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In dynamic ridesharing systems, both operational policies (e.g., ride-matching) and economic policies (e.g.,
pricing or cost sharing) impact the Quality of Service (QoS) perceived by users. Recent field experiments
have found that firms benefit from proactively compensating users whose QoS expectations are violated.
This motivates a broader analytical study of how behavioral perceptions of QoS impact operational and
economic policy design in ridesharing systems. We introduce a novel, QoS-centric framework consisting of
the following key elements: (a) users’ state-dependent utility model that bridges operational effects (detours)
and economic effects (prices or cost shares), and serves as the input to a choice model, (b) dynamic notion of
QoS, called sequential individual rationality, defined on the sequence of (dis)utilities from successive stages
of a shared ride, that is guided by appropriate behavioral drivers such as reference effect, loss aversion, and
recency effect, and (c) formulation of QoS-sensitive economic objectives (profit or fairness) by endogenizing
users’ choices and QoS constraints. Our framework can be used to extract key operational insights from
QoS-sensitive economic objectives, as illustrated in two different ridesharing environments: (i) commercial
ridesharing (real-time), which involves pricing exclusive and shared service in order to maximize profit
(taking into account penalties for QoS-violations), and (ii) community carpooling (static and dynamic),
which involves designing fair cost sharing schemes.

In the commercial setting, we characterize a ride’s optimal shareable region, and show, perhaps surprisingly,
that it may be optimal for a QoS-sensitive service provider to violate QoS and suffer an associated penalty,
no matter how strong the users’ loss aversion. In the carpooling setting, we characterize routes that admit
(nonnegative) budget-balanced, QoS-compliant cost sharing schemes, resulting in a ride’s QoS-compliant
shareable region. We also define sequential fairness and characterize a family of fair, QoS-compliant cost
sharing schemes that bring out insightful structural properties, including a surprisingly strong requirement
that commuters must compensate each other for the detour-inconveniences they cause.

Key words : ridesharing; carpooling; pricing; cost sharing; individual rationality; fairness; quality of service;
behavioral operations

1. Introduction. Urban transportation is facing a host of urgent challenges. The [62] projects
that by 2050, 68% of the world’s population will live in urban cities (compared with 55% today),
and that by 2030, there will be 43 “megacities” whose population exceeds 10 million (compared with
33 today). The same report highlights that sustainable urbanization is key to successful economic,
social, and environmental development. Ridesharing has emerged as a popular solution that aims to
combat ever-increasing congestion along road networks around the world. The potential decrease in
the number of Vehicle-Miles Travelled (VMT) could significantly reduce carbon emissions, making
ridesharing all the more desirable from a sustainability perspective. The term “ridesharing”, in
both popular culture and academic literature, has become a buzzword that refers to any ride-
booking or ride-hailing service such as Lyft and Uber, even if there is only one user taking the ride
and there is no demand sharing involved.1 Throughout this paper, we use this term to denote only
those settings in which two or more users share rides.

1 The Associated Press has criticized this abuse of the term [21].
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Two broad settings facilitate urban ridesharing: In commercial ridesharing, on-demand service
providers such as Lyft and Uber offer “pooled” versions of their ride-hailing services, (e.g., LyftLine
and UberPool), in real time [10]. On the other hand, community carpooling programs, e.g., those
run by medium to large organizations, encourage groups of regular commuters to/from a common
location (such as the workplace) to travel together, using either their personal vehicles or those
provided by the company or a third-party contractor. Community carpooling has traditionally been
a static problem, where the carpooling groups and schedules are determined ahead of time and
remain unchanged over long periods [14]. However, dynamic, real-time carpooling solutions can be
more efficient and increase participation levels [35]. Ridesharing systems are complex, and consist
of several key elements which can be classified as follows:
(a) Operational modules include (static) group formation, (dynamic) matching, routing, and

fleet/supply management.
(b) Economic modules include pricing (commercial ridesharing) or cost sharing (peer-to-peer or

community carpooling).
(c) Behavioral modules include modeling user choice/response and service quality.

Existing literature on designing ridesharing systems treats operational objectives (e.g., mini-
mizing VMT) and economic objectives (e.g., profit/welfare maximization, fair cost sharing) com-
pletely independently of each other [41, 25]. Moreover, when modeling Quality-of-Service (QoS)
constraints, the focus has largely been on operational measures such as fixed detours [28, 49], or
abstract measures such as ride quality ratings [54]. The impact of economic QoS measures such
as (ex-post) individual rationality, as well as behavioral factors, on ridesharing operations is only
beginning to be understood in experimental and empirical work [15, 43].

We address this gap by proposing a novel, layered analytical framework for designing rideshar-
ing systems, in which the behavioral elements, especially QoS (Section 3), play the focal role. In
particular, the users’ utility and choice functions, and appropriate QoS notions are modeled first,
building upon which the economic objectives are laid out. Subsequent analysis then yields insightful
characterizations that translate to operational constraints, which can be passed on to any existing
operational optimization framework. To our knowledge, we are the first to investigate, analyti-
cally, the consequences of behavior-integrated, QoS-sensitive economic objectives on the operations
of ridesharing systems:
(a) Commercial Ridesharing: In Section 4, we focus on a real-time setting in which a commer-

cial service provider offers both exclusive and shared rides, and must set the corresponding
prices depending on the estimated additional delay/inconvenience for a shared ride. We begin
with a random utility model for users, a discrete choice model on these utilities, and a notion
of QoS that incorporates reference effects and loss aversion into the traditional concept of ex-
post individual rationality. A QoS-sensitive service provider’s profit optimization problem is
then formulated by internalizing the users’ choices, taking into account any penalties for QoS
violations. In Theorem 1, we characterize the optimal shareable region for a shareable ride,
wherein the optimal prices induce a nonzero probability of ridesharing. These spatial limits
help prune the feasible space for any system-wide operational optimization problem. We inves-
tigate the dependence of the shareable region on the QoS-sensitivity of the service provider
and the degree of loss aversion of the user. Theorem 2 shows, perhaps surprisingly, that it may
be optimal for the service provider to violate QoS and suffer the associated penalty, no matter
how strong the QoS-sensitivity. Finally, we provide closed form expressions for the optimal
prices in Theorem 3.

(b) Community Carpooling: In Section 5, we consider both static and dynamic scenarios of com-
munity carpooling, wherein a group of commuters (from within a larger pool of participants)
carpool together to a common destination and share the operational cost among themselves.
Here, we begin with a disutility model for users, a static notion of QoS, and a stronger, dynamic
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notion of QoS that incorporates recency effects into the traditional concept of individual ratio-
nality. In Theorems 4-6, we characterize routes (sequences of pickup locations) that admit
(nonnegative) budget-balanced, QoS-compliant cost sharing schemes. In the dynamic scenario,
this characterization defines a QoS-compliant shareable region for an existing shareable ride,
wherein a new commuter can be feasibly accommodated. Theorems 7-10 then furnish constant
and sublinear bounds on the worst-case QoS-compliant detour for homogeneous carpooling
commuters. Finally, we introduce a dynamic notion of fairness and characterize a family of
fair, QoS-compliant cost sharing schemes in Theorem 11. Our characterization exposes several
practical structural properties of such schemes, including a surprisingly strong requirement
that commuters must compensate each other for the detour-inconveniences they cause.

Finally, we conclude in Section 6 with a discussion on how our framework could potentially be
generalized to be more broadly applicable to dynamic shared service systems in which the quality
of shared service, as perceived by customers based on their experience (e.g., waiting in queues,
delays/interruptions during service), plays a central role in designing operational and economic
policies (e.g., matching/routing, staffing, pricing).

2. Related literature. Our work presents a framework for understanding the consequences
of behavior-integrated, QoS-centric economic objectives on designing the operational policies of
ridesharing systems, in both commercial (pricing) and peer-to-peer or community carpooling (cost
sharing) contexts. As such, this contribution sits within the intersection of several related research
streams.

There is a vast literature on dynamic vehicle routing [23, 16, 2, 50] that focuses on operational
optimization problems in ridesharing systems. Our work can be thought of as feeding additional
operational constraints into these problems that ensure that the resulting operational policies are
compatible with optimal QoS-aware economic policies.

The pricing-related literature on commercial “ridesharing” is limited to ride-hailing settings [6, 8,
7, 59], that is, the pricing of pooled or shared rides is not considered. The only exception that we are
aware of is the work of [25], which is close in spirit to our analysis in the commercial setting. Here,
the authors characterize the optimal pricing policy of a service provider as a function of the demand
rate, delay-sensitivity of users waiting for service, and their inconvenience costs due to ridesharing.
While we focus only on modeling the detour-inconvenience from shared service and demand-side
behavior, their model of disutility integrates the (non-detour-related) inconvenience effects from
both waiting and shared service, and they consider supply-side (driver) behavior as well. However,
this complexity limits their analysis to a simplistic scenario with a maximum capacity of 2, and a
single common source and destination, thus excluding the possibility of detours.

Carpooling programs, especially those run by employers, have been studied for decades [20, 40].
The cost sharing problem in this context has garnered relatively little attention—in most existing
schemes, individual passengers are asked to post what they are willing to pay in advance [12],
or share the total cost proportionately according to the distances travelled [22, 3]. Such methods
ignore the real-time costs and delays incurred during the ride (as in the first instance), or are
insensitive to the disproportionate delays encountered during the ride (as in the second instance).

Recent work has studied cost sharing when passengers have significant autonomy in choosing
rides or forming carpooling groups, e.g., cost sharing schemes based on the concept of kernel in
cooperative game theory [9], second-price auction based solutions [31], and market based ride-
matching models with deficit control [65]. Fair cost sharing in ridesharing has also been studied
under a mechanism design framework by [29], where an individually rational VCG-based payment
scheme is modified to recover budget-balance at the cost of incentive compatibility, and by [41],
where customers are offered an additive, detour-based discount, and the allocations and pricing
are determined through an auction. Our work differs from all the above in that our framework is
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intentionally agnostic to the operational/mechanistic aspects of the system such as ride-matching
or group formation. Moreover, all these works lack any integration of QoS in a real-time or dynamic
setting that is motivated from a behavioral standpoint.

While there exist some previous works on ridesharing that simultaneously address individual
rationality and detour limits [29, 57, 49], they treat them as independent constraints. In contrast,
operational constraints such as detour limits are a consequence of our QoS-centric framework.

Variations of individual rationality (IR) involving informational aspects are well studied in the
economics literature, e.g., ex-ante, interim, and ex-post IR in mechanism design [39], and sequential
IR in bargaining and repeated games [19]. [15] find that offering proactive compensation to users for
ex-post IR violations increases a firm’s net profit using field experiments in commercial ridesharing.
However, we are the first to analytically adapt IR for dynamic ridesharing by infusing behavioral
considerations, and subsequently build a companion notion of fairness.

An extensive literature on cooperative game theory and fair division [37, 27] offers various cost
sharing schemes that can be analyzed in our framework in the static carpooling setting. Our view
of fairness in the dynamic setting relies on how the total incremental benefit due to ridesharing
is allocated among the commuters at each stage of the ride. We believe the two approaches are
quite different, but not independent; we defer a discussion regarding possible connections to our
concluding remarks in Section 6.

Modeling the quality of service in ridesharing is complex; see Section 3.1.2 and Table 5 in [47]
for a survey of operational metrics used in the Operations Management literature. [36] study the
impact of operational quality measures on the ridesharing system’s costs; however, our approach
to modeling QoS is utilitarian and behavioral (see Section 3). [32] emphasize the importance of
considering user satisfaction as the primary objective in designing operational policies of ridesharing
systems, and use deep learning techniques to model user satisfaction from data.

Finally, we survey literature that motivates the behavioral approach to modeling QoS when
service is experienced sequentially [18]. [55] analyze how customers react to a sequence of
services/service-levels in an experiential setting. In our dynamic ridesharing scenario, these
“service-level epochs” correspond to additional detours resulting from subsequent addition of users
to an existing ride. In the commercial context, the service provider informs the user in advance
the estimated additional delay due to ridesharing, which triggers benchmark/reference effects, and
subsequent loss aversion [60] with respect to the announced benchmark. Such behavior among
delay-sensitive customers is well-studied in the queueing literature [64]. In the carpooling context,
absent an “anchor” estimate at the time of joining a ride, commuters compare the impact of a
future disruption (detour due to the addition of a new commuter) against their most recently
updated disutility. Behavioral models that support this assumption include memory decay [17, 34]
and recency effects [30].

