Problem 1: (LSH for Angular Similarity)

For any vectors \(x, y \in \mathbb{R}^d \), the angular distance is the angle (in radians) between the two vectors – formally, \(d_\theta(x, y) = \cos^{-1}\left(\frac{x \cdot y}{||x||_2 ||y||_2}\right) \) (where \(\cos^{-1}(\cdot) \) returns the principle angle, i.e., angles in \([0, \pi]\)). The (normalized) angular similarity is given by \(s_\theta(x, y) = 1 - d_\theta(x, y)/\pi \).

We now want to construct a LSH for the angular similarity metric. Consider the following family of hash functions: we first choose a random unit vector \(\sigma \) (i.e., \(\sigma \in \mathbb{R}^d \) with \(||\sigma||_2 = 1 \)), and for any vector \(x \), define \(h_\sigma(x) = sgn(x.\sigma) \) (i.e., the sign of the dot product of \(x \) and \(\sigma \)). Argue that for any \(x, y \in \mathbb{R}^d \), we have:

\[
\mathbb{P}[h_\sigma(x) = h_\sigma(y)] = s_\theta(x, y)
\]

Hint: For any pair \(x \) and \(y \) in \(\mathbb{R}^d \), there is a unique plane passing through the origin containing \(x \) and \(y \) – convince yourself that \(d_\theta(x, y) \) is precisely the angle between \(x \) and \(y \) in this plane. Also, given any vector \(\sigma \), its dot product with \(x \) and \(y \) only depends on the projection of \(\sigma \) on this plane. Now what can you say about the signs of the dot products of \(x \) and \(y \) with a random unit vector?

Problem 2: (Choosing LSH Parameters for Nearest Neighbors)

An important routine in many clustering/machine learning algorithms is the \((c, R)\)-Nearest-Neighbors (or \((c, R)\)-NN) problem: given a set of \(n \) points \(V \) and a distance metric \(d \), we want to store \(V \) in order to support the following query:

Given a query point \(q \), if there exists \(x \in V \) such that \(d(x, q) \leq R \) then, with probability at least \(1 - \delta \), we must output a point \(x' \in V \), such that \(d(x', q) \leq cR \).

We now show how to solve this problem using LSH. Assume that we are given a \((R, cR, p_1, p_2)\)-sensitive hash family \(H \). As in class, we can amplify the probabilities by first taking the AND of \(r \) such hash functions to get a new family \(H_{\text{and}} \); next, we can take the OR of \(b \) hash functions from \(H_{\text{AND}} \) to get another family \(H_{\text{OR-AND}} \).

Given the set \(V \), we hash each element using a single hash function \(g \) from \(H_{\text{OR-AND}} \) (which corresponds to \(b \times r \) hash functions from \(H \)). Now given a query point \(q \), we hash \(q \) using our cascaded hash-function \(g \), and find all \(y \in V \) such that \(g(y) = g(q) \) – let this set be denoted \(Y_q \). Finally, we can check \(d(q, y) \) for each \(y \) in \(Y_q \), and return those \(y \) for whom \(d(q, y) < cR \).

Part (a)

If there exists \(x \in V \) such that \(d(x, q) \leq R \) then, argue that we output \(x \) with probability \(1 - (1 - p_1^b)^h \). On the other hand, also show that the expected number of false positives (i.e., points \(x' \in V \) such that \(d(x', q) > cR \)) that we consider is \(np_2^b \).

Part (b)

Note that since we are checking explicitly for false positives, we never output one – however, we have \(O(1) \) runtime cost for each false positive (to check its distance). Choose \(r \) to ensure that the
expected number of false-positives is 1. Using this choice of \(r \), show that for guarantee we desire for the \((c,R)\)-NN problem, we need to choose \(b = n^\rho \ln(1/\delta) \), where \(\rho = \frac{\ln(1/p_1)}{\ln(1/p_2)} \).

Problem 3: (More on the Morris’ Counter)

Recall in class we saw the basic Morris counter, wherein we initiated the counter to 1 when one item arrived, and upon each subsequent arrival, incremented the counter with probability \(1/2^X \). We also showed that after \(n \) items have arrived, \(\mathbb{E}[2^X] = n + 1 \).

Part (a)

Prove that the variance of the counter is given by:

\[
\text{Var}(2^X_n) = \frac{n^2 - n}{2}
\]

Using this, find the probability that the average of \(k \) Morris counters is less than \(n + 1 - \epsilon n \) after \(n \) items have passed.

Hint: Use induction for \(\mathbb{E}[2^X] \).

Part (b)

Next, suppose we modify the counter as follows: we still initialize counter \(Y \) to 1 when the first item arrives, but on every subsequent arrival, we increment the counter by 1 with probability \(1/(1+a)^Y \), for some \(a > 0 \). Let \(Y_n \) be the counter-state after \(n \) items have arrived – choose constants \(b, c \) such that \(b \cdot (1+a)^Y_n + c \) is an unbiased estimator for the number of items (i.e., \(\mathbb{E}[b \cdot (1+a)^Y_n + c] = n \)).

