2S2

n∆2
n + 2qs

n−1σ
2S2

n∆n

)

+
(

(qs
n−1)

2σ2S2
n + (qo

n−1)
2σ2S2

n∆2
n + 2qs

n−1q
o
n−1σ

2S2
n∆n

))}

By taking the first order conditions, we can solve for each bid and ask quote for both the option

and the stock:

ǫa,s
n−1 = max

(

0,min
(

A
B

, A
2B

− γσ2(T − tn)S2
n

(

qs
n−1 + qo

n−1∆n − 1
2

)))

ǫb,s
n−1 = max

(

0,min
(

A
B

, A
2B

+ γσ2(T − tn)S2
n

(

qs
n−1 + qo

n−1∆n + 1
2

)))

ǫa,o
n−1 = max

(

0,min
(

C
D

, C
2D

− γσ2(T − tn)S2
n∆n

(

qs
n−1 + qo

n−1∆n − 1
2∆n

)))

ǫb,o
n−1 = max

(

0,min
(

C
D

, C
2D

+ γσ2(T − tn)S2
n∆n

(

qs
n−1 + qo

n−1∆n + 1
2∆n

)))
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C Proof of Theorem 3

We need the following lemmas to prove Theorem 3.

Lemma 6. Let Ik =
(

11{0<ǫ
a,s
k

< A
B
} + 11

{0<ǫ
b,s
k

< A
B
}

)

and Jk =
(

11{0<ǫ
a,o
k

< C
D
} + 11

{0<ǫ
b,o
k

< C
D
}

)

. Then,

vi(Zi, q
s
i , q

o
i ) = Zi + wi(q

s
i , q

o
i ) and wi(q

s
i , q

o
i ) is a non-linear function of inventory in the form

ai(q
s
i )

2 + bi(q
o
i )

2 + ciq
s
i q

o
i + diq

s
i + eiq

o
i + fi

For k < n, we have

ak = ak+1 + ∆t

(

Ba2
k+1Ik +

1

4
Dc2

k+1Jk

)

bk = bk+1 + ∆t

(

Db2
k+1Jk +

1

4
Bc2

k+1Ik

)

ck = ck+1 + ∆t (Bak+1ck+1Ik + Dbk+1ck+1Jk)

dk = dk+1 + ∆t

(

Bak+1dk+1Ik +
1

4
Dck+1ek+1Jk

)

ek = ek+1 + ∆t

(

Dbk+1ek+1Jk +
1

4
Bck+1dk+1Ik

)

fk = fk+1 + ∆t
{

(

A2

4B
+

1

4
B
(

a2
k+1 + d2

k+1

)

+
1

2
Aak+1

)

Ik +

(

C2

4D
+

1

4
D
(

b2
k+1 + e2

k+1

)

+
1

2
Cbk+1

)

Jk

−Aak+1

(

11{ǫa,s
k

=0} + 11
{ǫb,s

k
=0}

)

− Cbk+1

(

11{ǫa,o
k

=0} + 11
{ǫb,o

k
=0}

)}

and

ǫa,s
k = max

(

0,min
(

A
B

, A
2B

+ ak+1q
s
k + 1

2ck+1q
o
k − 1

2ak+1 + 1
2dk+1

))

ǫb,s
k = max

(

0,min
(

A
B

, A
2B

− ak+1q
s
k − 1

2ck+1q
o
k − 1

2ak+1 − 1
2dk+1

))

ǫa,o
k = max

(

0,min
(

C
D

, C
2D

+ bk+1q
o
k + 1

2ck+1q
s
k − 1

2bk+1 + 1
2ek+1

))

ǫb,o
k = max

(

0,min
(

C
D

, C
2D

− bk+1q
o
k − 1

2ck+1q
s
k − 1

2bk+1 − 1
2ek+1

))

Proof. This lemma can be proven by induction.

Base case: If i = n, then

vn(Zn, qs
n, qo

n) = Zn − γσ2S2
n(T − tn)

(

qs
n + qo

n∆n

)2
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which implies that

an = −γσ2S2(T − tn)

bn = −γσ2S2∆2
n(T − tn)

cn = −2γσ2S2∆n(T − tn)

dn = 0

en = 0.