3. Modeling Quality-of-Service. In this section, we briefly explain our approach to mod-
eling Quality-of-Service (QoS), which is central to achieving the goals of our framework. There are
two important aspects:
(a) Utilitarian: We choose to model QoS as a property on the (dis)utilities of the users. This is

critical, because a user’s utility function bridges the ridesharing system’s operational module
(by incorporating the effect of detours), the economic module (by incorporating the effect of
prices or cost shares), and the behavioral module (by serving as the basis of the choice model).
This is why our framework is so effective in extracting operational insights from analyzing
QoS-aware economic objectives.

(b) Behavioral: In a dynamic ridesharing system, users experience a sequence of (dis)utilities
at every stage of a shared ride (due to additional detours from new users and/or updated
cost shares). It is not apriori clear how traditional notions of utilitarian QoS concepts such
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as (ex-post) individual rationality apply in such settings. Thus, we turn to literature that
studies appropriate models of human behavior when service is experienced sequentially absent
a benchmark, e.g., [18, 55], in the carpooling context, and when the service provider announces
a pre-specified service-level estimate, e.g., [64], in the commercial context.

Guided by these factors, we adapt the concept of individual rationality (IR) for dynamic shared
service systems, and name it Sequential Individual Rationality (SIR), which, broadly speaking,
requires some form of IR to hold at every stage of the shared service experience. The exact notion
that we adopt depends on the appropriate behavioral justification:
(a) In the commercial ridesharing context (Section 4.1.5), we assume that the benchmark/reference

effect is the dominating behavioral driver, along with some degree of loss aversion. Thus, we
define SIR as requiring ex-post IR to hold at every stage of the ride. To be precise, every time
a new user joins the ride, the updated utility (based on the increased detour) of the existing
users must not fall below that of their original alternative (based on which they made their
choices to opt for a shared ride). Loss aversion is taken into account by appropriately scaling
the penalty that the service provider suffers for violating SIR.

(b) In the community carpooling context (Section 5.1.3), since there is no explicit benchmark, we
assume that the recency effect is the dominating behavioral driver, and define SIR as requiring
the sequence of disutilities experienced to be nonincreasing. That is, every stage of the ride
should be IR with respect to the previous (most recent) stage.

We acknowledge that there are certainly other ways of modeling QoS when guided by utilitarian
and behavioral considerations, and we invite future research to explore appropriate alternative
models in ridesharing or other dynamic shared service systems.

4. QoS-Aware profit maximization in commercial ridesharing. We consider a setting
where a commercial ridesharing service provider seeks to design pricing and ride-matching policies
that maximize profit on a per-ride basis. In our model, we focus on the revenue and costs asso-
ciated with active users, by considering only the time they spend in service (inside the vehicle).
This focus simplifies the model by removing the dependence on the availability of vehicles and fleet
(supply) management controls; these constraints can be considered within a system-wide opera-
tional optimization problem. Perhaps more importantly, it allows us to isolate the effect of purely
service-related QoS (e.g., the effects of detours on active users) on operational policy design.

Users interact with the service provider through an interface on a mobile device, similarly to
popular ridesharing services. The interaction consists of the following two stages:
(a) Stage 1: User j inputs their source coordinate (Sj) and destination coordinate (Dj), and

receives a menu of service options. For simplicity, we assume just two options—an exclusive
ride with no detours at a price of pxj , and a (possibly) shared ride with an estimated detour of

δ̂j at a price of psj.
(b) Stage 2: The user evaluates these options and performs one of three actions: requesting the

exclusive service, requesting the shared service, or neither. Under the former two actions,
the user is assigned an appropriate vehicle, which could result in either initiating a new ride
(possible under either service), or modifying an existing ride (possible only under the shared
service).

We assume that the prices pxj and psj are upfront prices (rather than the more traditional per-
mile and/or per-minute pricing), which is in accordance with most major commercial ridesharing
systems. For our analysis, we consider real-time, or “Ride Now” requests, and require fast, time-
sensitive responses from the service provider.2 Thus, it is important for the service provider to

2 Scheduled ride options have only been launched recently, e.g., as recently as 2016 for Uber, and are typically available
to only a subset of the users and in limited geographical regions.
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respond quickly in the first stage, whereas the second stage, especially when a shared ride is
requested, may take slightly longer due to a possibly batched combinatorial optimization. For
instance, Uber’s price estimates are not indicative of real-time availability [61]. Our focus is on the
decision problem of the service provider in Stage 1, that is, what values of pxj , p

s
j, and δ̂j should

be returned to the user?
The service provider, in the first stage, considers each new user sequentially and immediately,

independent of other new users. While this could lead to suboptimal solutions, it avoids a compu-
tationally intensive, likely combinatorial optimization which would be infeasible for a large-scale
system. Moreover, greedy, myopic profit-maximization strategies have been empirically shown to
be close to optimal on New York City taxi data [10]. To be precise, when a user j inputs their

source and destination coordinates, the service provider considers all possible existing shareable
rides that could feasibly detour from their existing route to serve this additional user. Then, for
each of these feasible rides, the provider computes the optimal values of pxj , psj, and δ̂j, as well
as the corresponding optimal incremental profit, if user j were to be added to these rides. The
ride offering the maximum optimal incremental profit is then chosen as a tentative match, and

the corresponding optimal prices and detour estimate are returned to the user. A more intensive
optimization can be carried out in the second stage, if and when the user actually requests a shared
ride, which could end up finding a better match, perhaps with other shared ride requests that were
also received recently, e.g., [42] develop reoptimization methods for dynamic vehicle routing.

In summary, when a new user j’s first stage query (Sj,Dj) is received, the provider must answer

the following questions, with respect to each existing shareable ride:
• Feasibility: Would adding user j to the ride maximize the expected incremental profit?
• Pricing: What are the prices (pxj , p

s
j) that maximize the expected incremental profit?

• Detour Estimate: What is the detour estimate δ̂j to be provided?

The rest of this section is organized as follows. We introduce aspects of the users’ and service
provider’s models in Sections 4.1 and 4.2, respectively. Section 4.3 presents the key results from the
service provider’s optimization problem, wherein Theorems 1 and 3 address feasibility and optimal
pricing, respectively. In Section 4.4, we discuss whether the service provider has an incentive to be
strategic when considering truthful revelation of the detour estimate. Finally, Section 4.5 presents

some illustrative numerical examples.
For any two spatial coordinates A and B, we let d(A,B) denote the shortest distance from A to

B. An exclusive ride always provides service along a shortest route.

4.1. Model for ridesharing users.

4.1.1. User’s utility. User i has a valuation vi > 0 per mile for exclusive service. These

valuations are independently and identically distributed across users, according to a distribution
with cumulative distribution function Fv and corresponding density function fv. For shared service,
the user’s valuation depreciates by a factor ki(δi), a decreasing function of δi, the fractional detour
experienced by user i. To be precise, δi is the additional distance travelled by user i due to sharing
service (over and above the shortest distance d(Si,Di)), as a fraction of d(Si,Di). We let k(0) =
k≤ 1 to model fixed, non-detour-related inconveniences from sharing. Thus, the utility function of

user i is given by:

Ui(choicei;p
x
i , p

s
i , δi) =











vid(Si,Di)− pxi , choicei = Exclusive

ki(δi)vid(Si,Di)− psi , choicei = Shared

0, choicei = Declined

(1)
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At the time of making the choice, user i does not know the actual detour δi that they would expe-
rience. Instead, they only know the estimated detour δ̂i. Thus, the users set choicei to maximize
Ui(choicei;p

x
i , p

s
i , δ̂i). Moving forward, we define

Û s
i (psi ) = Ui(Shared; ·, psi , δ̂i) = ki(δ̂i)vid(Si,Di)− psi (2)

to be the estimated utility of user i when choosing Shared, and

U s
i (psi , δi) = Ui(Shared; ·, psi , δi) = ki(δi)vid(Si,Di)− psi (3)

to be the actual utility of user i when choosing Shared.
We assume that the depreciation functions ki of the users and the distribution Fv of their

exclusive per-mile valuations are known to the service provider; however, the realized valuations
vi are private information to the users.

4.1.2. User’s choice. Intuitively, users with ‘low’ vi would choose Declined, those with
‘high’ vi would choose Exclusive, and those with ‘intermediate’ vi would choose Shared. We now
formalize this threshold behavior of the user choice.

If a user i chooses Shared, then, it implies that Û s
i (psi) (defined in (2)) is greater than the utility

from choosing Exclusive or Declined:

ki(δ̂i)vid(Si,Di)− psi > max{0, vid(Si,Di)− pxi }. (4)

Simplifying the above inequality yields

vi <vi < vi, (5)

where the lower and upper bounds, vi and vi are given by:

vi =
psi

ki(δ̂i)d(Si,Di)
, vi =

pxi − psi

(1− ki(δ̂i))d(Si,Di)
. (6)

An immediate necessary condition for (5) to be satisfied for some vi is that vi < vi, which yields:

psi < ki(δ̂i)p
x
i , (7)

which imposes a constraint on the prices that the service provider considers, should it be feasible
to offer a shared ride option to user i. Moreover, when the above constraint is violated, i.e., when
psi ≥ ki(δ̂i)p

x
i , the exact value of psi does not affect a user’s choice between Exclusive and Declined,

since that choice would be completely determined by pxi . This observation relieves the service
provider from explicitly considering psi >ki(δ̂i)p

x
i , simplifying the search space. Thus, without loss

of generality, we assume that

psi ≤ ki(δ̂i)p
x
i . (8)

A similar analysis for the choices Exclusive and Declined, under (8), results in the following
user choice function:

choice∗i (vi;vi, vi) =











Declined, vi ≤ vi
Shared, vi < vi <vi

Exclusive, vi ≥ vi

(9)
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4.1.3. A new user’s impact on an existing shareable ride. Suppose a new user j is
being considered for addition to an existing shareable ride with j − 1 users in the vehicle. (We
assume that j − 1 ≥ 1; the bootstrapping problem of computing optimal prices to be offered to
a user to initiate a new shareable ride does not involve any existing passengers.) Without loss
of generality, we assume that the indices of the existing users are in the order in which they are
scheduled to be dropped off according to the existing route plan, with ties broken arbitrarily (e.g.,
when two or more existing users share a common destination). Let D0 denote the current location
of the vehicle. If user j is added to the existing ride, we assume that the new route plan leaves
unchanged the relative order in which the existing users are scheduled to be dropped off. (This
enables the routing optimization to be quick, by limiting to a quadratic number of possibilities.)
Let t−j < j−1 (respectively, t+j ≤ j) denote the largest (respectively, smallest) among the indices of
existing users who are dropped off immediately before picking up (respectively, after dropping off)
user j, according to the new route plan. If nobody gets dropped off before j is picked up, define
t−j = 0. (If j is the last user to be dropped off, define t+j = j.) Define the following quantities:

∆s
j = d

(

D
t−
j
, Sj

)

+ d
(

Sj,Dt−
j
+1

)

− d
(

D
t−
j
,D

t−
j
+1

)

(10)

∆d
j =















d (Sj,Dj) + d (Dj,D1)− d (Sj,D1) , t+j = 1

d
(

D
t
+
j
−1,Dj

)

+ d
(

Dj,Dt
+
j

)

− d
(

D
t
+
j
−1,Dt

+
j

)

, 1 < t+j < j

d (Dj−1,Dj) , t+j = j

(11)

∆s
j and ∆d

j are the source detour and destination detour from the current route to serve the
additional user j, respectively. Not all existing users experience both of these detours, as we discuss
next.

Suppose δj−1
i denotes the fractional detour that would be incurred by an existing user i < j

according to the existing route plan, if user j is not added to the shared ride. Then,

δji = δj−1
i +

1{i > t−j }∆s
j +1{i≥ t+j }∆d

j

d(Si,Di)
(12)

is the fractional detour that would be incurred by user i according to the new route plan if user
j is added to the shared ride. Let δjj denote the fractional detour that user j would experience
according to the new route plan.

