Single-Parameter Environments

We now generalize the single-item auction to a more general setting of single-parameter environments.

- \(n \) bidders, each with private valuations
- For bidder \(i \), private value \(v_i \) is value 'per-unit of stuff' that it receives
- Mechanism decides an allocation \((x_1, x_2, \ldots, x_n) \), where \(x_i = \) 'amount of stuff' given to bidder \(i \)
- \(X \) is the set of feasible allocations \((X \subseteq \mathbb{R}^n) \)

Sealed bid mechanism

- Collected bids \(b = (b_1, b_2, \ldots, b_n) \)

(Allocation Rule) Choose allocation \((x_1, \ldots, x_n) \in X \) as fn of bids

(Payment Rule) Choose payments \(p(b) \) as fn of bids
Given allocation and payment rules \((x, p)\), the utility of bidder \(i\) is (under bids \(b\))
\[
u_i(b) = v_i \cdot x_i(b) - p_i(b)
\]
We focus on payments satisfying \(p_i(b) \in [0, b_i \cdot x_i(b)]\).

Using this notation, we can define IC, IR:

IC - For every bidder \(i\) and vector \(b_{-i}\), the allocation and payment rules \((x(b), p(b))\) obey
\[
u_i(b_i, b_{-i}) \leq u_i(v_i, b_{-i}) \quad \forall b_i
\]

IR - For every bidder \(i\), we have
\[
u_i(v_i, b_{-i}) \geq 0
\]

Possible objectives of interest:
1) Revenue: \(R = \sum_i p_i(b)\)
2) Welfare: \(W = \sum_i x_i(b) v_i\)
Examples of single-parameter environments

i) Single-item auction: \(x_i \in \{0,1,3 \}, X = \text{set of vectors in } \{0,1,3\}^n \text{ such that } \sum_{i=1}^{n} x_i \leq 1 \)

ii) \(k \) identical items: Assuming each person wants at most one item, we have \(X \in \{0,1,3\}^n \) s.t. \(\sum_{i=1}^{n} x_i \leq k \)

iii) Knapsack auction: Suppose we want to sell ad-time on a TV show. Each bidder \(i \) has an ad with private value \(v_i \), public run-time \(w_i \). If we have ad-time of size at most \(W \), then \(x_i \in \{0,1,3\} \) and \(X = \{x \in \{0,1,3\}^n \mid \sum_{i=1}^{n} x_i w_i \leq W \} \)

iv) Sponsored search: \(k \) slots \(1,2,..,k \), where slot \(j \) has a click-through-rate (CTR) of \(\alpha_j \) (i.e., \(P[\text{Visitor clicks on slot } j \text{ ad}] \propto \alpha_j \)) assume \(\alpha_1 \geq \alpha_2 \geq \alpha_k \)

- Each bidder has private value \(v_i \), public quality \(\beta_i \); \(P[\text{Visitor clicks on ad for bidder } i \text{ in slot } j] = \beta_i \alpha_j \).

Visitor clicks then bidder gets value \(v_i \).

\(X \) = bipartite matching between bidders, slots
Myerson's Lemma

In order to design DSIC mechanisms, we want to first characterize what such mechanisms look like.

- **Implementable Allocation Rule** - An allocation rule $x(b)$ is implementable if there is a payment rule $p(b)$ such that (x, p) is DSIC.

 Eg. For single-item auctions, $x_i = \{ i \mid \exists j \geq i: b_j \geq b_i \}$ (i.e., allocate to maximum bidder) is implementable (via the second price auction).

- **Monotone Allocation Rule** - An allocation rule is monotone if for every bidder i, bids b_i, the allocation $x_i(z, b_{-i})$ is non-decreasing in z.

 Eg. Allocate to highest bidder is monotone. Allocate to second highest bidder is not. (check)
Theorem (Myerson '81) For a single-parameter setting

a) An allocation rule \(x(\cdot) \) is implementable iff it satisfies

b) If \(x(\cdot) \) is monotone, then there is a unique payment rule \(P(\cdot) \) such that \((x, P)\) is DSIC (and \(P \) has an explicit formula)

Note - the second statement needs a condition that \(p_i(b) = 0 \) if \(b_i = 0 \)

Proof - Suppose \((x, P)\) is DSIC. Then for every bidder \(i \), every value \(v_i \), and every bid vector \(b-i \), we have for every \(z \)

\[
\forall i: x_i(v_i, b-i) - P_i(v_i, b-i) \geq \max_{z} \left(x_i(z, b-i) - P_i(z, b-i) \right)
\]

(*)