Inductive step: Suppose Lemma 6 holds for i = k + 1 where 0 < k + 1 ≤ n. Then for i = k, we use

vk(Zk, qs
k, q

o
k) = max

ǫ
a,s
k

,ǫ
b,s
k

,ǫ
a,o
k

,ǫ
b,o
k

E[vk+1(Zk+1, q
s
k+1, q

o
k+1)|Fk]

Using induction hypothesis, vk(Zk, qs
k, q

o
k) equals

= max
ǫ
a,s

k
,ǫ

b,s

k
,ǫ

a,o

k
,ǫ

b,o

k

E

[

Zk+1 + ak+1(q
s
k)

2 + bk+1(q
o
k)

2 + ck+1q
s
kq

o
k + dk+1q

s
k + ek+1q

o
k + fk+1|Fk

]

= Zk +
(

ǫa,s
k λs(ǫ

a,s
k ) + ǫb,s

k λs(ǫ
b,s
k ) + ǫa,o

k λo(ǫ
a,o
k ) + ǫb,o

k λo(ǫ
b,o
k )
)

∆t

+λs(ǫ
a,s
k )∆t

(

ak+1(q
s
k − 1)2 + bk+1(q

o
k)

2 + ck+1(q
s
k − 1)qo

k + dk+1(q
s
k − 1) + ek+1q

o
k + fk+1

)

+λs(ǫ
b,s
k )∆t

(

ak+1(q
s
k + 1)2 + bk+1(q

o
k)

2 + ck+1(q
s
k + 1)qo

k + dk+1(q
s
k + 1) + ek+1q

o
k + fk+1

)

+λo(ǫ
a,o
k )∆t

(

ak+1(q
s
k)

2 + bk+1(q
o
k − 1)2 + ck+1q

s
k(q

o
k − 1) + dk+1q

s
k + ek+1(q

o
k − 1) + fk+1

)

+λs(ǫ
b,o
k )∆t

(

ak+1(q
s
k)

2 + bk+1(q
o
k + 1)2 + ck+1q

s
k(q

o
k + 1) + dk+1q

s
k + ek+1(q

o
k + 1) + fk+1

)

+(1 − λs(ǫ
a,s
k )∆t − λs(ǫ

b,s
k )∆t − λo(ǫ

a,o
k )∆t − λo(ǫ

b,o
k )∆t)

(

ak+1(q
s
k)

2 + bk+1(q
o
k)

2

+ck+1q
s
kq

o
k + dk+1q

s
k + ek+1q

o
k + fk+1

)

.

Finally, with some algebraic manipulation, we obtain

= Zk +
(

ǫa,s
k λs(ǫ

a,s
k ) + ǫb,s

k λs(ǫ
b,s
k ) + ǫa,o

k λo(ǫ
a,o
k ) + ǫb,o

k λo(ǫ
b,o
k )
)

∆t

+λs(ǫ
a,s
k )∆t

(

ak+1(−2qs
k + 1) − ck+1q

o
k − dk+1

)

+λs(ǫ
b,s
k )∆t

(

ak+1(2q
s
k + 1) + ck+1q

o
k + dk+1

)

+ λo(ǫ
a,o
k )∆t

(

bk+1(−2qo
k + 1) − ck+1q

s
k − ek+1

)

+λs(ǫ
b,o
k )∆t

(

bk+1(2q
o
k + 1) + ck+1q

s
k + ek+1

)(

ak+1(q
s
k)

2 + bk+1(q
o
k)

2 + ck+1q
s
kq

o
k + dk+1q

s
k + ek+1q

o
k + fk+1

)
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If we take the first order conditions in the following terms,

ǫa,s
k (A − Bǫa,s

k ) + (A − Bǫa,s
k )
(

− 2ak+1q
s
k − ck+1q

o
k + ak+1 − dk+1

)