4.1.4. Individual Rationality (IR). A shared ride is individually rational (IR) for a user, if
their utility from the shared ride is nonnegative. There are different notions of IR in the literature;
the one we focus on is called ex-post IR, and means that the actual utility of the user at the end of
the shared ride, given by (3), is nonnegative, that is, U s

i (psi , δi)≥ 0 for all i. Since U s
i is a decreasing

function of δi, this property is always satisfied when the service provider ensures that δi ≤ δ̂i for all
i, because that would, in turn, ensure that U s

i (psi , δi) ≥ Û s
i (psi ), which is nonnegative because the

user chose Shared.
Motivated by recent experiments [15] highlighting the benefits to a service provider of proactively

compensating users whose ex-post IR constraints may have been violated, we adopt ex-post IR as
an indicator of the provider’s Quality-of-Service (QoS).

4.1.5. Sequential Individual Rationality (SIR). In the commercial ridesharing context,
our notion of sequential IR (SIR) requires that the service provider sustain ex-post IR for all the
users, at every stage of a shared ride. In other words, whenever a new user j is considered for
addition to an existing shareable ride with j − 1 users in the vehicle, the service provider must
ensure that U s

i (psi , δ
j
i ) ≥ 0 for all i ≤ j, where δji is given by (12). At first glance, such a notion
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may seem unnecessarily strong; however, in our model, SIR is necessary to ensure ex-post IR. This
is because, for a fixed psi that was committed to at the time that user i joined the shared ride,
U s

i (psi , δi) is a decreasing function of δi, which, in turn, is nondecreasing as new users are added.
Of course, this concern about violating ex-post IR is exactly what was addressed by [15] in

their experimental study. Their findings motivate us to consider, in the rest of this section, the
consequences of violating SIR in the interim (during the shared ride), but restoring ex-post IR (at
the end of the shared ride) through an appropriate monetary compensation to the user (penalty
to the provider). Perhaps surprisingly, our results (Section 4.3) indicate that the service provider’s
profit-optimal, QoS-aware policy is one that may violate SIR, and quite liberally at that.

4.2. Model for QoS-aware service provider. A QoS-aware service provider, when evalu-
ating the potential for profit from adding a new user j to an existing shareable ride, must be aware
of how it would impact the utilities of the existing users i < j. As discussed earlier, while ensuring
that δji ≤ δ̂i for all i≤ j would guarantee SIR-compliance, such a policy may be too restrictive. For
example, allowing δji to slightly exceed δ̂i for a user i, would result in U s

i (psi , δ
j
i ) < Û s

i (psi ), but it
may not necessarily violate their ex-post IR constraint, since it is still possible that U s

i (psi , δ
j
i )> 0 if

the user’s valuation vi were large enough. Although vi is private information, the service provider
can infer that vi lies in a range specified by (5). Hence, the provider could consider a risky policy
in which δji exceeds δ̂i, but then, proactively compensate the users for the potential violation of
their ex-post IR constraints, e.g., by means of a discount coupon [15]. We call this compensation
an incremental penalty.

4.2.1. Incremental penalty. A service provider’s incremental penalty depends on the value
of δji relative to δj−1

i and δ̂i. Thus, we consider the following three cases:
• δj−1

i ≤ δji ≤ δ̂i: Here, the actual utility of user i, while reduced due to the incremental detour
caused by the addition of j, nevertheless stays above their expected utility, and hence, is nonneg-
ative. Thus, the service provider incurs no incremental penalty.
• δj−1

i ≤ δ̂i < δji : Here, the addition of user j would result in exceeding the expected detour
promised to user i, which could result in their actual utility falling below their expected utility.
Still, the service provider incurs an incremental penalty only if the actual utility becomes negative.
Thus,

∆Penaltyji =

{

0, U s
i (psi , δ

j
i )≥ 0

−U s
i (psi , δ

j
i ), U s

i (psi , δ
j
i )< 0

(13)

• δ̂i < δj−1
i ≤ δji : Here, the expected detour promised to user i has already been exceeded, and

the addition of user j would result in a further excess. Thus,

∆Penaltyji =











0, U s
i (psi , δ

j
i ) ≥ 0

U s
i (psi , δ

j−1
i )−U s

i (psi , δ
j
i ), U s

i (psi , δ
j−1
i ) < 0

−U s
i (psi , δ

j
i ), U s

i (psi , δ
j−1
i ) ≥ 0 && U s

i (psi , δ
j
i )< 0

(14)

Combining all the above cases, we obtain:

∆Penaltyji = min{0,U s
i (psi , δ

j−1
i )}−min{0,U s

i (psi , δ
j
i )}. (15)

4.2.2. Expected incremental penalty. Using the prior distribution Fv, and the inferred
range of vi from (5), the expected incremental penalty can be computed as follows:

Exp∆Penaltyj
i = Evi

{

∆Penaltyji | choice∗i = Shared
}

=

∫ min{vj−1
i ,vi}

min{vj−1
i

,vi}
U s

i (psi , δ
j−1
i )dFv(vi)−

∫ min{vji ,vi}
min{vj

i
,vi}

U s
i (pis, δ

j
i )dFv(vi)

Fv(vi)−Fv(vi)
,

(16)
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where vj−1
i and vji are given by:

vj−1
i =

psi
ki(δ

j−1
i )d(Si,Di)

, vji =
psi

ki(δ
j
i )d(Si,Di)

. (17)

4.2.3. Maximum incremental penalty. Compensating user i an amount equal to
Exp∆Penaltyj

i would restore their ex-post IR property in expectation, but if the user’s realized
value of vi were small enough, they could still be left unsatisfied. Thus, the service provider may
alternatively consider providing user i with the maximum possible amount by which their ex-post
IR constraint could have been violated, denoted by Max∆Penaltyji . It can be seen that this is
given by the value of ∆Penaltyji from (15) evaluated at:

vMax∆Penalty

i = min
{

vi,max
{

vi, v
j−1
i

}}

. (18)

4.2.4. Service provider’s incremental profit. We can now write down the incremental
profit to a QoS-aware service provider considering adding a new user j to an existing shareable
ride with j− 1 users in the vehicle. Let c denote the cost per mile that the service provider incurs.
Then, the incremental profit is given by:

∆P j(p
x
j , p

s
j ;δ̂j,choicej)

=











pxj − c d(Sj,Dj), choicej = Exclusive

psj − c
(

∆s
j + ∆d

j

)

−β
∑j−1

i=1 Any∆Penaltyji , choicej = Shared

0, choicej = Declined,

(19)

where Any∆Penaltyji refers to either the expected or maximum incremental penalty (depending
on the service provider’s intent) that would be incurred as compensation to user i for a possible
violation of their ex-post IR constraint, due to sharing the ride with user j. β ≥ 0 is a parameter
that incorporates the following effects:
• Higher the value of β, more QoS-aware the service provider is.
• Higher the value of β, more loss averse the existing users are towards considering the monetary

compensation offered at the end of the ride as restoring their ex-post IR.
Note that any detour estimate computed exogenously by the service provider for user j must satisfy
δ̂j ≥ δjj . We assume that a sufficiently QoS-aware service provider would communicate this estimate
truthfully to user j, and therefore, there is no need to consider a term Any∆Penaltyjj in (19). We
formally show, in Appendix EC.2, that our assumption is indeed valid, as long as β ≥ 1.

Thus, the expected incremental profit is the sum of the incremental profits when user j chooses
Exclusive and Pooled, weighted by the respective probabilities of these choices, given the distri-
bution Fv, and the user choice function (9):

Exp∆P j(p
x
j , p

s
j) = (1−Fv(vj))∆P j(p

x
j , p

s
j; δ̂j,Exclusive)

+
(

Fv(vj)−Fv(vj)
)

∆P j(p
x
j , p

s
j; δ̂j,Shared).

(20)

Of particular interest is the probability of user j choosing Shared, which is given by:

ProbSharingj(p
x
j , p

s
j) = P

{

choice∗j = Shared
}

=Fv(vj)−Fv(vj). (21)

A QoS-aware service provider’s objective is therefore to maximize Exp∆P j(p
x
j , p

s
j), subject to

pxj ≥ cd(Sj,Dj) and 0≤ psj ≤ kj(δ̂j)p
s
j.
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4.3. Optimal policy for a QoS-aware service provider. To simplify the exposition of
the results, we assume that the density function fv has an unbounded support, in particular, fv is
continuous in [0,∞). (Our results extended to distributions with finite support.) We assume that
the distribution Fv is regular, a standard assumption in the literature [38]. This means that the
function φv, given by

φv(x) = x− 1−Fv(x)

fv(x)
, (22)

is strictly increasing in [0,∞), and hence invertible. Many common distributions satisfy this
assumption in practice; in particular, all distributions with nonincreasing hazard rate are regular.

Our first result concerns the uniqueness of the optimal prices, px,∗j and ps,∗j .

Lemma 1. If Fv is regular, then, px,∗j ∈ [0,∞), ps,∗j ∈
[

0, kj(δ̂j)p
x,∗
j

]

are unique.

Lemma 1 follows from the observation that the objective (20) is concave when Fv is regular.
Our second result concerns the optimal probability of user j choosing Shared, given by

ProbSharing∗j = ProbSharingj(p
x,∗
j , ps,∗j ). We provide a characterization of the optimal shareable

region, that is, the possible locations of Sj and Dj (relative to the current location of the vehicle
and the drop-off locations of the existing users) for which ProbSharing∗j > 0.

Theorem 1. ProbSharing∗j > 0 if and only if

c
(

kj(δ̂j)d(Sj,Dj)− (∆s
j + ∆d

j )
)

>β

j−1
∑

i=1

Any∆Penalty
j
i . (23)

Theorem 1 serves as an important operational tool for a QoS-aware, profit-maximizing service
provider to determine the feasibility of an existing shareable ride in accommodating a new request.
The left hand side of (23) is the difference in the provider’s operating costs when j is served
exclusively (scaled down by kj(δ̂j)) and when j is added to the existing ride, and the right hand
side is the resulting penalty to be paid to the existing users. The proof of Theorem 1 is deferred
to Appendix EC.1.

Our next result exposes a surprising property of the optimal shareable region. For any source
coordinate Sj, define the following two regions:
• RSIR

j (Sj) is the collection of destination coordinates Dj for which the right hand side of (23)
vanishes for all β. In other words, adding any request within this region to the existing shareable
ride will not violate SIR for any existing user.
• ROPT (β)

j (Sj) is the optimal shareable region, consisting of all destination coordinates Dj for
which (23) is satisfied, that is, ProbSharing∗j > 0.
We can now state our result:

Theorem 2. For any Sj, if ROPT (0)
j (Sj) * RSIR

j (Sj), then, for all β > 0, ROPT (β)
j (Sj) *

RSIR
j (Sj).

Theorem 2 states that if there exists a request (Sj,Dj) for which it is optimal for a QoS-agnostic
service provider (with β = 0) to violate SIR, then, there exists a request for which it is optimal for a
QoS-aware service provider (with β > 0) to violate SIR, no matter how large their QoS-sensitivity
β. Informally, as β increases, the region ROPT (β)

j (Sj) keeps shrinking, and as β→∞, it converges to

a finite region ROPT (∞)
j (Sj) that is contained within RSIR

j (Sj). This behavior is illustrated through
a numerical example in Section 4.5. The proof of Theorem 2 is deferred to Appendix EC.1.

Our final result provides closed form expressions for the optimal prices.
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Theorem 3. The optimal prices are given by

px,∗j =

{

(

(1− kj(δ̂j))φ
−1
v

(

∆cx−∆cs

(1−kj(δ̂j))d(Sj,Dj)

)

+ kj(δ̂j)φ
−1
v

(

∆cs

kj(δ̂j)d(Sj,Dj)

))

d(Sj ,Dj), P robSharing∗j > 0

φ−1
v (c)d(Sj ,Dj), P robSharing∗j = 0

ps,∗j =

{

φ−1
v

(

∆cs

kj(δ̂j)d(Sj,Dj)

)

kj(δ̂j)d(Sj ,Dj), P robSharing∗j > 0

φ−1
v (c)kj(δ̂j)d(Sj ,Dj), P robSharing∗j = 0,

(24)

where ∆cx = cd(Sj,Dj) and ∆cs = c(∆s
j + ∆d

j ) + β
∑j−1

i=1 Any∆Penalty
j
i are the incremental costs

incurred by the service provider when serving user j exclusively and shared, respectively.

The proof of Theorem 3 is deferred to Appendix EC.1.

