Bayesian Decision Making

May 7, 2020

Sid Banerjee, ORIE, Cornell
Bayesian decision theory in learning

Given prior F on θ, choose ‘action’ $\hat{\theta}$ to minimize loss function $\mathbb{E}_F[L(\theta, \hat{\theta})]$

Examples

- **L_0 loss**: $L(\theta, \hat{\theta}) = 1_{\{\theta \neq \hat{\theta}\}} \Rightarrow \hat{\theta}_{L_0} = \text{mode of } F$

 (Ex: spam filtering)

- **L_1 loss**: $L(\theta, \hat{\theta}) = ||\theta - \hat{\theta}||_1 \Rightarrow \hat{\theta}_{L_1} = \text{median of } \theta$ under F

- **L_2 loss**: $L(\theta, \hat{\theta}) = ||\theta - \hat{\theta}||_2 \Rightarrow \hat{\theta}_{L_2} = \mathbb{E}_F[\theta]$

Decision theory in ‘decision-making’

Given prior F on X, choose ‘action’ $a \in A$ to minimize loss, i.e.

$$a^* = \text{arg min}_{a \in A} \mathbb{E}_{X \sim F}[L(a, X)]$$

Posterior for X given data$

*Ex: $X \sim \text{stock price in 1 day}$

$p = \text{price of stock today}$

$a \in \{0, 1\}$: ‘buy’

$L(0, x) = 0, L(1, x) = (x - p)^+ x$
example: Bayesian optimization

\[
\text{Aim: } \max_{A} \mathbb{E}[f(A)], \quad f \text{ unknown final choice of } X
\]

- Choose points \(X_1, X_2, \ldots, X_s \)
- Pick \(A \in \mathbb{R} \) s.t. \(\max f(A) \)

- Decision problem: choice of \(X_1, X_2, \ldots, X_s, A \)
 - Easier problem: Pick \(X_s, A \) given \(X_1, \ldots, X_{s-1} \)
 - "Heuristic": Pick \(X_s \) to maximize \(\mathbb{E}[f(A) | X_1, \ldots, X_s] \)
 - Pick \(A \) to \(\max \mathbb{E}[f(A) | X_1, \ldots, X_s] \)

As an MDP: \(X_1 \rightarrow f(x_1) \rightarrow X_2 = \Phi(x_1, f(x_1)) \rightarrow f(x_2) \rightarrow \ldots \rightarrow f(x_s) \rightarrow A \rightarrow f(A) \)
next, we play a game

[stochastic variant of Nim]

• Setup: A pile of 10 toothpicks

• You will be playing against an oblivious random adversary (called Computer).

• A Sequence of Events in Each Iteration:
 – You start first. You can take either 1 or 2 toothpicks from the pile.
 – After you make the decision, I will flip a random fair coin. If the coin lands HEAD, the Computer will remove 1 toothpick from the pile. Otherwise, the Computer will remove 2 toothpicks.

• The game proceeds until all toothpicks are removed from the pile.
• If you end up holding the last toothpick, you win $20. Otherwise, you get nothing.

Courtesy: Paat Rusmevichientong

(note: this is a variant of a game called Nim; see Youtube video)
talking of playing games (in memorium)

for more on such games, see *winning ways for mathematical plays*

Conway, Berlekamp, Guy
analyze the game

(sequential decision making)

divide game into rounds:
- in each round, you go first followed by COMPUTER
- In k^{th} round, computer picks $X_k \sim Unif\{1,2\}$ toothpicks
analyzing the game

divide game into rounds:

- in each round, you go first followed by COMPUTER
- In k^{th} round, computer picks $X_k \sim \text{Unif}\{1, 2\}$ toothpicks

observations

- if the game starts with 1 or 2 toothpicks, then we win!
 (if game starts with 0 toothpicks, assume we lose.)
analyze the game

divide game into rounds:
- in each round, you go first followed by COMPUTER
- In \(k^{th} \) round, computer picks \(X_k \sim \text{Unif}\{1, 2\} \) toothpicks

observations

- if the game starts with 1 or 2 toothpicks, then we win!
 (if game starts with \(\leq 0 \) toothpicks, assume we lose.)
 \(\text{ie, if } S_k \leq 0, \text{ then loss} \)
- suppose after \(k - 1 \) rounds, game has \(S_k \geq 3 \) toothpicks left, and let \(S_{k+1} \) be number of toothpicks left when we play next:
 - if we pick 1 match, then \(S_{k+1} = S_k - 1 - X_k \)
 - if we pick 2 match, then \(S_{k+1} = S_k - 2 - X_k \)