+ǫa,s
k (A − Bǫb,s

k ) + (A − Bǫb,s
k )
(

2ak+1q
s
k + ck+1q

o
k + ak+1 + dk+1

)

+ǫa,o
k (C − Dǫa,o

k ) + (C − Dǫa,o
k )
(

− 2bk+1q
o
k − ck+1q

s
k + bk+1 − ek+1

)

+ǫb,o
k (C − Dǫb,o

k ) + (C − Dǫb,o
k )
(

2bk+1q
o
k + ck+1q

s
k + bk+1 + ek+1

)

we obtain the optimal premiums for each trading session:

ǫa,s
k = max

(

0,min
(

A
B

, A
2B

+ ak+1q
s
k + 1

2ck+1q
o
k − 1

2ak+1 + 1
2dk+1

))

ǫb,s
k = max

(

0,min
(

A
B

, A
2B

− ak+1q
s
k − 1

2ck+1q
o
k − 1

2ak+1 − 1
2dk+1

))

ǫa,o
k = max

(

0,min
(

C
D

, C
2D

+ bk+1q
o
k + 1

2ck+1q
s
k − 1

2bk+1 + 1
2ek+1

))

ǫb,o
k = max

(

0,min
(

C
D

, C
2D

− bk+1q
o
k − 1

2ck+1q
s
k − 1

2bk+1 − 1
2ek+1

))

If we substitute these optimal premiums back into the value function, we obtain

vk(Zk, q
s
k, q

o
k) = Zk + 11{0<ǫ

a,s
k

< A
B
}B∆t

( A

2B
− ak+1q

s
k −

1

2
ck+1q

o
k +

1

2
ak+1 −

1

2
dk+1

)2

−11{ǫa,s
k

=0}2A∆t
(

− ak+1q
s
k −

1

2
ck+1q

o
k +

1

2
ak+1 −

1

2
dk+1

)

+11
{0<ǫ

b,s
k

< A
B
}
B∆t

( A

2B
+ ak+1q

s
k +

1

2
ck+1q

o
k +

1

2
ak+1 +

1

2
dk+1

)2

−11
{ǫb,s

k
=0}

2A∆t
(

ak+1q
s
k +

1

2
ck+1q

o
k +

1

2
ak+1 +

1

2
dk+1

)

+11{0<ǫ
a,o
k

< C
D
}D∆t

( C

2D
− bk+1q

o
k − 1

2
ck+1q

s
k +

1

2
bk+1 −

1

2
ek+1

)2

−11{ǫa,o

k
=0}2C∆t

(

− bk+1q
o
k − 1

2
ck+1q

s
k +

1

2
bk+1 −

1

2
ek+1

)

+11
{0<ǫ

b,o
k

< C
D
}
D∆t

( C

2D
+ bk+1q

o
k +

1

2
ck+1q

s
k +

1

2
bk+1 +

1

2
ek+1

)2

−11
{ǫb,o

k
=0}

2C∆t
(

bk+1q
o
k +

1

2
ck+1q

s
k +

1

2
bk+1 +

1

2
ek+1

)

+
[

ak+1(q
s
k)

2 + bk+1(q
o
k)

2 + ck+1q
s
kq

o
k + dk+1q

s
k + ek+1q

o
k + fk+1

]
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This shows that vk(Zk, q
s
k, q

o
k) is a non-linear function of inventory with the following coefficients.

ak = ak+1 + ∆t

(

Ba2
k+1Ik +

1

4
Dc2

k+1Jk

)

bk = bk+1 + ∆t

(

Db2
k+1Jk +

1

4
Bc2

k+1Ik

)

ck = ck+1 + ∆t (Bak+1ck+1Ik + Dbk+1ck+1Jk)

dk = dk+1 + ∆t

(

Bak+1dk+1Ik +
1

4
Dck+1ek+1Jk

)

ek = ek+1 + ∆t

(

Dbk+1ek+1Jk +
1

4
Bck+1dk+1Ik

)

fk = fk+1 + ∆t
{

(

A2

4B
+

1

4
B
(

a2
k+1 + d2

k+1

)

+
1

2
Aak+1

)

Ik +

(

C2

4D
+

1

4
D
(

b2
k+1 + e2

k+1

)

+
1

2
Cbk+1

)

Jk

−Aak+1

(

11{ǫa,s

k
=0} + 11

{ǫb,s
k

=0}

)

− Cbk+1

(

11{ǫa,o

k
=0} + 11

{ǫb,o
k

=0}

)}

Lemma 7. The coefficients bi and ci can be written in terms of ai such that bi = ai∆
2
n and ci = 2ai∆n.