4.4. Strategic concerns regarding detour estimates. Our results in the previous section
require that the service provider provide a new user j with a detour estimate δ̂j ≥ δjj . However,
one may wonder if the service provider might stand to gain by “luring” user j with a false, smaller
detour estimate δ̂j < δjj , and then suffering a penalty equal to βAny∆Penaltyjj. We omit a detailed
discussion of this issue due to space limitations, but it can be shown (see Appendix EC.2) that
a sufficiently QoS-aware service provider (β ≥ 1) cannot gain from lying, e.g., shading the detour
estimate.

4.5. Numerical examples. In this section, we illustrate the spatial properties of the optimal
shareable region visually, using a small numerical example in the Euclidean space R2. First, we
consider a simple scenario where all the users are traveling to a common destination, D. A shared
ride is ‘bootstrapped’ by the first passenger, whose source is S1. The grey shaded ellipse-shaped
region in Figure 1 (left) depicts the “SIR-feasible region” RSIR

j (D) (for j = 2), the collection of
source coordinates S2 from which a second user can be added to the ride without violating SIR
for the first user. In the same figure, the dashed curves represent the boundaries of the optimal
shareable regions ROPT (β)

j (D) (for j = 2), for β = 1,20. Then, Figure 1 (center and right) shows
how these regions change as the ride progresses, for j = 3 and j = 4, respectively, for a random
selection of S2 (and subsequently S3).

Figure 1. Evolution of the optimal shareable region (interior of the dashed curves, for β = 1,20) from within which
it is profitable to add a subsequent user to the ride, as the ride progresses and more users are added. For reference,
the grey shaded area shows the SIR-feasible region.

First, observe that there are points within RSIR
j (D) that are not in the optimal shareable region.

Thus, even though the provider incurs no penalty by adding a user from such points, it would
be suboptimal to do so. Next, observe that the portion of ROPT (β)

j (D) that is outside RSIR
j (D)

is smaller for β = 20 than for β = 1. This (partially) illustrates the convergence argument that
supports Theorem 2.
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Next, we consider a more complex scenario where users have different sources and destinations.
In Figure 2, the interpretations of the dashed curves and the grey shaded regions are the same
as before, except that they depict possible locations of D2 (left) and D3 (right), respectively.
The bottom half of Figure 2 is the “zoomed out” version of the top half, that demonstrates that
ROPT (β)

j (Sj) (for j = 2,3) are closed regions. The shapes that define the regions in Figure 2 are
more complicated than those in Figure 1 due to the spatial discontinuities associated with the
order in which the users are dropped off.

Figure 2. Evolution of the optimal shareable region (interior of the dashed curves, for β =1,20) to within which it
is profitable to drop off the subsequent users, as the ride progresses and more users are added. For reference, the grey
shaded area shows the SIR-feasible region.

5. Fair cost sharing in community carpooling. In this section, we consider a different
scenario for dynamic ridesharing, namely, community carpooling. Typically, this involves a large
pool of commuters who wish to share a ride to/from a common destination/source. For example,
it is common for employers to facilitate and encourage carpooling among their employees [20, 44],
due to tax benefits they often enjoy as a result [51]. However, participation levels within organiza-
tions is consistently low [14]. While improving the carpooling experience by forming more efficient
carpooling groups should increase participation, perhaps the biggest obstacle is the perceived loss
of flexibility due to relying on a fixed set of other commuters. While the pool of participants does
not change significantly over a short period of time, everyday demand for travel within the pool
can be quite dynamic due to diverse/flexible schedules and needs, which renders a static carpooling
solution quite inefficient [24].

Solving the carpooling problem consists of the following stages:
(a) Group Formation: The pool of participating commuters is partitioned into smaller groups

of commuters that carpool together, based on several factors, including spatio-temporal con-
straints.

(b) Routing: Each carpooling group decides the best route (order of pickups), based on the
constraints of the individual commuters within the group.

(c) Cost Sharing: Commuters within each group decide how to share the operational cost of the
ride among themselves.



14 Gopalakrishnan, Tulabandhula, and Mukherjee: Sequential Individual Rationality

Typically, these stages take place in a top-down sequence, that is, group formation and routing first,
followed by cost sharing [33, 63]. In fact, most organizational programs only go so far as to facilitate
group formation [2, 49], leaving the groups to solve the routing and cost sharing problems on their
own. This may lead to inefficient schemes that involve, e.g., commuters within a group taking
turns driving their own vehicle in order to avoid the cost sharing issue altogether, since small-scale
monetary transactions between friends or colleagues may be perceived as ‘awkward’ [13].

Since our objective is to incorporate Quality of Service (QoS) and fairness considerations while
constructing a more flexible and dynamic solution, we take a bottom-up approach. Accordingly,
the focus of this section is on the design of QoS-aware and fair cost sharing schemes, and the
constraints that such a requirement imposes on the routing, which, in turn, restrict the space of
feasible partitions of the commuter pool into carpooling groups. We argue that emphasizing key
aspects of commuters’ carpooling experience as starting points of the solution design process yields
a better carpooling solution. Perhaps more importantly, designing the cost sharing scheme first

allows it to be agnostic to the type of scenario (static or dynamic) that it would be applied in.
We note that modern technology allows such cost shares to be tracked automatically behind the
scenes, and be settled at a later time, perhaps at regular (e.g., monthly) intervals [1].

We begin with a description of our model for cost sharing, introduce the appropriate notion of
QoS, and present results that characterize routes for which QoS-aware cost sharing schemes exist.
We then move on to introducing an appropriate notion of fairness, and characterize QoS-aware

cost sharing rules that are also fair. Finally, we discuss how our results apply to both static and
dynamic carpooling scenarios.

5.1. Model for cost sharing in carpooling. As discussed above, our approach is to focus
on the design of fair cost sharing schemes for a fixed set of commuters N carpooling to a common
destination D, and a fixed route rN (ordered sequence of the commuters). Let N = {1,2, . . . , j},
and, without loss of generality, let rN = (1,2, . . . , j), that is, the commuters are indexed in the order
in which they appear in the route rN . Let Si denote the source coordinates of commuter i∈N . The

initial state of a ride involves the first commuter, with i= 1, driving their vehicle from S1 towards
D. For any two spatial coordinates A and B, we let d(A,B) denote the shortest distance from A
to B. We assume that the operational cost of a ride involving j commuters is proportional to the
total distance traveled by the vehicle according to the route rN , and is given by

OC(N ; rN ) = c

(

j−1
∑

i=1

d(Si, Si+1) + d(Sj,D)

)

, (25)

where c is the operational cost per mile, which is either set by the first commuter, or by the system
(depending on the characteristics of the vehicle).

Let f denote the cost sharing scheme according to which OC(N ; rN) is shared among the j
commuters. In particular, f(i,N ; rN) denotes the share of OC(N ; rN) borne by commuter i ∈ N
under route rN . A cost sharing scheme f is said to be budget-balanced if,

j
∑

i=1

f(i,N ; rN) = OC(N ; rN). (26)

Our goal is to design budget-balanced cost sharing schemes f that are also QoS-aware and fair.
Since we adopt a utilitarian approach to modeling QoS and fairness, we introduce the utility model
for commuters first.
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5.1.1. Disutility and detour-inconvenience. The disutility of commuter i ∈N according
to the route rN is given by

DU(i,N ; rN) = f(i,N ; rN) + IC(i,N ; rN ), (27)

where IC(i,N ; rN ) denotes the “inconvenience cost” due to the detour endured by commuter i ∈N ,
caused by commuters i + 1, . . . , j that joined the ride after i did (according to the route rN ). In
our model, we let this term be proportional to the length of the detour:

IC(i,N ; rN) = αi

(

j−1
∑

k=i

d(Sk, Sk+1) + d(Sj,D)− d(Si,D)

)

, (28)

where αi is a parameter that denotes the detour-sensitivity of commuter i. Note that IC(j,N ; rN) =
0, since the last commuter to join the ride suffers no detour. An equivalent expression for the
inconvenience cost is given by

IC(i,N ; rN) = αi

j
∑

k=i+1

δk, (29)

where δk = d(Sk−1, Sk) + d(Sk,D)− d(Sk−1,D) denotes the incremental detour due to commuter
k > 1 joining the ride.

5.1.2. Individual Rationality (IR). A cost sharing scheme f is Individually Rational (IR)
for a commuter i ∈ N , if their disutility from the shared ride is not more than that from an
alternative, which we assume to be driving their own vehicle to the destination. We say that f is
IR on route rN , if it is IR for all commuters at the end of the ride:

DU(i,N ; rN )≤ cd(Si,D), ∀ i ∈N. (30)

Substituting for the disutility from (27), and using (29) for the inconvenience cost, we can state
the following equivalent definition. A cost sharing scheme f is IR on a route rN , if

f(i,N ; rN) +αi

j
∑

k=i+1

δk ≤ cd(Si,D), ∀ i∈N. (31)

5.1.3. Sequential Individual Rationality (SIR). In the context of a static carpooling
solution, the carpooling group N , the route rN , and the cost shares of each carpooling commuter
f(i,N ; rN) are known in advance; therefore, IR is an acceptable indicator of QoS. However, in
dynamic carpooling, the group N is only revealed sequentially (according to the route rN) over time.
This results in the commuters experiencing a corresponding sequence of disutilities. In particular,
when commuter k ∈ N joins the ride, the updated disutilities of commuters 1 ≤ i ≤ k are given
by DU(i,N(k); rN(k)), where N(k) = {1,2, . . . , k} and rN(k) = (1,2, . . . , k) denotes the partial route
up to and including k. Therefore, the sequence of disutilities experienced by a commuter i ∈N is
given by SDU(i,N ; rN ) =

(

cd(Si,D),DU(i,N(i); rN(i)),DU(i,N(i+ 1); rN(i+1)), . . . ,DU(i,N ; rN)
)

.
(For convenience, the sequence of disutilities is prefixed with the disutility from commuter i’s
alternative.)

We say that a cost sharing scheme f is sequentially IR or SIR on route rN , if, for all i ∈ N ,
SDU(i,N ; rN ) is nonincreasing, that is, for all i∈N ,

DU(i,N(i); rN(i))≤ cd(Si,D), and

DU(i,N(k + 1); rN(k+1))≤DU(i,N(k); rN(k)) ∀ k ∈ {i, i+ 1, . . . , j− 1}. (32)
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Using (27) and (29) for the disutilities and inconvenience cost yields the following equivalent
definition. A cost sharing scheme f is SIR on a route rN , if, for all i∈N ,

f(i,N(i); rN(i))≤ cd(Si,D), and

f(i,N(k+ 1); rN(k+1)) +αiδk+1 ≤ f(i,N(k); rN(k)) ∀ k ∈ {i, i+ 1, . . . , j− 1}. (33)

Note that while SIR guarantees IR, it is much stronger, and ensures that the entire experience of
carpooling is favorable to all commuters.

5.1.4. Routes admitting QoS-aware cost sharing schemes. Not all routes admit budget-
balanced, QoS-aware cost sharing schemes. Intuitively, this is because routes that include large
detours may induce prohibitively large disutilities that violate IR/SIR.
Definition 1. A route rN for a carpooling group N is IR-feasible (SIR-feasible) if there exists

a budget-balanced cost sharing scheme f that is IR (SIR) on rN .
From here on, whenever it is understood from context, we drop the explicit dependence of all

the quantities on the route to simplify notation. Before moving on to the results, we present an
illustrative example.

Example 1. Consider j = 3 commuters, picked up from their sources S1, S2, S3 (in that order),
travelling to a common destination D. The progression of the route rN(k), as the commuters are
picked up one by one, is depicted in Figure 3. Given the final route rN , the distances traveled by
commuters are d(S1, S2) +d(S2, S3) +d(S3,D), d(S2, S3) +d(S3,D), and d(S3,D), respectively. The
total distance traveled by the carpooling vehicle is d(S1, S2)+d(S2, S3)+d(S3,D). The operational
cost is thus OC(N) = c(d(S1, S2) + d(S2, S3) + d(S3,D)). Therefore, if f is a budget-balanced cost
sharing scheme, f(1,N) + f(2,N) + f(3,N) = c(d(S1, S2) + d(S2, S3) + d(S3,D)).

Figure 3. Route progress while picking up commuters traveling to a common destination.

The incremental detours due to commuters 2 and 3 are:

δ2 = d(S1, S2) + d(S2,D)− d(S1,D), δ3 = d(S2, S3) + d(S3,D)− d(S2,D).

