Problem 1: (Weighted MINCUT and MAXCUT)

Let \(G(V, E) \) be an undirected weighted graph, with \(w_{ij} > 0 \) the weight associated with every edge \((i,j) \in E\). The weight of a cut \((C, \overline{C})\) is now the sum of the weights of edges across the cut, i.e., \(\delta(C, \overline{C}) = \sum_{i,j \in E(C, \overline{C})} w_{ij} \). We now try and extend our MAXCUT and MINCUT algorithms to this setting.

Part (a)

Let \(W = \sum_{(i,j) \in E} e_{ij} \) be the total weight of all edges in the graph. Modify the MAXCUT algorithm presented in class to return a cut \((C, \overline{C})\) with expected weight satisfying:

\[
\mathbb{E}[\delta(C, \overline{C})] \geq \frac{W}{2}
\]

Part (b)

Next suppose we modify the CONTRACT algorithm to pick edges proportional to their weights. Show that any minimum weight cut \((C, \overline{C})\) is returned by CONTRACT with probability \(\geq 2n(n-1)/n \).

Problem 2: (Recursive Randomized Selection)

Given a unsorted array \(S = \{x_1, x_2, \ldots, x_n\} \), with corresponding sorted array \(\{y_1, y_2, \ldots, y_n\} \), a selection algorithm is one that finds the median element \(y_{n/2} \) (or more generally, the \(k \)-th largest element \(y_k \) for any \(k \in \{1, 2, \ldots, n\} \). One way to do so is by first sorting the array, and then returning \(y_k \) for any \(k \) – this takes time \(O(n \log n) \). However, consider the following simple randomized algorithm to find \(y_k \) for a given \(k \):

QUICKSELECT\((S, k)\)
- Given array \(S \) of \(n \) elements, we want to output the \(k \)-th largest element \(y_k \).
- Choose a random pivot \(\sigma \), and partition \(S \) into two parts:
 \[
 S_\ell = \{y_i \in S | y_i < \sigma\}, \quad S_h = \{y_i \in S | y_i > \sigma\}
 \]
- If \(|S_\ell| = k - 1 \), return \(\sigma \)
- If \(|S_\ell| > k \), then run QUICKSELECT\((S_\ell, k)\); else run QUICKSELECT\((S_h, k - |S_\ell| - 1)\)

It is easy to see that this will find \(y_k \) – we now want to show that QUICKSELECT has a running time of \(O(n) \).

Part (a)

To build some intuition as to why this works, assume in given an array \(S \) of size \(n \), the two arrays \(S_\ell, S_h \) were guaranteed to be of size at most \(\alpha n \), for some \(\alpha \in [1/2, 1) \). Argue that the runtime of QUICKSELECT would then obey: \(T(n) = T(\alpha n) + O(n) \). Solve this to show \(T(n) = O(n) \).

Part (b)

Given any array of size at most \(n \), argue that after splitting about the pivot, the sets \(S_\ell \) and \(S_h \) both have size less than \(3n/4 \) with probability at least \(1/2 \). Using this, find an upper bound on
the expected number of times an array of size n needs to be split about random pivots before the sub-array containing y_k is of size $\leq 3n/4$.

Hint: Consider an alternate algorithm, where you pick a pivot, check to make sure that both S_L and S_H are less than $3|S|/4$, and then split – if not, you keep the array S as before and again pick a random pivot. Prove the above result for this modified algorithm. Convince yourself that QUICKSELECT can only be faster.

Part (c)

Let’s define the algorithm to run in *phases*, where in phase i, the size of the sub-array containing y_k is between $(3/4)^{j-1}n$ and $(3/4)^j n$. Also let X_j denote the number of splits required in phase j (so for example, X_1 is the expected number of splits required to go from the original array S to one of size $3n/4$).

Argue that $T(n) \leq \sum_{\text{phase } j} c(3/4)^{j-1} n X_j$ for some constant c. Finally, via linearity of expectation, prove that $E[T(n)] = O(n)$.