Part (c) (OPTIONAL)

Now suppose you are restricted to use a single Morris counter, but can choose \(a \) as above. Find the variance of the estimator, and using Chebyshev, find the required \(a \) to ensure that the estimate is within \(n \pm \epsilon n \) with probability at least \(1 - \delta \). What is the expected storage required by this counter?

Problem 4: (Dyadic Partitions and the Count-Min Sketch)

In this problem, we modify the Count-Min sketch to give estimates for range queries and heavy-hitters. For this, we first need an additional definition. For convenience, assume \(n = 2^k \); the dyadic partitions of the set \([n]\) are defined as follows:

\[
\mathcal{I}_0 = \{\{1\}, \{2\}, \ldots, \{n\}\}
\]

\[
\mathcal{I}_1 = \{\{1, 2\}, \{3, 4\}, \ldots, \{n-1, n\}\}
\]

\[
\mathcal{I}_2 = \{\{1, 2, 3, 4\}, \{5, 6, 7, 8\}, \ldots, \{n-3, n-2, n-1, n\}\}
\]

\[
\vdots
\]

\[
\mathcal{I}_k = \{\{1, 2, \ldots, n\}\}
\]
Part (a)

Let \(\mathcal{I} = I_0 \cup I_1 \cup \ldots \cup I_k \) be the set of all dyadic intervals. Show that \(|\mathcal{I}| \leq 2n \). Moreover, show that any interval \([a, b] = \{a, a+1, \ldots, b\}\) can be written as a disjoint union of at most \(2 \log_2 n \) sets from \(\mathcal{I} \). (For example, for \(n = 16 = 2^4 \), the set \([6, 15]\) can be written as \(\{6\} \cup \{7, 8\} \cup \{9, 10, 11, 12\} \cup \{13, 14\} \cup \{15\} \), which is less than \(2 \times 4 = 8 \) sets.)

Part (b)

In class, given a stream of \(m \) elements, we saw how to construct a Count-Min sketch for the frequencies of items \(i \in [n] \), and how to use it for point queries (i.e., to estimate \(f_i \) for some \(i \in [n] \)).

We now extend this to range queries – estimating \(F_{[a, b]} = \sum_{i=a}^{b} f_i \) for given \(a, b \).

Note first that the basic Count-Min sketch can be interpreted as constructing a sketch for frequencies of set-membership for the sets in \(I_0 \). We have also seen how to make hash functions for general set-membership (for example, the Bloom filter!) – we can thus extend the Count-Min sketch to include an estimate for the frequencies of all the dyadic intervals. Using this new sketch, show that for a given range query \([a, b]\) , we can use a Count-Min sketch with \(R = \log(1/\delta) \) rows and \(B = 2/\epsilon \) columns to get an estimate \(F_{[a, b]} \) satisfying:

\[
P \left[F_{[a, b]} < \sum_{i \in [a, b]} f_i + 2m \epsilon \log n \right] \geq 1 - \delta
\]

Part (c)

The \(\phi \)-heavy-hitters (or \(\phi \)-HH) query is defined as follows:

Given stream \(\{x_1, x_2, \ldots, x_m\} \) with \(x_i \in [n] \), and some constant \(\phi \in [0,1] \), we want to output a subset \(L \subset [n] \) such that, with probability at least \(1 - \delta \), \(L \) contains all \(i \in [n] \) such that \(f_i \geq \phi m \), and moreover, every \(i \in L \) satisfies \(f_i \geq \phi m/2 \).

We now adapt the above sketch for the \(\phi \)-HH problem. First, using the union bound, argue that if we choose \(\delta = \gamma/n \), then we have that for all dyadic intervals \(I \in \mathcal{I} \), we have that the frequency estimate \(F_I \) obeys: \(P \left[F_I < \sum_{i \in I} f_i + m \epsilon \right] \geq 1 - \delta \). Thus, argue that if we use \(\epsilon < \phi/2 \), then the set of all \(i \in [n] \) such that \(F_{\{i\}} > \phi m \) is a solution to the \(\phi \)-HH problem.

Part (d)

Note though that the brute force way to find all \(i \in [n] \) such that \(F_{\{i\}} > \phi m \) requires \(n \) point queries. Briefly argue how you can use the frequency estimates \(F_I \) for the dyadic intervals to find the same using \(O(\log n/\phi) \) queries.

Hint: Consider a binary tree defined by the dyadic intervals, with the root as \(I_{\log n} = \{[n]\} \), and the leaves as \(I_0 = \{\{1\}, \{2\}, \ldots, \{n\}\} \). Argue that for every heavy-hitter node \(i \), every parent node in the tree has \(F_I > \phi m \). Also, at any level \(j \), how many sets \(I \in \mathcal{I}_j \) can have \(F_I > \phi m \)?