The inconvenience costs incurred by each commuter due to other commuters are:

IC(1,N) = α1(δ2 + δ3), IC(2,N) = α2δ3, IC(3,N) = 0.

Thus, a budget-balanced cost sharing scheme f is IR on route rN if

f(1,N) +α1(δ2 + δ3) ≤ cd(S1,D), f(2,N) +α2δ3 ≤ cd(S2,D), and f(3,N)≤ cd(S3,D).

A necessary condition for the route rN to be IR-feasible is therefore obtained by summing up these
inequalities, using budget-balance of f , and simplifying:

(

1 +
α1

c

)

δ2 +
(

1 +
α1

c
+

α2

c

)

δ3 ≤ d(S2,D) + d(S3,D).
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The SIR constraints are stronger, since they require relative IR at every stage (when a subsequent
commuter joins the ride):

f(1,N) +α1(δ2 + δ3)≤ f(1,N(2)) +α1δ2 ≤ cd(S1,D),

f(2,N) +α2δ3 ≤ f(2,N(2))≤ cd(S2,D),

f(3,N)≤ cd(S3,D).

A necessary condition for the route rN to be SIR-feasible is therefore obtained by summing up
these inequalities (at each stage), using budget-balance of f , and simplifying:

(

1 +
α1

c

)

δ2 ≤ d(S2,D) and
(

1 +
α1

c
+

α2

c

)

δ3 ≤ d(S3,D).

The necessary conditions for IR/SIR can be interpreted as imposing upper bounds on the incre-
mental detours at every stage of the ride. Perhaps surprisingly, they also turn out to be sufficient,
as we show formally in the next section.

5.2. Characterizing IR/SIR-feasibile routes. The intuition gained from Example 1 sug-
gests that routes with large detours are unlikely to be IR/SIR-feasible, that is, no budget-balanced
cost sharing scheme would be IR/SIR on such routes. Theorems 4 and 5 provide formal character-
izations of IR/SIR-feasible routes.

Theorem 4. The route rN = (1,2, . . . , j) for a carpooling group N = {1,2, . . . , j} is IR-feasible
if and only if

j
∑

i=2

(

1 +
i−1
∑

k=1

αk

c

)

δi ≤
j
∑

i=2

d(Si,D). (34)

Theorem 5. The route rN = (1,2, . . . , j) for a carpooling group N = {1,2, . . . , j} is SIR-feasible
if and only if

(

1 +
i−1
∑

k=1

αk

c

)

δi ≤ d(Si,D), ∀ i∈ {2,3, . . . , j}. (35)

Theorems 4 and 5 provide necessary and sufficient conditions for the existence of a budget-
balanced cost sharing scheme that is IR/SIR on a route, by establishing upper bounds on (a linear
combination of) the incremental detours due to successive commuters. If it is desired, for practical
reasons, that the cost sharing scheme also be nonnegative, that is, no commuter gets paid to
carpool, then, in addition, the total detour experienced by each commuter must also be bounded
above. Theorem 6 formalizes this “add-on” condition.

Theorem 6. The route rN = (1,2, . . . , j) for a carpooling group N = {1,2, . . . , j} admits a
nonnegative, budget-balanced cost sharing scheme that is IR (respectively, SIR) on rN if and only
if, in addition to (34) (respectively, (35)),

αi

c

(

j
∑

k=i+1

δk

)

≤ d(Si,D), ∀ i∈ {1,2, . . . , j− 1}. (36)

The intuition for the proofs of Theorems 4, 5, and 6 can be gleaned from a more careful analysis
of Example 1. The formal proofs are deferred to Appendix EC.3.
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5.2.1. Incremental detours on SIR-feasible routes. We now take a closer look at the
upper bound on the permissible incremental detour due to the addition of commuter i to the ride
on an SIR-feasible route, given by (35), namely

δi ≤
d(Si,D)

(

1 +
∑i−1

k=1
αk

c

) .

This bound diminishes with increasing i and increasing proximity of commuter i to the destination,
which means that as more commuters are picked up, the permissible additional detour to pick up
yet another passenger keeps shrinking, which is natural. For the passengers in Example 1, Fig. 4
shows the evolution of the “SIR-feasible region” (points from which the next passenger can be
picked up so that the resultant route is SIR-feasible) in Euclidean space, for different values of αi

c

for i= 1,2.

Figure 4. Evolution of the SIR-feasible regions (interior of the dashed curves) as more commuters are added to the
ride, when α1

c
= α2

c
= 1,10. Note that the regions keep shrinking with every subsequent commuter.

5.2.2. Bounds on total distance traveled along SIR-feasible routes. It may be useful
to understand how the QoS-aware routes characterized by Theorems 4, 5, and 6 fare with respect
to the maximum possible distance traveled by a commuter i (as a fraction of their distance to
the destination, d(Si,D)), which can be thought of as a worst-case measure of a commuter’s
inconvenience. We call this measure the starvation factor of commuter i. The starvation factor
of a route is the maximum starvation factor among all the commuters. Intuitively, the starvation
factor is a decreasing function of the ratios αi

c
, since QoS-aware routes ensure that passengers that

are more sensitive to detours suffer smaller detours. Our goal in this section is to quantify this
intuition.

Let I(n) denote the space of all carpooling problem instances of size n (consisting of n source
coordinates and a common destination point from an underlying metric space). Given an instance
p∈ I(n), let R(p) denote the set of all QoS-aware routes for this instance.

Given a QoS-aware route r ∈R(p), let

γr(i) =

∑n−1

k=i
d(Sk, Sk+1) + d(Sn,D)

d(Si,D)
= 1 +

∑n

k=i+1 δk

d(Si,D)
(37)

denote the starvation factor of passenger i along route r, and let γr = maxi≤n γr(i) denote the
starvation factor of the route r.
Definition 2. The QoS-aware starvation factor over all instances of size n is

γ(n) = max
p∈I(n)

min
r∈R(p)

γr.
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It is straightforward to derive an upper bound for γ(n) from Theorem 6, when a requirement of
nonnegativity of the cost sharing scheme is imposed:

γ(n)≤ 1 +
c

mini≤nαi

. (38)

However, when the cost sharing scheme is not restrained to be nonnegative, characterizing the
starvation factor on SIR-feasible routes is nontrivial, since it involves working with the individual
bounds on the incremental detours from Theorem 5. Here, we show:

1. Upper Bounds: (Theorems 7-9) The worst starvation factor among SIR-feasible routes,
maxp∈I(n) maxr∈R(p) γr, is (i) Θ(2n) when αi

c
→ 0, (ii) Θ(

√
n) when αi

c
= 1, and (iii) 1 when

αi

c
→ ∞, for all i ≤ n. As upper bounds for γ(n), these are not necessarily tight, since an

instance for which an SIR-feasible route has the worst starvation factor may also admit other
SIR-feasible routes with smaller starvation factors.

2. Lower Bounds: (Theorem 10) γ(n) is no smaller than (i) Θ(n) when αi

c
→ 0, and (ii) Θ(logn)

when αi

c
= 1, for all i≤ n. These lower bounds are tight.

It is interesting to note that the gap between the upper and lower bounds narrows down and
vanishes as αi

c
increases to ∞. (From (37), 1 is always a trivial lower bound for the starvation

factor of any route.) The proofs are involved, and are deferred to Appendix EC.3.
We begin by establishing an almost obvious result that when commuters are infinitely incon-

venienced by even the smallest of detours, (frankly, why would such passengers even consider
carpooling?) the only SIR-feasible routes are those with zero detours, which implies a starvation
factor of 1.

Theorem 7. If αi

c
→∞ for all i≤ n, then γr = 1 for any SIR-feasible route r.

Next, we consider commuters who value their time more than c, and show that the worst they
would have to endure is a sublinear starvation factor, in particular, Θ(

√
n). This is tight when

αi = c for all i ≤ n, in the sense that there exists an SIR-feasible route with Θ(
√
n) starvation

factor. However, as the αi keep increasing beyond c, this bound becomes looser, culminating in a
Θ(

√
n) gap when αi →∞, as evidenced by Theorem 7.

Theorem 8. If αi

c
≥ 1 for all i≤ n, then γr ≤ 2

√
n for any SIR-feasible route r.

Even though it may be unrealistic, as an academic exercise, we investigate an upper bound on
γr when the passengers are completely unaffected by detours, that is, αi

c
→ 0 for all i ≤ n. Not

surprisingly, it turns out that the starvation factor can be exponentially large in such a scenario,
as the next theorem shows.

Theorem 9. If αi

c
→ 0 for all i≤ n, then γr ≤ 2n for any SIR-feasible route r.

The upper bounds of Theorems 8-9 on γr are tight, as discussed next; however, by Definition 2,
they also serve as upper bounds on γ(n), in which capacity, they may not necessarily be tight. This is
because, an instance for which an SIR-feasible route has the worst starvation factor may also admit
better SIR-feasible routes. For example, Figure 5 depicts an instance in one-dimensional Euclidean
space for which the route (S1, S2, . . . , Sn,D) is SIR-feasible (satisfying (35) with equality) and has a
starvation factor of Θ(

√
n). (The same instance with the distances appropriately modified illustrates

the Θ(2n) starvation factor of Theorem 9.) However, note that the reverse route (Sn, Sn−1, . . . , S1,D)
is also SIR-feasible and has a starvation factor of 1.

Finally, we establish a tight lower bound on γ(n) for arbitrary αi > 0, by exhibiting an instance
with a unique SIR-feasible route with the desired starvation factor.

Theorem 10. γ(n)≥∑n

i=1

(

1 +
∑i−1

k=1
αk

c

)−1

.

It is easy to observe that the lower bound of Theorem 10 simplifies to Θ(logn) when αi

c
= 1, and

Θ(n) when αi

c
→ 0, for all i≤ n.
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Figure 5. Carpooling instance with a route (S1, S2, . . . , Sn,D) whose starvation factor is Θ(
√
n). If the distances

d(Si,D), i≤ n, were 2i−1ℓ instead, then the starvation factor of the same route would be Θ(2n).

5.3. The benefit of carpooling and sequential fairness. Under a cost sharing scheme
that is IR, the decrease in disutility to a customer (the difference between the right and left hand
sides of (31)) can be viewed as their benefit from carpooling. Further, it can be seen that the total
benefit of sharing, obtained by summing the individual benefits, is independent of the cost sharing
scheme, as long as it is budget-balanced. This observation exposes an underlying “duality”—a cost
sharing scheme can, in fact, be viewed as a benefit sharing scheme. Such a view invites defining
cost sharing schemes based on traditional notions of fairness, e.g., a fair cost sharing scheme should
induce a distribution of the total benefit among the carpooling commuters suitably proportionately.
There is a vast literature within cooperative game theory discussing fair cost sharing [27].

We extend this notion to budget-balanced cost sharing schemes that are SIR by investigating
how they distribute the total incremental benefit due to each subsequent commuter arriving into
the system, leading to a natural definition of sequential fairness.
Definition 3. When commuter i ∈ N joins the ride, the incremental benefit to commuters

k≤ i is given by

IB(k, i,N) =

{

DU(k,N(i− 1))−DU(k,N(i)), k < i

cd(Si,D)−DU(i,N(i)), k = i
=

{

f(k,N(i− 1))− f(k,N(i))−αkδi, k < i

cd(Si,D)− f(i,N(i)), k = i.
(39)

Definition 4. When commuter i∈N joins the ride, the total incremental benefit to commuters
k≤ i is given by

T IB(i,N) =

i
∑

k=1

IB(k, i,N) =

i−1
∑

k=1

f(k,N(i− 1))−
i
∑

k=1

f(k,N(i)) + cd(Si,D)− δi

i−1
∑

k=1

αk

= c

(

d(Si,D)−
(

1 +

i−1
∑

k=1

αk

c

)

δi

)

.

(40)

We take a very general, but minimal, approach to defining sequential fairness. All that is required
of a cost sharing scheme to be sequentially fair is that, when commuter i ∈N joins the ride, the
portion of the total incremental benefit that is enjoyed by a commuter k < i is proportional to the
incremental inconvenience cost to k due to i. This is formalized in the following definition.
Definition 5. Given a vector ~β = (β2, β3, . . . , βj), where 0 ≤ βi ≤ 1 for 2 ≤ i ≤ j, a budget-

balanced, SIR cost sharing scheme f is ~β-sequentially fair if, for all 2≤ i≤ j,

IB(k, i,N)

T IB(i,N)
=

{

βi
IC(k,N(i))−IC(k,N(i−1))

∑i−1

m=1
(IC(m,N(i))−IC(m,N(i−1)))

, k < i

1− βi, k = i
=

{

βi
αk

∑i−1

m=1
αm

, k < i

1− βi, k = i.
(41)

Here, 1 − βi denotes the fraction of the total incremental benefit enjoyed by commuter i as a
result of joining the ride, and βi denotes the remaining fraction, which is split among the previous
commuters in proportion to their αk values.