\[
S_k \rightarrow \text{player picks } X_k \rightarrow S_{k+1}
\]
analyzing the game

divide game into **rounds**:
– in each round, you go first followed by COMPUTER
– in \(k^{th} \) round, computer picks \(X_k \sim \text{Unif}\{1, 2\} \) toothpicks

observations

- if the game starts with 1 or 2 toothpicks, then we win!
 (if game starts with 0 toothpicks, assume we lose.)
- suppose after \(k - 1 \) rounds, game has \(S_k \geq 3 \) toothpicks left, and let \(S_{k+1} \) be number of toothpicks left when we play next:
 - if we pick 1 match, then \(S_{k+1} = S_k - 1 - X_k \)
 - if we pick 2 match, then \(S_{k+1} = S_k - 2 - X_k \)

to ‘solve’ this game, we use **dynamic programming**.
analyzing the game

- if after $k - 1$ rounds, game has $S_k \geq 3$ toothpicks, and S_{k+1} is number of toothpicks when we play next:
 - If we pick 1 match, then $S_{k+1} = S_k - 1 - X_k$
 - If we pick 2 match, then $S_{k+1} = S_k - 2 - X_k$

((where $X_k \sim \text{Unif}\{1, 2\}$)

let $V(x) = \max \mathbb{E}[\text{Reward}]$ if round starts with x toothpicks (Value fn)
analyzing the game

- if after $k - 1$ rounds, game has $S_k \geq 3$ toothpicks, and S_{k+1} is number of toothpicks when we play next:
 - If we pick 1 match, then $S_{k+1} = S_k - 1 - X_k$
 - If we pick 2 match, then $S_{k+1} = S_k - 2 - X_k$

(where $X_k \sim Unif\{1, 2\}$)

let $V(x) = \max \mathbb{E}[\text{Reward}]$ if round starts with x toothpicks

- $V(-1) = V(0) = 0, V(1) = V(2) = 20$. Want to find $V(10)$
analyzing the game

- if after \(k - 1 \) rounds, game has \(S_k \geq 3 \) toothpicks, and \(S_{k+1} \) is number of toothpicks when we play next:
 - If we pick 1 match, then \(S_{k+1} = S_k - 1 - X_k \)
 - If we pick 2 match, then \(S_{k+1} = S_k - 2 - X_k \)

(\(X_k \sim Unif\{1, 2\} \))

let \(V(x) = \max \mathbb{E}[\text{Reward}] \) if round starts with \(x \) toothpicks

- \(V(-1) = V(0) = 0, \ V(1) = V(2) = 20 \). Want to find \(V(10) \)
- \(V(3) = \max \mathbb{E}[\text{Reward}] \) if round starts with 3 toothpicks
an analyzing the game

• if after \(k - 1 \) rounds, game has \(S_k \geq 3 \) toothpicks, and \(S_{k+1} \) is number of toothpicks when we play next:
 - If we pick 1 match, then \(S_{k+1} = S_k - 1 - X_k \)
 - If we pick 2 match, then \(S_{k+1} = S_k - 2 - X_k \)

(\text{where } X_k \sim \text{Unif}\{1, 2\})

let \(V(x) = \max \mathbb{E}[\text{Reward}] \) if round starts with \(x \) toothpicks

- \(V(-1) = V(0) = 0, \ V(1) = V(2) = 20 \). Want to find \(V(10) \)
- \(V(3) = \max \mathbb{E}[\text{Reward}] \) if round starts with 3 toothpicks
 \[= \max \left\{ \mathbb{E}[R \text{ if we pick 1 of 3}], \mathbb{E}[R \text{ if we pick 2 of 3}] \right\} \]
analyzing the game

- if after \(k - 1 \) rounds, game has \(S_k \geq 3 \) toothpicks, and \(S_{k+1} \) is number of toothpicks when we play next:
 - If we pick 1 match, then \(S_{k+1} = S_k - 1 - X_k \)
 - If we pick 2 match, then \(S_{k+1} = S_k - 2 - X_k \)

