Lectures
Course Number: ORIE 4154
Class time: TR 11:40am-12:55pm
Class location: Thurston 205

Course Communication:
Piazza:
http://piazza.com/cornell/spring2017/orie4154
Website:
http://people.orie.cornell.edu/sbanerjee/ORIE4154/orie4154s17.html
Blackboard:
http://blackboard.cornell.edu (Search for ORIE 4154)
Essential Course Information

Instructor

Sid Banerjee
Office: 229 Rhodes Hall
E-mail: sbanerjee@cornell.edu
Website: people.orie.cornell.edu/sbanerjee/
Office hours: Tuesday 3pm-5pm (or by appointment)

Teaching Assistants

Alberto Vera (email: aav39@cornell.edu)
James Dong (email: jd748@cornell.edu)
Office hours: Monday, Wednesday 3-5pm
Room no: TBD
Why study revenue optimization?
A canonical example

What is RM?

- Consider the decisions faced in selling a house?
 - When should we put it on the market?
 - What price should we ask?
 - Given an offer, should we accept it?
 - If there are no offers, should we lower the asking price? If so, by how much? When?

Courtesy: Huseyin Topaloglu
Why study revenue optimization??
Canonical example ++

Courtesy: www.guesty.com
What is this course about?

Analytic techniques for optimizing the “firm-market interface”
What is this course about?

Analytic techniques for optimizing the “firm-market interface”

In particular, we will consider two such interfaces:
What is this course about?

Analytic techniques for optimizing the “firm-market interface”

In particular, we will consider two such interfaces:

- **Demand management**: determining how to sell “the right product to the right customer at the right time for the right price”

- **Marketplace design**: determining “who gets what and why (and at what price)” in two-sided platform marketplaces.
What is this course about?

Analytic techniques for optimizing the “firm-market interface”

In particular, we will consider two such interfaces:

Demand management: determining how to sell “the right product to the right customer at the right time for the right price”

Marketplace design: determining “who gets what and why (and at what price)” in two-sided platform marketplaces.
What is this course about?

Analytic techniques for optimizing the “firm-market interface”

In particular, we will consider two such interfaces:

Demand management: determining how to sell “the right product to the right customer at the right time for the right price”

Marketplace design: determining “who gets what and why (and at what price)” in two-sided platform marketplaces.

Demand management vs. marketplace design
What is this course about?

Analytic techniques for optimizing the “firm-market interface”

In particular, we will consider two such interfaces:

Demand management: determining how to sell “the right product to the right customer at the right time for the right price”

Marketplace design: determining “who gets what and why (and at what price)” in two-sided platform marketplaces.

Demand management vs. marketplace design

- Airline fare classes: demand management
 Travel websites (Kayak/Tripadvisor/etc.): market design
What is this course about?

Analytic techniques for optimizing the “firm-market interface”

In particular, we will consider two such interfaces:

Demand management: determining how to sell “the right product to the right customer at the right time for the right price”

Marketplace design: determining “who gets what and why (and at what price)” in two-sided platform marketplaces.

Demand management vs. marketplace design

- Airline fare classes: demand management
 Travel websites (Kayak/Tripadvisor/etc.): market design
- car2go pricing (subscription, p2p): demand management
 Dynamic pricing in Uber/Lyft: marketplace design
What is this course about?

Analytic techniques for optimizing the “firm-market interface”

In particular, we will consider two such interfaces:

Demand management: determining how to sell “the right product to the right customer at the right time for the right price”

Marketplace design: determining “who gets what and why (and at what price)” in two-sided platform marketplaces.

Demand management vs. marketplace design

- **Airline fare classes**: demand management
 Travel websites (Kayak/Tripadvisor/etc.): market design

- **car2go pricing (subscription, p2p)**: demand management
 Dynamic pricing in Uber/Lyft: marketplace design

- **Hilton Honors program**: demand management
 AirBnB Reputation mechanisms: market design
What is this course about?

Analytic techniques for optimizing the “firm-market interface”

In particular, we will consider two such interfaces:

Demand management: determining how to sell “the right product to the right customer at the right time for the right price”

Marketplace design: determining “who gets what and why (and at what price)” in two-sided platform marketplaces.