It turns out that the requirements imposed by Definition 5, while perhaps appearing to be quite
lenient, are sufficient for a strong and meaningful characterization of sequentially fair cost sharing
schemes, as we discuss next.
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5.3.1. Characterizing sequentially fair cost sharing schemes. We begin with a theorem
that provides an exact characterization of budget-balanced sequentially fair cost sharing schemes.

Theorem 11. Given a vector ~β = (β2, β3, . . . , βj), where 0 ≤ βi ≤ 1 for 2 ≤ i ≤ j, a budget-

balanced cost sharing scheme f is ~β-sequentially fair if and only if, for all 2≤ i≤ j,
• The cost to commuter i is given by

f(i,N(i)) = βi

[

cd(Sj,D)
]

+ (1−βi)

[

c

(

1 +
i−1
∑

m=1

αk

c

)

δi

]

. (42)

• The incremental “discount” to each previous commuter k < i is given by

f(k,N(i− 1))− f(k,N(i)) = βi

[

αk
∑i−1

m=1αm

(cd(Si,D)− cδi)

]

+ (1−βi)
[

αiδi
]

. (43)

We omit the proof, since it is a straightforward substitution of equations (39)-(40) in Definition 5
and rearrangement of the terms. The characterization of Theorem 11 reveals elegant structural
properties of sequentially fair cost sharing schemes:
(a) Online Implementation for Dynamic Carpooling: When a new commuter i is picked up,

their estimated cost is given by f(i,N(i)), which is their final payment if there are no more
commuters. At the same time, each existing commuter k < i obtains a discount in the amount
of f(k,N(i− 1))− f(k,N(i)) that brings down their previous cost estimates. This suggests a
novel reverse-meter design for a dynamic carpooling mobile application on each commuter’s
smartphone that keeps track of their estimated costs, as the ride progresses. Starting with
f(i,N(i)) when commuter i begins their ride, the estimate would keep decreasing every time
a detour begins to pick up the next commuter. Such a visually compelling interface would
encourage increased participation in carpooling programs.

(b) Convex Combination of Extreme Schemes: For each i, 2≤ i≤ j, the cost sharing scheme
is a convex combination of the following two extreme schemes:

• The total incremental benefit is fully enjoyed by the new commuter i, i.e., βi = 0. Here,
from (42)-(43), the new commuter i (a) pays an amount cδi that corresponds to the increase
in the operational cost, and (b) pays each existing commuter k < i an amount αkδi that
corresponds to the incremental inconvenience cost they suffered.

• The total incremental benefit is fully enjoyed by the existing commuters k < i, i.e., βi = 1.
Here, from (42)-(43), the new commuter i pays cd(Sj,D), the same as it would have cost them
if they had driven their own car to the destination. From this, a portion cδi that corresponds
to the increase in the operational cost is set aside, and what is left is split among the existing
commuters in proportion to their αk values.
Note that the new commuter i pays the least in the former scheme (βi = 0) and the most in
the latter scheme (βi = 1).

(c) Transfers Between Commuters: From the previous observation, it follows that a new
commuter must, at minimum, fully compensate existing commuters for the incremental incon-
venience costs that resulted from the detour to serve them, which can be viewed as internal
transfers between passengers. Even though it may be reasonable to expect this (in an axiomatic
sense) from a fair cost sharing scheme, it is remarkable that our notion of sequential fairness
mandates this property.

In designing a sequentially fair cost sharing scheme, ~β can be chosen strategically to incentivize
commuters to participate in dynamic carpooling, e.g., setting β2 large enough to encourage boot-
strapping when there is a shortage of available rides to meet the demand. We end this section with
an example.
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Example 2. Let αi = c= 1 ∀ i∈N . For 1≤ k≤ i≤ j, the cost sharing scheme f XC is:

f XC(k,N(i)) =

(

i
∑

m=k+1

d(Sm−1, Sm)

m− 1
+

d(Si,D)

i

)

+ (k− 1)δk −
(

i
∑

m=k+1

δm

)

.

The first two terms correspond to dividing the operational cost of each segment equally among the
commuters traveling along that segment. The third term corresponds to commuter k compensating
each of the k − 1 previous commuters, for the incremental detour they suffered. The last term
corresponds to the net compensation received by commuter k from all future commuters, for the
incremental detours that k suffered.

Intuitively, it could be argued that f XC is a “fair” cost sharing scheme. In our framework, it can

be shown that for ~β =
(

1
2
, 1
3
, . . . , 1

j

)

, it is a ~β-sequentially fair cost sharing scheme:

From (42)-(43), we get

IB(i, i,N)

T IB(i,N)
=

d(Si,D)− f XC(i,N(i))

d(Si,D)− iδi
=

d(Si,D)−
(

d(Si,D)

i
+ (i− 1)δi

)

d(Si,D)− iδi
=

i− 1

i
= 1− 1

i
,

as desired. Also, for k < i, we get

IB(k, i,N)

T IB(i,N)
=

f XC(k,N(i− 1))− f XC(k,N(i))− δi
d(Si,D)− iδi

=

d(Si−1,D)

i−1
−
(

d(Si−1,Si)

i−1
+ d(Si,D)

i

)

d(Si,D)− iδi

=

d(Si,D)

i(i−1)
− 1

i−1
δi

d(Si,D)− iδi
=

1

i

1

i− 1
.

6. Concluding remarks. By thrusting an individual user to the center, our framework
infuses behavioral QoS models into traditional economic objectives to unearth key operational
insights at the microscopic unit of a single ride. The natural next step in this bottom-up approach
is to understand how these operational constraints interact across multiple rides, over a large net-
work, and with varying demand patterns. A real-world, data-driven simulation of a ridesharing
system (see, e.g., [56]) that incorporates, e.g., the SIR-feasible routing constraints (35) would be a
good starting point. Revisiting computational questions surrounding traditional Vehicle Routing
Problems (VRPs) in light of these constraints is also worth exploring. (We present an extended
discussion of new algorithmic questions inspired by SIR-feasibility in Appendix EC.4.)

From a broader perspective, our work can perhaps be viewed as a connecting piece in the complex
puzzle of guiding and facilitating sustainable urbanization. How strongly can utilitarian and behav-
ioral QoS-awareness at a unit level influence key trade-offs between commercial (profit), societal
(welfare), and environmental (vehicle-miles) objectives at the system-level? What coordinated indi-
vidual incentive schemes (that affect users’ utilities) and industry-wide policy interventions (that
affect commercial objectives) can a government entity implement to best regulate such trade-offs?

We believe that our framework can be extended more generally to other dynamic resource and
service sharing systems such as contact centers [5], cloud computing [4], and shared logistics in
supply chain distribution networks [11]. Operational and economic policies impact the quality of
shared service in such systems, wherein users may experience a sequence of utilities every time the
state of the system changes (e.g., due to new arrivals/departures, addition/removal of capacity).
Human behavioral effects induced by the environment determine whether users are frustrated or
satisfied with their temporal utility sequence. Appropriate notions of QoS can then capture these
effects and internalize them into the operational/economic performance analysis to yield optimal
QoS-aware policies for the system.
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As an example, consider the following question: What QoS-aware and/or fair routing and staffing
policies would result when taking into account the waiting experience of customers in a multi-server
queueing system? Our framework would direct one to begin with a review of relevant literature from
behavioral operations management on how customers perceive waiting in queues (see, e.g., [53])
to model “state-dependent” utilities for the users and define an appropriate (probabilistic) variant
of SIR. The same question can also be asked from the point of view of the service experience of
human servers (see, e.g., [26]).

The ‘duality’ between cost sharing and benefit sharing in our framework (Section 5.3) is worth
a deeper analysis. While the space of cost sharing schemes that the two views accommodate are
no different from each other, there is a crucial difference in approaching their design. In particular,
a budget-balanced cost sharing scheme need only recover the operational costs; see (26). The
inconvenience costs experienced by the commuters are a separate artifact of our QoS-focused
framework, which only explicitly affect the design of cost sharing schemes when viewed through
the lens of benefit sharing and sequential fairness. What traditional fairness properties does a
sequentially fair cost sharing scheme possess? For example, under what conditions, if any, is it
equivalent to the Shapley value, or is in the core of a cost sharing game?

Finally, we note that throughout, we have assumed knowledge of key elements of users’ (dis)utility
(ki(·) in commercial ridesharing, αi in community carpooling). In reality, they most likely need to
be estimated empirically, or elicited directly from the users. In the latter case, users’ reports may
not be accurate due to privacy or strategic concerns. It would be interesting to study the trade-
offs between efficiency, fairness, budget-balance, and incentive compatibility in such scenarios, by
suitably integrating our framework with that of online mechanism design [48, 58].
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Sequential Individual Rationality in Dynamic Ridesharing:

Technical Appendix
Ragavendran Gopalakrishnan, Theja Tulabandhula, and Koyel Mukherjee

In this technical appendix, we provide proofs for the results stated in the main body of the
manuscript titled: “Sequential Individual Rationality in Dynamic Ridesharing”. The proofs of these
results are in the order in which they appear in the main body.

EC.1. Proofs from Section 4.3. Before presenting the proofs, we develop some of the
common technical machinery, beginning with the derivatives of the valuation thresholds vj and vj,
given by (6). Their first order partial derivatives with respect to the prices pxj and psj are given by:

∂vj

∂pxj
= 0,

∂vj

∂psj
=

1

kj(δ̂j)d(Sj,Dj)
, (EC.1)

∂vj

∂pxj
= −∂vj

∂psj
=

1

(1− kj(δ̂j))d(Sj,Dj)
. (EC.2)

Using the above, we derive the first order partial derivatives of the service provider’s expected
incremental profit Exp∆P j (given by (20)), with respect to the prices pxj and psj :

∂Exp∆P j

∂pxj
= −fv(vj)

(

φv(vj)−
c
(

d(Sj,Dj)−∆s
j −∆d

j

)

−β
∑j−1

i=1 Any∆Penaltyji

(1− kj(δ̂j))d(Sj,Dj)

)

, (EC.3)

∂Exp∆P j

∂psj
= −∂Exp∆P j

∂pxj
− fv(vj)

(

φv(vj)−
c
(

∆s
j + ∆d

j

)

+β
∑j−1

i=1 Any∆Penaltyj
i

kj(δ̂j)d(Sj,Dj)

)

. (EC.4)

Let v∗j and v∗j denote the valuation thresholds evaluated at the optimal prices px,∗j and ps,∗j . From

Lemma 1, px,∗j ∈ [0,∞), and ps,∗j ∈
[

0, kj(δ̂j)p
x,∗
j

]

are unique. Therefore, 0 ≤ v∗
j ≤ v∗j <∞.

EC.1.1. Proof of Theorem 1. From (21), ProbSharing∗j > 0 if and only if v∗j < v∗
j . Thus,

the optimal prices px,∗j and ps,∗j must be interior maximizers, and v∗
j and v∗

j must satisfy
∂Exp∆P j

∂pxj
= 0

and
∂Exp∆P j

∂psj
= 0 simultaneously. Since φv is a strictly increasing function, v∗

j < v∗j if and only if

φv(v∗j)<φv(v∗j). From (EC.3)-(EC.4), this yields

c
(

∆s
j + ∆d

j

)

+β
∑j−1

i=1 Any∆Penaltyji

kj(δ̂j)d(Sj,Dj)
<

c
(

d(Sj,Dj)−∆s
j −∆d

j

)

−β
∑j−1

i=1 Any∆Penaltyji

(1− kj(δ̂j))d(Sj,Dj)

⇐⇒ c
(

kj(δ̂j)d(Sj,Dj)− (∆s
j + ∆d

j )
)

>β

j−1
∑

i=1

Any∆Penaltyji .