 (where \(X_k \sim Unif\{1, 2\} \))

let \(V(x) = \max \mathbb{E}[\text{Reward}] \) if round starts with \(x \) toothpicks

- \(V(-1) = V(0) = 0, V(1) = V(2) = 20. \) Want to find \(V(10) \)
- \(V(3) = \max \mathbb{E}[\text{Reward}] \) if round starts with 3 toothpicks
 \[= \max \left\{ \mathbb{E}[R \text{ if we pick 1 of 3}], \mathbb{E}[R \text{ if we pick 2 of 3}] \right\} \]
 \[= \max \left\{ \mathbb{E}[V(3 - 1 - X)], \mathbb{E}[V(3 - 2 - X)] \right\} \]
analyzing the game

- if after \(k - 1 \) rounds, game has \(S_k \geq 3 \) toothpicks, and \(S_{k+1} \) is number of toothpicks when we play next:
 - If we pick 1 match, then \(S_{k+1} = S_k - 1 - X_k \)
 - If we pick 2 match, then \(S_{k+1} = S_k - 2 - X_k \)

(\(\text{where } X_k \sim \text{Unif}\{1, 2\} \))

let \(V(x) = \max \mathbb{E}[\text{Reward}] \) if round starts with \(x \) toothpicks

- \(V(-1) = V(0) = 0, V(1) = V(2) = 20. \) Want to find \(V(10) \)
- \(V(3) = \max \mathbb{E}[\text{Reward}] \) if round starts with 3 toothpicks
 = \(\max \left\{ \mathbb{E}[R \text{ if we pick 1 of 3}], \mathbb{E}[R \text{ if we pick 2 of 3}] \right\} \)
 = \(\max \left\{ \mathbb{E}[V(3 - 1 - X)], \mathbb{E}[V(3 - 2 - X)] \right\} \)
 = \(\max \left\{ \left(\frac{V(1) + V(0)}{2} \right), \left(\frac{V(0) + V(-1)}{2} \right) \right\} \)
 = \(10 \)
analyzing the game

\[V(x) = \max \mathbb{E}[\text{Reward}] \] if round starts with \(x \) toothpicks

- \(V(-1) = V(0) = 0, \ V(1) = V(2) = 20 \). Want to find \(V(10) \)
- \(V(3) = \max \left\{ 0.5(V(1) + V(0)), 0.5(V(0) + V(-1)) \right\} = 10 \)
- \(V(4) = \max \left\{ 0.5(V(2) + V(1)), 0.5(V(1) + V(0)) \right\} = 20 \)
- \(V(5) = \max \left\{ 0.5(V(3) + V(2)), 0.5(V(2) + V(1)) \right\} = 20 \)
- \(V(6) = \max \left\{ 0.5(V(4) + V(3)), 0.5(V(3) + V(2)) \right\} = 15 \)
- \(V(7) = \max \left\{ 0.5(V(5) + V(4)), 0.5(V(4) + V(3)) \right\} = 20 \)
- \(V(8) = \max \left\{ 0.5(V(6) + V(5)), 0.5(V(5) + V(4)) \right\} = 20 \)
- \(V(9) = \max \left\{ 0.5(V(7) + V(6)), 0.5(V(6) + V(5)) \right\} = 17.5 \)
- \(V(10) = \max \left\{ 0.5(V(8) + V(7)), 0.5(V(7) + V(6)) \right\} = 20 \)

optimal policy: move to nearest multiple of 3

we always win if \(x \neq 0 \mod(3) \)
analyzing the game

\[V(x) = \max \mathbb{E}[\text{Reward}] \] if round starts with \(x \) toothpicks

- \(V(-1) = V(0) = 0, \ V(1) = V(2) = 20 \). Want to find \(V(10) \)
- \(V(3) = \max \left\{ 0.5(V(1) + V(0)), 0.5(V(0) + V(-1)) \right\} = 10 \)
- \(V(4) = \max \left\{ 0.5(V(2) + V(1)), 0.5(V(1) + V(0)) \right\} = 20 \)
- \(V(5) = \max \left\{ 0.5(V(3) + V(2)), 0.5(V(2) + V(1)) \right\} = 20 \)
- \(V(6) = \max \left\{ 0.5(V(4) + V(3)), 0.5(V(3) + V(2)) \right\} = 15 \)
- \(V(7) = \max \left\{ 0.5(V(5) + V(4)), 0.5(V(4) + V(3)) \right\} = 20 \)
- \(V(8) = \max \left\{ 0.5(V(6) + V(5)), 0.5(V(5) + V(4)) \right\} = 20 \)
- \(V(9) = \max \left\{ 0.5(V(7) + V(6)), 0.5(V(6) + V(5)) \right\} = 17.5 \)
- \(V(10) = \max \left\{ 0.5(V(8) + V(7)), 0.5(V(7) + V(6)) \right\} = 20 \)