For shorthand, let \(x_i(z) = x_i(z, b-i) \), \(P_i(z) = P_i(z, b-i) \)

- (Swapping-trick) \(x_i(z) \) for any \(z_1, z_2 \), the equation \(\forall i: z_1 \leq z_2 \) holds for \(v_i = z_1, z = z_2 \) and \(v_i = z_2, z = z_1 \)
For \(z_1 = z_1 \), we have

\[
Z_1 x_i(z_1) - P_i(z_1) \geq Z_1 x_i(z_2) - P_i(z_2)
\]

For \(z_2 = z_2 \), we have

\[
Z_2 x_i(z_2) - P_i(z_2) \geq Z_2 x_i(z_1) - P_i(z_1)
\]

Re-arranging, we get (assume \(0 \leq z_2 < z_1 \))

\[
Z_2 (x_i(z_1) - x_i(z_2)) \leq P_i(z_1) - P_i(z_2) \leq Z_1 (x_i(z_1) - x_i(z_2))
\]

Proven by monotonicity, \(x_i(t) = x_i(z_1) \)

Since \(z_1 > z_2 \), we must have

\[
2c_i(z_1) - x_i(z_2) \geq 0 \implies x_i(z) \text{ is monotone (non-decreasing)}
\]

Now we want to find a pricing rule. For this, we assume henceforth that \(x \) is monotone, and piecewise constant; we then generalize to when \(x \) is continuous.
First consider the equation
\[Z_2 \left[x_i(z_1) - x_i(z_2) \right] \leq P_i(z_1) - P_i(z_2) \leq Z_1 \left[x_i(z_1) - x_i(z_2) \right] \]

If we take, \(z_1 \geq z_2 \), then both the left and right sides become 0 if \(x_i(z_2) = x_i(z_2^+) \) (i.e., no jump at \(z_2 \)). If however there is a jump at \(z_2 \), of size \(h \), then both sides tend to \(z_2 - h \). Therefore
\[(\text{jump in } P_i \text{ at } z) = z \cdot (\text{jump in } x_i \text{ at } z) \]

Finally, if \(P_i(0) = 0 \), then we have
\[P_i(z, b_{-i}) = \sum_{j=1}^{l} z_j \cdot (\text{jump in } x_i(\cdot, b_{-i}) \text{ at } z_j) \]

where \(Z_1, Z_2, \ldots, Z_l \) are breakpoints of \(x_i(\cdot, b_{-i}) \) in \([0, Z]\)

If instead \(x_i(\cdot) \) is continuous, we take \(Z_1 \cup Z_2 \) together
\[\frac{dP_i(z)}{dz} = z \cdot \frac{dx_i(z)}{dz} \]

Therefore
\[P_i(b^i, b_{-i}) = \int_{0}^{Z} z \cdot x_i(z) \cdot dz \]
By integrating by parts, we can get an easier form:
\[P_i(b_i, b_j) = \int_0^{\infty} \int_{b_i}^{b_j} \left[\frac{d x_i(z)}{dz} \right] dz \]

\[= \int_0^{\infty} x_i(z) \bigg|_{b_i}^{b_j} - b_i \int_0^{\infty} x_i(z) dz \]

Pictorially, this can be depicted as follows (Assume \(b_i \) is fixed)

\[
\begin{align*}
\text{Note: Monotone } x_i(z) & \\
\square : b_i x_i(b_i) & \\
\text{Area} : b_i \int_0^{b_i} x_i(z) dz & \\
\text{ : } P(b_i) & \\
\end{align*}
\]

Thus the unique payment (assuming \(P(0) = 0 \)) is always the area of the rectangle \(b_i x_i(b_i) \) which is above the curve \(x_i(b, z) \). Now, using this fact, we can easily prove that this price is DSC, IR.
We can show DSIC via pictures. Recall \(p_i(b_i) = b_i x_i(b_i) - \int x_i(z) \, dz \).

Case 1 - \(b_i = v_i \)

Case 2 - \(b_i < v_i \)

Case 3 - \(b_i > v_i \)
The above proof also works when $x_i(v)$ is discrete (i.e., has discontinuous jumps).

Figure 2: Proof by picture that the payment rule in (6), coupled with the given monotone and piecewise constant allocation rule, yields a DSIC mechanism. The three columns consider the cases of truthful bidding, overbidding, and underbidding, respectively. The three rows show the surplus $v \cdot x(b)$, the payment $p(b)$, and the utility $v \cdot x(b) - p(b)$, respectively. In (h), the solid region represents positive utility and the lined region represents negative utility.

(Courtesy: Tim Roughgarden, Jason Hartline)