EC.1.2. Proof of Theorem 3. When ProbSharing∗j > 0, the expressions for v∗
j and v∗

j are

obtained from setting
∂Exp∆P j

∂pxj
= 0 and

∂Exp∆P j

∂psj
= 0, after which the corresponding optimal prices

px,∗j and ps,∗j can be extracted from (6).
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When ProbSharing∗j = 0, the service provider’s expected incremental profit, from (20), simplifies

to

Exp∆P j(p
x
j ) =

(

1−Fv(pxj )
)(

pxj − c d(Sj,Dj)
)

,

which is only a function of pxj . It is straightforward to solve the first order condition to

obtain px,∗j = φ−1
v (c)d(Sj,Dj). Since ProbSharing∗j = 0, v∗

j = v∗
j , and so, ps,∗j = kj(δ̂j)p

x,∗
j =

φ−1
v (c)kj(δ̂j)d(Sj,Dj).

EC.1.3. Proof of Theorem 2. Suppose we are given a destination point D0
j such that D0

j ∈
ROPT (0)

j (Sj), but D0
j /∈RSIR

j (Sj). This means that, for the request (Sj,D
0
j ), from (23), we have

c
(

kj(δ̂j)d(Sj,D
0
j )− (∆s

j + ∆d
j )
)

> 0, (EC.5)

and
∑j−1

i=1 Any∆Penaltyji > 0. In order to prove Theorem 2, given any β > 0, we need to exhibit

the existence of a destination point Dβ
j such that Dβ

j ∈ROPT (β)
j (Sj), but Dβ

j /∈RSIR
j (Sj).

Let Sj be relabeled as D0. It can be shown that the “greedy sequential insertion” routing

algorithm (outlined in the beginning of Section 4 and in Section 4.1.3) ensures the following prop-

erty. If D0
j is inserted between Dℓ and Dℓ+1 (for some 0 ≤ ℓ < j − 1) in the new route plan,

then d(Dk,D
0
j ) ≥ d(Dk,Dℓ) for all 0 ≤ k ≤ ℓ. This property guarantees the existence of a trajec-

tory of destination points Dj (starting from D0
j ) along which d(Sj,Dj) is constant while ∆d

j and
∑j−1

i=1 Any∆Penaltyji decrease as the trajectory approaches the boundary of RSIR
j (Sj), at which

point,
∑j−1

i=1 Any∆Penaltyji = 0. Thus, given any β > 0, there exists a point Dβ
j on this trajectory

(sufficiently close to the boundary of RSIR
j (Sj)) for which

c
(

kj(δ̂j)d(Sj,D
β
j )− (∆s

j + ∆d
j )
)

>β

j−1
∑

i=1

Any∆Penaltyji , (EC.6)

since
∑j−1

i=1 Any∆Penaltyji can be made arbitrarily close to 0 along the trajectory while still staying

outside RSIR
j (Sj).

EC.2. Strategic concerns regarding detour estimates. We now investigate whether the

service provider might have an incentive to communicate to user j, an estimated detour δ̂j < δjj
to “lure” the user into requesting a shared ride, knowing that it would cost the service provider a

penalty. Intuitively, it must be that there exists a threshold for the QoS-sensitivity β† > 0 such that

when β < β†, the provider should benefit from lying, whereas when β > β†, such behavior would

not be profitable. In this section, we show that β† < 1.

When δ̂j < δjj , the service provider’s inremental profit when user j chooses Shared,

∆P j(p
x
j , p

s
j; δ̂j,Shared) (given by (19)), must include an additional penalty term of

βMax∆Penaltyjj. From (15), ∆Penaltyjj = −min{0,U s
j (psj, δ

j
j)}. Then, from (18), the value of

Max∆Penaltyjj is obtained by substituting vj = vj, and vj is given by (6). This yields

Max∆Penaltyjj = −U s
j (psj, δ

j
j) = psj − kj(δ

j
j)vjd(Sj,Dj) = psj

(

1− kj(δ
j
j)

kj(δ̂j)

)

. (EC.7)
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Thus, when δ̂j < δjj , the service provider’s expected incremental profit Exp∆P j (from (20)) is given
by

Exp∆P j(p
x
j , p

s
j , δ̂j) = (1−Fv(vj))

(

pxj − c d(Sj,Dj)
)

+
(

Fv(vj)−Fv(vj)
)

(

psj − c
(

∆s
j + ∆d

j

)

−β

j
∑

i=1

Max∆Penaltyji

)

= (1−Fv(vj))
(

pxj − c d(Sj,Dj)
)

+
(

Fv(vj)−Fv(vj)
)

(

psj −βpsj

(

1− kj(δ
j
j)

kj(δ̂j)

)

− c
(

∆s
j + ∆d

j

)

−β

j−1
∑

i=1

Max∆Penaltyji

)

(EC.8)

Notice that Exp∆P j now depends on δ̂j, in addition to pxj , psj . Its first order partial derivatives

with respect to pxj , psj, and δ̂j are given by

∂Exp∆P j

∂pxj
= −fv(vj)

(

φv(vj) +βvj
kj(δ̂j)− kj(δ

j
j)

1− kj(δ̂j)
− c

(

d(Sj,Dj)−∆s
j −∆d

j

)

−β
∑j−1

i=1 Max∆Penaltyji

(1− kj(δ̂j))d(Sj,Dj)

)

,

(EC.9)
∂Exp∆P j

∂psj
= −∂Exp∆P j

∂pxj

(

1 +
fv(vj)

fv(vj)

1− kj(δ̂j)

kj(δ̂j)

)

− fv(vj)

(

φv(vj) +φv(vj)
1− kj(δ̂j)

kj(δ̂j)
− c

kj(δ̂j)

)

−β

(

kj(δ̂j)− kj(δ
j
j)

kj(δ̂j)

)

(

Fv(vj)−Fv(vj)
)

,

(EC.10)

∂Exp∆P j

∂δ̂j
= k′

j(δ̂j)d(Sj,Dj)

(

(vj − vj)
∂Exp∆P j

∂pxj
− vj

∂Exp∆P j

∂psj

)

−k′
j(δ̂j)d(Sj,Dj)

(

(vj − vj) (1−Fv(vj)) + (β− 1)vj
(

Fv(vj)−Fv(vj)
))

.

(EC.11)

When ProbSharing∗j > 0, the optimal prices px,∗j and ps,∗j must be interior maximizers, and thus,
∂Exp∆P j

∂pxj
= 0 and

∂Exp∆P j

∂psj
= 0 hold simultaneously, under which, (EC.11) becomes

∂Exp∆P j

∂δ̂j
= −k′

j(δ̂j)d(Sj,Dj)
(

(vj − vj) (1−Fv(vj)) + (β− 1)vj
(

Fv(vj)−Fv(vj)
))

.

Since kj is a decreasing function, the above partial derivative is increasing in β, and positive when
β ≥ 1. Therefore, β† must be less than 1.

EC.3. Proofs from Section 5.

EC.3.1. Proof of Theorem 5. From the SIR constraints (33), we have that for all l ∈ N
(omitting the dependence on route for simplicity):

f(l,N(l))≤ cd(Sl,D), and (EC.12)

f(l,N(m+ 1)) +αlδm+1 ≤ f(l,N(m)) ∀ m∈ {l, l+ 1, . . . , j− 1}. (EC.13)

For any i ∈ {2,3, ..., j}, the “only if” direction can be seen to hold by adding all m = i− 1 related
inequalities in (EC.13) and the inequality corresponding to l = i in (EC.12):

i
∑

k=1

f(k,N(i))−
i−1
∑

k=1

f(k,N(i− 1)) +
i−1
∑

k=1

αkδi ≤ cd(Si,D).
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Using budget-balance to simplify the first two terms, we get

c (d(Si−1, Si) + d(Si,D)− d(Si−1,D)) +
i−1
∑

k=1

αkδi ≤ cd(Si,D)

⇒ cδi +
i−1
∑

k=1

αkδi ≤ cd(Si,D)

⇒
(

1 +
i−1
∑

k=1

αk

c

)

δi ≤ d(Si,D).

(EC.14)

Next, we prove the “if” direction. Assuming that (35) holds, it suffices to exhibit a budget-
balanced cost sharing scheme f , under which all the SIR constraints given by (EC.12) and (EC.12)
are satisfied.

For 1 ≤ k ≤ j, and 1 ≤ i≤ k, we construct f(i,N(k)) recursively, so that (EC.12) and (EC.13)
are satisfied. The base case follows from budget-balance, that is, f(i,{i}) = cd(Si,D) for all i ∈N .
Assume that for some 2≤ k≤ j, we have defined f(i,N(k− 1)) for all 1 ≤ i≤ k− 1. Then, we set

f(i,N(k)) = f(i,N(k− 1))−αiδk, 1 ≤ i≤ k− 1

f(k,N(k)) = c

(

k−1
∑

l=1

d(Sl, Sl+1) + d(Sk,D)

)

−
k−1
∑

i=1

f(i,N(k)).

By construction, it follows that (EC.13) is satisfied, and f is budget-balanced. It remains to be
shown that (EC.12) is also satisfied.

f(k,N(k)) = c

(

k−1
∑

l=1

d(Sl, Sl+1) + d(Sk,D)

)

−
k−1
∑

i=1

(f(i,N(k− 1))−αiδk)

(†)
= c

(

k−1
∑

l=1

d(Sl, Sl+1) + d(Sk,D)−
k−2
∑

l=1

d(Sl, Sl+1)− d(Sk−1,D) +
k−1
∑

i=1

αi

c
δk

)

= c

(

d(Sk−1, Sk) + d(Sk,D)− d(Sk−1,D) +
k−1
∑

i=1

αi

c
δk

)

= c

(

δk +
k−1
∑

i=1

αi

c
δk

)

≤ cd(Sk,D),

where the last step follows from (35), and step (†) follows from budget-balance.

EC.3.2. Proof of Theorem 7. First, we note that in the limit, when αi

c
→∞ for all i∈N ,

the SIR-feasibility constraints (35) reduce to

d(Sj−1, Sj) + d(Sj,D)− d(Sj−1,D)≤ 0, 2 ≤ j ≤ n.

Since the points are from an underlying metric space, distances satisfy the triangle inequality,
which means

d(Sj−1, Sj) + d(Sj,D)− d(Sj−1,D)≥ 0, 2 ≤ j ≤ n.

Therefore, it must be that

d(Sj−1, Sj) + d(Sj,D)− d(Sj−1,D) = 0, 2 ≤ j ≤ n.
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By summing up the last n− i equations, i.e., i+ 1 ≤ j ≤ n, we get

n−1
∑

j=i

d(Sj, Sj+1) + d(Sn,D)− d(Si,D) = 0,

from which we obtain

γr = max
i∈N

(

∑n−1

j=i
d(Sj, Sj+1) + d(Sn,D)

d(Si,D)

)

= 1.

This completes the proof.

EC.3.3. Proof of Theorem 8. First, we note that under the constraint αi

c
≥ 1 for all i ∈N ,

the SIR-feasibility constraints (35) imply

d(Sj−1, Sj) + d(Sj,D)− d(Sj−1,D)≤ d(Sj,D)

j
, 2 ≤ j ≤ n. (EC.15)

We begin by deriving an upper bound on the starvation factor of the i-th passenger, 1 ≤ i < n,
along any SIR-feasible route. (Note that the starvation factor of the last passenger to be picked up
is always 1.) First, we sum up the last n− i inequalities of (EC.15), i.e., i+ 1 ≤ j ≤ n, to obtain

n−1
∑

j=i

d(Sj, Sj+1) + d(Sn,D)− d(Si,D)≤
n
∑

j=i

d(Sj,D)

j
. (EC.16)

Next, we derive upper bounds for each d(Sj,D), i < j ≤ n, in terms of d(Si,D). The j-th SIR-
feasibility constraint from (EC.15) can be rewritten as

d(Sj,D)− d(Sj,D)

j
≤ d(Sj−1,D)− d(Sj−1, Sj).

We know that d(Sj−1, Sj) + d(Sj−1,D) ≥ d(Sj,D), since all points are from an underlying met-
ric space and therefore, distances are symmetric and satisfy the triangle inequality. Using this
inequality above, we get

d(Sj,D)− d(Sj,D)

j
≤ d(Sj−1,D)− (d(Sj,D)− d(Sj−1,D))

=⇒ (2j− 1)d(Sj,D)≤ 2jd(Sj−1,D)

=⇒ d(Sj,D)≤ 2j

2j− 1
d(Sj−1,D).