Problem 3: (Multi-stage MINCUT Algorithm)

In class we saw the CONTRACT Algorithm for finding the MINCUT of a multigraph G – we were given that each run of CONTRACT took time $O(n^2)$, and argued that if G had a unique minimum cut (C, \overline{C}), then CONTRACT finds it with probability $\Omega(1/n^2)$.

Part (a)

Suppose CONTRACT returned (C, \overline{C}) with probability at least $1/n^2$ – show that $n^2 \ln 2$ independent runs of CONTRACT are sufficient to find cut (C, \overline{C}) with probability at least $1/2$.

More generally, convince yourself that if an algorithm is successful with probability at least p, then $\ln 2/p$ independent runs are sufficient to guarantee success with probability at least $1/2$.

Hint: Use $(1 - x) \leq e^{-x}$.

Part (b)

The above problem shows that the overall runtime of CONTRACT is $O(n^4)$ – on the other hand, we learnt in class that the best deterministic MINCUT algorithm had a runtime of $O(n^3)$. We also saw that if we ran CONTRACT until the number of vertices in the multigraph is t, then it takes time $O(n^2)$ (as long as $t = o(n)$) and preserves the minimum cut (C, \overline{C}) with probability $O(t^2/n^2)$.

Now consider running CONTRACT until the number of vertices in the multigraph is t, followed by a deterministic MINCUT algorithm for the t-node graph – as before, we can do this multiple times to improve the probability. Show that the best possible choice of t results in a running time of $O(n^{8/3})$ for finding (C, \overline{C}) with probability at least $1/2$.

Problem 4: (The FASTCUT Algorithm and the Branching Process)

Recall that in class, we briefly saw the FASTCUT algorithm, where given a graph, we first ran two independent executions of CONTRACT, stopping them when the resulting subgraph retained the minimum cut with probability $\geq 1/2$, and then proceeded recursively. We now try and understand why this algorithm works.

Part (a)
Assume we can choose α such that contracting the graph to $t = \alpha n$ nodes ensures that a minimum cut is preserved with probability exactly $1/2$ – let us call this the α-CONTRACT step. Also assume the original graph G had a unique minimum cut (C, \overline{C}).

Now suppose in the first recursive step, we do 2 independent runs of α-CONTRACT on the original graph G, and at each recursive step, we do 2 independent runs of α-CONTRACT for each input sub-graph. After k recursions (where $k \in \{1, 2, \ldots, \log_{1/\alpha} n\}$), what is the expected number of sub-graphs which retain the minimum cut (C, \overline{C})?

Part (b)
Suppose instead of doing 2 independent runs of α-CONTRACT on each subgraph, we instead ran it once, and just duplicated the resulting subgraph. Now what is the expected number of sub-graphs which retain the minimum cut (C, \overline{C}) after k recursions? Why do you think this is different from part (a)?

Part (c)
Let $p(k)$ be the probability that the minimum cut (C, \overline{C}) survives in at least one subgraph if we stop after doing k recursions (thus $p(0) = 1$).

Argue that in the procedure in part (b) – where we do one run of α-CONTRACT for each subgraph and duplicate the output – the function $p(k)$ obeys $p(k + 1) = \frac{p(k)}{2}$, and thus $p(k) = 1/2^k$.

On the other hand, argue that the procedure in part (a) – where we do two independent runs of α-CONTRACT for each subgraph – the function $p(k)$ obeys $p(k + 1) = 1 - \left(1 - \frac{p(k)}{2}\right)^2$.

Part (d)

(OPTIONAL) Try to show that the solution to the recursive equation $p(k + 1) = 1 - \left(1 - \frac{p(k)}{2}\right)^2$ obeys $p(k) = \Theta(1/k)$.

Hint: Note that $p(k) = \Theta(1/k)$ is same as saying $c_1/k \leq p(k) \leq c_2/k$ – now substitute this in the above recursive equation, and prove it holds by induction.