Bandit algorithms in revenue optimization

(The value of knowing a demand curve – Kleinberg & Leighton)

- We now see how bandit algorithms (and in particular UCB) can be used to perform revenue optimization without knowing prices

- **Model** -
 - N buyers arrive sequentially
 - Seller makes a ‘posted price’ take-it-or-leave-it offer to each buyer.
 - Each buyer has i.i.d. value $V_t \sim F$, $E[0,1]$ a.s.
 - If posted price = P_t, then buyer purchases iff $P_t \leq V_t$
 - F is unknown

- If F is known, can use ‘monopolist price’
 \[
 P^* = \arg \max_P \left[P \left[1 - F(p) \right] \right]
 \]
 - Assume F is regular \Rightarrow unique P^*, $R(p)$ quasi-concave
 - If instead we knew V_1, V_2, \ldots, V_n, can choose P_{opt} to maximize revenue
* Thus - Assuming $R(p) = p \mathbb{F}(p)$ has unique global maximum p^*, and $R^*(p^*)$ exists and is strictly negative, then there is an online pricing strategy which achieves an expected regret of $O(\sqrt{n \ln n})$

Notes

* Let $\overline{R}_n^* = \mathbb{E}\left[\sum_{t=1}^{n} p^* 1\{\text{v}_t > p^*\}\right] = nR(p^*)$
 $\overline{R}_{\text{opt}} = \max_{p} \left[\sum_{t=1}^{n} p 1\{\text{v}_t > p^*\}\right]$ (Oracle bound)

 $\overline{R}_n = \mathbb{E}\left[\sum_{t=1}^{n} p_t 1\{\text{v}_t > p_t\}\right]$, where $p_t = \text{Policy } \Pi_t$

We will actually get that

$\overline{R}_n^* - \overline{R}_n^\Pi = O(\sqrt{n \ln n})$

and

$\overline{R}_{\text{opt}} - \overline{R}_n^* = O(\sqrt{n \ln n})$

Thus, we have small regret w.r.t. an oracle bound - this is stronger than competing with p^*

* Why regret? It was known that there are randomized pricing algos s.t. $\overline{R}_n^\Pi \geq \frac{1}{1+\varepsilon}$ for any $\varepsilon > 0$. Regret capture the lower order dependence on n

 This was the first regret bound for an ‘infinite’ arm setting
Proof - Main Idea - Choose appropriate discretization of [0,1]

- In particular, given K, we consider the price \(\{1/k, 2/k, \ldots, K/k\} \) as 'arms' (we later choose \(K = (n/\log n)^4 \))

- Now we can use UCB.

- For \(p_i = i/k \), the payoff is \(x_i = \begin{cases} i/k & \text{if } v_i > i/k \\ 0 & \text{otherwise} \end{cases} \)

\[\Rightarrow \mu_i = E[x_i] = \frac{i}{k} \cdot F\left(\frac{i}{k}\right) \]

- Let \((i^*, p^*) = \text{best arm } i/k \)

\[\Delta_i = \left(p^* - p_i \right) \]

- We want to show we get close to \(np^* \), and also that \(np^* \) is close to \(np^* \cdot F(p^*) \).

Lemma: \(\exists \) constants \(C_1, C_2 \) s.t. \(C_1(p - p^*)^2 \leq R(p^*) \leq C_2(p - p^*)^2 \) for all \(p \in [0,1] \)

Proof - For \(p \in [p^*-\epsilon, p^*+\epsilon] \), use Taylor (\(\cdot R(p^*) = 0 \))

\[R(p) \approx R(p^*) + C(p-p^*)^2, \quad C = R''(p^*) \]

For \(p \in [0, p^*-\epsilon] \cup [p^*+\epsilon, 1] \), since the set is compact and \(R(p) < R(p^*) \), we can find \(B_1, B_2 \) s.t. \(B_1(p-p^*)^2 \leq R(p^*) - R(p) \leq B_2(p-p^*)^2 \). Now take \(C = \min(B_1, B_2) \).
Lemma - \(\mu^* > \beta \rho^* \bar{F}(\rho^*) - C_2 / k^2 \)

Pf - \(\exists i \) s.t. \(|\rho^* - i/k| \leq 1/k \)

\(\Rightarrow [R(\rho^*) - R(i*/k)] \leq C_2 / k^2 \)

Lemma - Suppose we sort \(\Delta_i \) as \(\tilde{\Delta}_0 \leq \tilde{\Delta}_1 \leq \ldots \leq \tilde{\Delta}_k \)

Then \(\tilde{\Delta}_j \geq C_1 (j/2k)^2 \)

Pf - At most \(j \) elements of \(\{1/k, 2/k, \ldots, k/k^3 \} \) lie within distance \(j/2k \) of \(i*/k \).

Now consider \(\bar{R}_n - n/\mu^* \)

From UCB - \(-(\bar{R}_n - n\mu^*) \leq \sum_{i : \rho_i < \rho^*} \left(\frac{8 \log n}{\Delta_i} + 2 \right) \)

\(\leq \frac{32k^2}{C_1^2} \cdot \frac{n^2 \log n}{6} + 2k \)

\(= O(k^2 \log n) \)

On the other hand, \(nR(\rho^*) - \bar{R}_n \leq nC_2 = o(n/k^2) \)

Choosing \(K = (n / \log n)^{1/4} \) \(\Rightarrow nR(\rho^*) - \bar{R}_n \leq O(\sqrt{n \log n}) \)
However we do not know n.

- **Doubling trick**

 Use $n_0 = 1$, $n_1 = 2$, $n_2 = 4$, ..., $n_k = 2^k$.

 This continues till $2^{e^*} \leq n \Rightarrow e^* = \log_2 n$.

 However, regret $= \sum_{k=0}^{e^*} (Ne \log n)^{1/2} = \sum_{k=0}^{\log_2 n} (e 2^k)^{1/2}$

 $= O(\sqrt{n \log n})$

- Finally, we can also show $\overline{R}_n^{opt} - \overline{R}_n^* = O(\sqrt{n \log n})$.

 - This follows from Chernoff bounds. See KL'03.

- This result is also near-optimal.

 Theorem (KL'03) - No policy Π can achieve $\overline{R}_n - \overline{R}_n^* = o(\sqrt{n})$.

- **Intuition** - Consider 2 coins of prob $1/2$, $1/2 + \varepsilon$.

 We need $\Omega(1/\varepsilon^2)$ trials to accurately identify the better coin.

 Now we can use this to construct a worst-case Fs.t. $\text{regret} \geq \Omega(1/\varepsilon)$.