Furthermore, due to the terminal conditions, di = ei = 0.

Proof. This lemma can also be proven by induction.

Base case: If i = n, then

an = −γσ2S2(T − tn)

bn = an∆2
n

cn = 2an∆n

dn = 0

en = 0.

Inductive step: Suppose Lemma 7 holds for i = k + 1 where 0 < k + 1 ≤ n. Then for i = k, we use
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the following identities from Lemma 6.

bk = bk+1 + ∆t

(

Db2
k+1Jk +

1

4
Bc2

k+1Ik

)

ck = ck+1 + ∆t (Bak+1ck+1Ik + Dbk+1ck+1Jk)

dk = dk+1 + ∆t

(

Bak+1dk+1Ik +
1

4
Dck+1ek+1Jk

)

ek = ek+1 + ∆t

(

Dbk+1ek+1Ik +
1

4
Bck+1dk+1Jk

)

Using induction hypothesis,

bk = ak+1∆
2
n + ∆t

(

JkD
(

ak+1∆
2
n

)2
+

1

4
IkB (2ak+1∆n)2

)

= ∆2
n

(

ak+1 + ∆t

(

IkBa2
k+1 +

1

4
JkDc2

k+1

))

= ∆2
nak

ck = ak+1∆n + ∆t
(

IkBak+1ak+1∆n + JkDak+1∆
2
nak+1∆n

)

= 2∆n

(

ak+1 + ∆t

(

IkBa2
k+1 +

1

4
Jkc

2
k+1

))

= 2∆nak

dk = dk+1 + ∆t

(

IkBak+1dk+1 +
1

4
JkDck+1ek+1

)

= 0 + ∆t

(

IkBak+10 +
1

4
JkDck+10

)

= 0

ek = ek+1 + ∆t

(

JkDbk+1ek+1 +
1

4
IkBck+1dk+1

)

= 0 + ∆t

(

JkDbk+10 +
1

4
Ikck+10

)

= 0
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By using Lemma 6 and Lemma 7, and letting mi = ai, we get

mi = mi+1 + ∆t
(

Bm2
i+1Ii + D∆2

nm2
i+1Ji

)

fi = fi+1 + ∆t
{

(

A2

4B
+

1

4
Bm2

i+1 +
1

2
Ami+1

)

Ii +

(

C2

4D
+

1

4
Dm2

i+1∆
4
n +

1

2
Cmi+1∆

2
n

)

Ji

− Ami+1

(

11{ǫa,s
i =0} + 11

{ǫb,s
i =0}

)

− Cmi+1∆
2
n

(

11
{ǫb,o

i =0}
+ 11

{ǫb,o
i =0}

)}

.

As a result, the optimal bid and ask premiums at time ti are given by

ǫa,s
i = max

(

0,min
(

A
B

, A
2B

+ mi+1

(

qs
i + ∆nqo

i − 1
2

)))

ǫb,s
i = max

(

0,min
(

A
B

, A
2B

− mi+1

(

qs
i + ∆nqo

i + 1
2

)))

ǫa,o
i = max

(

0,min
(

C
D

, C
2D

+ mi+1∆n

(

qs
i + ∆nqo

i − 1
2∆n

)))

ǫa,o
i = max

(

0,min
(

C
D

, C
2D

− mi+1∆n

(

qs
i + ∆nqo

i + 1
2∆n

)))

D Proof of Theorem 4 and Theorem 5

The proofs for these theorems are identically same with Theorem 2 and Theorem 3 respectively except

that there are no stock premiums. Proofs can be obtained by contacting the authors.
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