Demand management vs. marketplace design

- **Airline fare classes**: demand management
 Travel websites (Kayak/Tripadvisor/etc.): market design
- **car2go pricing (subscription, p2p)**: demand management
 Dynamic pricing in Uber/Lyft: marketplace design
- **Hilton Honors program**: demand management
 AirBnB Reputation mechanisms: market design
 AirBnB price recommendation tool: ?
Additional Course Details

Prerequisites:
- **Probability**: at the level of ORIE 3500
- **Optimization**: at the level of ORIE 3300
- **Programming**: (Ideally in Python)

Reference: Course notes posted online; no required textbook
(refer to syllabus for textbook suggestions)
Additional Course Details

Prerequisites:

- **Probability**: at the level of ORIE 3500
- **Optimization**: at the level of ORIE 3300
- **Programming**: (Ideally in Python)

Reference: Course notes posted online; no required textbook
(refer to syllabus for textbook suggestions)

Grading:

- ∼9 assignments (∼45%); one prelim (∼20%); a final exam (∼30%); class participation (∼5%)
Additional Course Details

Prerequisites:

- **Probability**: at the level of ORIE 3500
- **Optimization**: at the level of ORIE 3300
- **Programming**: (Ideally in Python)

Reference: Course notes posted online; no required textbook (refer to syllabus for textbook suggestions)

Grading:

- ~9 assignments (~45%); one prelim (~20%); a final exam (~30%); class participation (~5%)
- Prelim will be on 28th March or 30th March (week before spring break) in the evening
Additional Course Details

Prerequisites:
- **Probability**: at the level of ORIE 3500
- **Optimization**: at the level of ORIE 3300
- **Programming**: (Ideally in Python)

Reference: Course notes posted online; no required textbook (refer to syllabus for textbook suggestions)

Grading:
- ~9 assignments (~45%); one prelim (~20%); a final exam (~30%); class participation (~5%)
- Prelim will be on **28th March or 30th March** (week before spring break) in the evening
- **Optional project:**
 - Used in place of either 3 assignment grades (after dropping lowest) OR the prelim grade
 - Used for determining A+ grade
 - Ideally groups of 2-3
Warmup

Want to sell a single item to a single buyer

- What price should we charge?
Warmup

Want to sell a single item to a single buyer

- What price should we charge?

Vacuous question – need a model to decide!
Warmup

Want to sell a single item to a single buyer

• What price should we charge?

Vacuous question – need a model to decide!
In particular, we need three pieces of information:
Warmup

Want to sell a single item to a single buyer

• What price should we charge?

Vacuous question – need a model to decide!
In particular, we need three pieces of information:

1. Model of buyer behavior
Warmup

Want to sell a single item to a single buyer

• What price should we charge?

Vacuous question – need a model to decide!
In particular, we need three pieces of information:

1. Model of buyer behavior
2. Seller’s constraints and objectives
Warmup

Want to sell a single item to a single buyer

- What price should we charge?

Vacuous question – need a model to decide!
In particular, we need three pieces of information:

1. Model of buyer behavior
2. Seller’s constraints and objectives
3. Structure of available information
First example

Want to sell **single item to single buyer:**

• Buyer behavior: Buyer has reservation value V for the item (unknown to seller) – will buy only if price is below value

• Seller constraints: Only one item; if unsold, has value 0 (i.e., no reservation cost); wants to maximize profit.

• Information structure: Buyer value V is publicly known to be distributed as $V \sim \text{EXponential}(\lambda)$.
Want to sell single item to single buyer:

- **Buyer behavior:** Buyer has reservation value V for the item (unknown to seller) – will buy only if price is below value
First example

Want to sell single item to single buyer:

- **Buyer behavior**: Buyer has reservation value V for the item (unknown to seller) – will buy only if price is below value
- **Seller constraints**: Only one item; if unsold, has value 0 (i.e., no reservation cost); wants to maximize profit.
First example

Want to sell single item to single buyer:

- **Buyer behavior**: Buyer has reservation value V for the item (unknown to seller) – will buy only if price is below value
- **Seller constraints**: Only one item; if unsold, has value 0 (i.e., no reservation cost); wants to maximize profit.
- **Information structure**: Buyer value V is publicly known to be distributed as $V \sim \text{EXPOENTIAL}(\lambda)$.
First example

Want to sell single item to single buyer:

- **Buyer behavior:** Buyer has reservation value V for the item (unknown to seller) – will buy only if price is below value
- **Seller constraints:** Only one item; if unsold, has value 0 (i.e., no reservation cost); wants to maximize profit.
- **Information structure:** Buyer value V is publicly known to be distributed as $V \sim \text{EXPONENTIAL}(\lambda)$.

What price should we charge?