optimal policy: move to nearest multiple of 3

We always win if \(x \neq 0 \mod (3) \)
sequential decision making

Markov decision process (MDP)

general paradigm for sequential decision making

problem: \(\max_{a: "Actions"} \mathbb{E}_X[f(X_1, a_1, X_2, a_2, \ldots, X_T, a_T)] \)

- **state:** \(S \) - summary of history
- **value function:** \(V(\cdot) \) - 'value-to-go' for given state
- **Bellman equation** (or dynamic program equation):
 \[
 V(S_t) = \max_{a_t: \text{actions}} \mathbb{E}
 \left[
 R_t(S_t, a_t) + V(S_{t+1}(S_t, a_t))
 \right]
 \]
- **optimal policy:** pick any \(a_t \) that is a maximizer of above eqn
Markov chain vs. Markov decision process

Markov chain

MDP

'Solution' to an MDP

\[T = \{1, 2, \ldots, T\} \]
\[S_t \in \{1, 2, \ldots, S^3\} \]
\[V_t(s) \]

for state \(s \) at time \(t \)

store: \[V_t(s) = \varepsilon \]

\[\alpha_t^*(s) = \operatorname{argmax}_a \left(\mathbb{E} R_t(s_a, a) + V_{t+1}(s) \right) \]
(finite horizon) MDP

sequential decision making: \(\max_{a: \text{"Actions"}} \mathbb{E}_X[f(a, X)] \)

main concepts

- **horizon**: \(T \) - discrete ‘decision periods’ \(t = \{1, 2, \ldots, T\} \)
finite horizon MDP

Sequential decision making: \(\max_{a: \text{"Actions"}} \mathbb{E}_X[f(a, X)] \)

Main concepts

- **Horizon**: \(T \) - discrete ‘decision periods’ \(t = \{1, 2, \ldots, T\} \)
- **State**: \(s_t \in S_t \) - concise summary of history
(finite horizon) MDP

Sequential decision making: \(\max_{a: "Actions"} \mathbb{E}_X[f(a, X)] \)

Main concepts

- **Horizon**: \(T \) - discrete 'decision periods' \(t = \{1, 2, \ldots, T\} \)
- **State**: \(s_t \in \mathcal{S}_t \) - concise summary of history
- **Action**: \(a_t \in \mathcal{A}(s_t) \) - allowed set actions in each period
(finite horizon) MDP

sequential decision making: \(\max_{a: \text{“Actions”}} \mathbb{E}[f(a, X)] \)

main concepts

- **horizon**: \(T \) - discrete ‘decision periods’ \(t = \{1, 2, \ldots, T\} \)
- **state**: \(s_t \in S_t \) - concise summary of history
- **action**: \(a_t \in A(s_t) \) - allowed set actions in each period
- **randomness/disturbance**: \(X_t \) - determines state transition probability \(p(s_{t+1} | s_t, a_t) \) (or \(s_{t+1} = f(s_t, a_t, X_t) \))
(finite horizon) MDP

sequential decision making: \(\max_{a: "Actions"} \mathbb{E}_X[f(a, X)] \)

main concepts

- **horizon**: \(T \) - discrete ‘decision periods’ \(t = \{1, 2, \ldots, T\} \)
- **state**: \(s_t \in S_t \) - concise summary of history
- **action**: \(a_t \in A(s_t) \) - allowed set actions in each period
- **randomness/disturbance**: \(X_t \) - determines state transition probability \(p(s_{t+1}|s_t, a_t) \) (or \(s_{t+1} = f(s_t, a_t, X_t) \))
- **Reward**: \(R_t(s_t, a_t, X_t) \) (or \(R_t(s_{t+1}|s_t, a_t) \))
‘solving’ an MDP

dynamic programming

- **value function**: \(V_t(s) \triangleq \text{maximum expected expected reward over periods } \{t, t+1, \ldots, T\} \text{ starting from state } s \)
- **terminal conditions**: \(V_T(s) \) for all \(s \)
- **Bellman equation** (or dynamic program equation):
 \[
 V_t(S_t) = \max_{a_t: \text{actions}} \mathbb{E} \left[R_t(S_t, a_t) + V_{t+1}(S_{t+1}(S_t, a_t)) \right]
 \]
 optimal policy: pick any \(a_t \) that is a maximizer of above eqn
example: distributing food to soup kitchens

- mobile food pantry has C meals to distribute between H soup kitchens
- kitchen i has demand $D_i \sim F_i$ (F_i is known)
- can choose to give $X_i \geq 0$ units of food
- **objective**: maximize sum of log fill ratios $\sum_{i=1}^{H} \log \left(\frac{X_i}{D_i} \right)$

- Check: If $D_1 = D_2 = \ldots = D_H > C/H$
 - optimal $X_i = C/H$

State
- $S_t = C_t = \text{Amount of food left for } [t, t+1, \ldots, H]$
- $A_t = X_t = \text{Amount } i \mapsto \text{ given to location } i$

$$V_t(C_t) = \max_{X_t: X_t \in [0, C_t]} \mathbb{E} \left[\log \left(\min \left(\frac{X_t}{D_t}, 1 \right) \right) + V_{t+1}(C_t - X_t) \right]$$
'Solution' - Threshold Θ_t s.t. $X_t = \min(D_t, C_t, \Theta_t)$

$R_t(C_t, X_t) + V_{t+1}(C_t - X_t)$
example: distributing food to soup kitchens

- mobile food pantry has C_j cans of item $j \in \{1, 2, \ldots, d\}$ to distribute between H soup kitchens
- kitchen i has demand $D_{ij} \sim F_i$ for item j
- can choose to give $X_{ij} \geq 0$ units of each item
- objective: maximize product of utilities $\prod_{i=1}^{H} \left(U_i \left(\sum_{j} v_{ij} \frac{X_{ij}}{D_{ij}} \right) \right) \approx \sum_{j=1}^{C_j} \log \left(U_i \left(X_{ij}, D_{ij} \right) \right)$

\begin{align*}
\text{If } j &= 1 \\
C &
\end{align*}

\begin{align*}
\text{If } j &= 2 \\
C_1 &
\end{align*}

\begin{align*}
\text{For general } j = C_1 C_2 \ldots C_j H \\
\text{complexity } &\approx C_1 C_2 \ldots C_j H
\end{align*}
‘solving’ real MDPs

- exact solution via DP
 - newsvendor problem, selling single item (‘convexity’)
 - ‘index’ policies (greedy policies) - Gitlin’s index

- approximate methods (Thompson sampling)
 - Expected improvement / KG for Bayesian Opt

- iterative methods (value/policy iteration, Q learning)
 - approximate $V^*(s)$ (or $Q^*(s)$) via same iteration
 - Q-learning (more generally, RL) - solve the MDP approx. without knowing R, transitions
example: the **multi-armed bandit** problem

- K actions, H horizon
- action $a \in [K]$ has reward $R(a) = Ber(\theta_a)$, with unknown θ
- aim: maximize $\sum_{t=1}^{H} R(A_t)$

Q: If you know Θ_a, what is your policy?

A: pick highest θ_a

- **Exploration vs. Exploitation**

- Examples of "bad" policies:
 - Equal play, fix arm
 - play each arm N times, for remaining $H-3N$, pick arm with highest MLE for Θ_a

- These perform badly ($\Theta_1, H - E[\text{Reward}] = \text{Regret} \approx cH$)
example: the **multi-armed bandit** problem

Idea - Assume $\Theta_a \sim \text{Beta}(1, 1)$

- Choose A_t via some rule
- Update posterior $\Theta_a \sim \text{Beta}(1 + S_a, 1 + F_a)$

Fact 1 - If $H \sim \text{Geom}(\theta)$ then optimal solution for the MDP is known (Gittin's index)

Fact 2 - For fixed H, if we sample $\Theta_a \sim \text{Beta}(1 + S_a, 1 + F_a)$ and pick $A_t = \arg\max \{\Theta_a\}$ then $\mathbb{E}[\text{Regret}] \approx c K \log H$