Unraveling the recursion yields

d(Sj,D)≤
(

j
∏

k=i+1

2k

2k− 1

)

d(Si,D) =
Cj

Ci

d(Si,D),

where, for m≥ 1, Cm =
∏m

k=1
2k

2k−1
. We can evaluate Cj as follows:

Cj =

j
∏

k=1

2k

2k− 1
=

j
∏

k=1

(2k)2

2k(2k− 1)
=

22j(j!)2

(2j)!
=

22j

(

2j
j

) .
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We then use a known lower bound for the central binomial coefficient,
(

2j
j

)

≥ 22j−1
√
j

, to obtain

Cj ≤ 2
√
j. This yields d(Sj,D)≤ 2

√
j

Ci
d(Si,D). Substituting in (EC.16), we get

n−1
∑

j=i

d(Sj, Sj+1) + d(Sn,D)− d(Si,D)≤
n
∑

j=i

2

Ci

√
j

j
d(Si,D) =

2

Ci

(

n
∑

j=i

1√
j

)

d(Si,D)

=⇒
n−1
∑

j=i

d(Sj, Sj+1) + d(Sn,D)≤
(

1 +
2

Ci

(

n
∑

j=i

1√
j

))

d(Si,D).

This results in the desired upper bound for the starvation factor of the i-th passenger along any
SIR-feasible route:

γr(i)≤ 1 +
2

Ci

(

n
∑

j=i

1√
j

)

.

The starvation factor of a route is the maximum starvation factor of all its passengers:

γr = max
i∈N

γr(i)≤ max
1≤i<n

(

1 +
2

Ci

(

n
∑

j=i

1√
j

))

= 1 +
2

C1

(

n
∑

j=1

1√
j

)

= 1 +
n
∑

j=1

1√
j
,

since Ci is increasing in i and C1 = 2. The final step is to show that for all n ≥ 1,
∑n

j=1
1√
j
≤

2
√
n− 1. The proof is by induction. The base case (for n = 1) is satisfied with equality. Assume

that the statement is true for some k ≥ 1. Then, for k + 1, we have,
∑k+1

j=1
1√
j
≤ 2

√
k− 1 + 1√

k+1
=√

4k(k+1)+1√
k+1

−1≤
√

4k(k+1)+1+1√
k+1

−1 = (2k+1)+1√
k+1

−1 = 2
√
k+ 1−1, which completes the inductive step.

Using this bound, we get γr ≤ 2
√
n, as desired. This completes the proof.

EC.3.4. Proof of Theorem 9. First, we note that in the limit, when αi

c
→ 0 for all i ∈N ,

the SIR-feasibility constraints (35) reduce to

d(Sj−1, Sj) + d(Sj,D)− d(Sj−1,D)≤ d(Sj,D), 2 ≤ j ≤ n. (EC.17)

Our proof technique is exactly the same as that for Theorem 8. We begin by deriving an upper
bound on the starvation factor of the i-th passenger, 1 ≤ i < n, along any SIR-feasible route, by
summing up the last n− i inequalities of (EC.17) to obtain

n−1
∑

j=i

d(Sj, Sj+1) + d(Sn,D)− d(Si,D)≤
n
∑

j=i

d(Sj,D). (EC.18)

Next, we derive upper bounds for each d(Sj,D), i < j ≤ n, in terms of d(Si,D). The j-th SIR-
feasibility constraint from (EC.17) can be rewritten as d(Sj−1, Sj) ≤ d(Sj−1,D). Using this in the
triangle inequality d(Sj,D) ≤ d(Sj−1, Sj) + d(Sj−1,D), we get d(Sj,D) ≤ 2d(Sj−1,D). Unraveling
this recursion then yields d(Sj,D)≤ 2j−id(Si,D). Substituting this in (EC.18),

n−1
∑

j=i

d(Sj, Sj+1) + d(Sn,D)− d(Si,D)≤
n
∑

j=i

2n−id(Si,D) =
n−i
∑

j=0

2jd(Si,D) =
(

2n−i+1 − 1
)

d(Si,D)

=⇒
n−1
∑

j=i

d(Sj, Sj+1) + d(Sn,D)≤ 2n−i+1d(Si,D).

Thus, the starvation factor of the i-th passenger along any SIR-feasible route is upper bounded as
γr(i)≤ 2n−i+1. Finally,

γr = max
i∈N

γr(i)≤ max
1≤i<n

2n−i+1 = 2n.

This completes the proof.
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EC.3.5. Proof of Theorem 10. To reduce notational clutter, we let zj =
(

1 + 1
c

∑j−1

k=1 αk

)−1

,

for 1≤ j ≤ n. We exhibit an instance of size n for which there is a unique SIR-feasible path whose
starvation factor is exactly

∑n

j=1 zj.
This instance is depicted in Fig. EC.1. Here, d(Sj,D) = ℓ for 1≤ j ≤ n, and Sj−1Sk >Sj−1Sj = zjℓ

for 2 ≤ j < k ≤ n. It is straightforward to see that the route (S1, S2, . . . , Sn,D) is SIR-feasible
from (35), since for 2≤ j ≤ n, we have d(Sj−1, Sj)+d(Sj,D)−d(Sj−1,D) = zjℓ+ ℓ− ℓ = zjd(Sj,D),
by construction. Thus, the starvation factor for this route is given by

∑n

j=2 zj + 1 =
∑n

j=1 zj , as
desired.

Figure EC.1. An instance to establish lower bound on the starvation factor.

It remains to be shown that no other route is SIR-feasible. First, we note that the SIR-feasibility
constraints (35) for this example simplify to

d(Sj−1, Sj)≤ zjℓ, 2≤ j ≤ n, (EC.19)

where z2 > z3 > . . . > zn, and Sj refers to the j-th pickup point along the route. The proof is by
induction. First, consider the pickup point S1, whose distance from S2 is z2ℓ, and from any other
pickup point is strictly greater than z2ℓ, by construction. From (EC.19), it can be seen that no
two pickup points that are more than z2ℓ apart can be visited in succession, and that the only way
to visit two pickup points that are exactly z2ℓ apart is to visit them first and second. Thus, any
SIR-feasible route must begin by visiting S1 and S2 first. This logic can be extended to build the
unique SIR-feasible route that we analyzed above.

EC.4. New algorithmic problems The SIR-feasibility constraints (35) can be considered as
additional constraints to the routing optimization problem. For instance, vehicle routing problems
with various operational objectives, ridesharing with multiple pickups and dropoff points, online
routing problems can all benefit from incorporating SIR-feasibility constraints while performing
route optimization. As a concrete example, consider the following ride matching and routing prob-
lem:
Given n pickup points and a common dropoff point in a metric space, (a) does there exist an

allocation of pickup points to 1 ≤m≤ n vehicles, each with capacity ⌈ n

m
⌉ ≤ c≤ n, such that there

exists an SIR-feasible route for each vehicle? And (b) if so, what is the allocation and corresponding
routes that minimize the total “vehicle-miles” traveled?



ec8 e-companion to Gopalakrishnan, Tulabandhula, and Mukherjee: Sequential Individual Rationality

We do not know whether the feasibility problem (a) can be solved in polynomial time, even when
m = 1 and αi = αj for all 1 ≤ i, j ≤ n, where it reduces to finding a sequence of the pickup points
that satisfies the inequalities (35). The “Markovian” nature of these inequalities (each inequality
only depends on adjacent pickup points in the route) suggests that it may be worth trying to come
up with a polynomial time algorithm for the feasibility problem. In Section EC.4.1, we show that
this problem is NP-hard when not restricted to a metric space, which implies that any polynomial
time algorithm, if one exists, must necessarily exploit the properties of a metric space. However,
even if one succeeds in this endeavor, we show in Section EC.4.2 that the optimization (b) over all
SIR-feasible routes is NP-hard.

Like SIR-feasibility, there might be other constraints on the ordering of the pickup points (for
instance, due to hard requirements on pickup times). Studying such variants might help understand
how to tackle SIR-feasibility constraints. For example, it is known that finding the optimal alloca-
tion (minimizing the total vehicle-miles traveled) of passengers to vehicles without any restriction
on the order of pickups is NP-hard [16]. On the other hand, as we show in Section EC.4.3, the
problem is polynomial time solvable if a strict total ordering is imposed and the capacity of each
vehicle is unrestricted. It then becomes an interesting future direction to investigate what kinds of
order constraints retain polynomial time solvability of the problem.

EC.4.1. Determining existence of SIR-feasible routes is hard. In this section, we
present Theorem EC.1, which shows that determining whether an SIR-feasible route exists is NP-
hard in general, by a reduction from the undirected Hamiltonian path problem.3

Definition EC.1. Given a set N of n pickup points, and a common dropoff point in an
underlying (possibly non-metric) space, and positive coefficients c,α1, α2, . . . , αn, SIR-Feasibility
is the problem of determining whether an SIR-feasible route of length n exists, that is, whether
there exists a sequence of the pickup points that satisfies the SIR-feasibility constraints (35).

Theorem EC.1. SIR-Feasibility is NP-hard.

Proof. Given an instance of the Hamiltonian path problem in the form of a simple, undirected
graph G = (V,E), where V = {v1, v2, . . . , vn}, we construct an instance of SIR-Feasibility as
follows. Let Pj denote a pickup point corresponding to vertex vj ∈ V . Let N = {P1, P2, . . . , Pn}
denote the set of pickup points, and D denote the common dropoff point. Then, we set the pairwise
distances to

PiPj =

{

ℓ

n
, (vi, vj)∈E

ℓ, otherwise,

where ℓ > 0 is any constant. We also set PiD = ℓ for all i, and c = α1 = α2 = . . . = αn, so that the
SIR-feasibility constraints are given by (35). Then, there is a one-to-one correspondence between
the set of Hamiltonian paths in G and the set of SIR-feasible routes in the corresponding instance
of SIR-Feasibility, as follows:

1. Given a Hamiltonian path through a sequence of vertices (u1, u2, . . . , un) in G, let the corre-
sponding sequence of pickup points be (S1, S2, . . . , Sn). Then, the route (S1, S2, . . . , Sn,D) is
SIR-feasible, since the SIR-feasibility constraints (EC.15) reduce to d(Sj−1, Sj) ≤ ℓ

j
for 2 ≤ j ≤

n, which are true, by construction.
2. Given an SIR-feasible route (S1, S2, . . . , Sn,D), let the corresponding sequence of vertices in G

be (u1, u2, . . . , un). Since the route is SIR-feasible, it must be that d(Sj−1, Sj)≤ ℓ

j
for 2 ≤ j ≤ n.

By construction, this means that d(Sj−1, Sj) = ℓ

n
, implying that (uj−1, uj) ∈E for 2 ≤ j ≤ n.

Thus, the corresponding path is Hamiltonian.

3 Given an undirected graph, a Hamiltonian path is a path in the graph that visits each vertex exactly once. The
undirected Hamiltonian path problem is to determine, given an undirected graph, whether a Hamiltonian path exists.
It is known to be NP-hard.
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Hence, any algorithm for SIR-Feasibility can be used to solve the undirected Hamiltonian path
problem with a polynomial overhead in running time. Since the latter is NP-hard, so is the former.
This completes the proof.

However, it can be easily seen that SIR-Feasibility is not hard in certain special cases and in
certain metric spaces. Consider an input graph, where the pickup points and the dropoff point are
embedded on a line, and αi = c for all i∈N . Without loss of generality, we assume that the pickup
points {S1, . . . , Sn} appear in the same order on the line, so that S1 and Sn are the two end points.
Clearly, if the destination D occurs before S1 (respectively, after Sn), the instance is SIR-feasible.
This is because the route starting from Sn (respectively, S1) and ending at D, visiting all the pickup
points along the way incurs zero detour for everyone, and is thus SIR-feasible. In fact, such a route
also traverses the minimum distance among all feasible routes. However, consider the case where D
is located at some intermediate location. Such an instance will never be SIR-feasible. To see this,
first consider an instance where n = 2, and S1 <D<S2. Let S1D = x, S2D = y; hence S1S2 = x+y.
We analyze the SIR-feasiblity constraints (35) for each of two cases. If S1 is visited before S2, then
SIR-feasibility requires that x+ y + y−x≤ y

2
, which is impossible. Similarly, if S2 is visited before

S1, then SIR-feasibility requires that x+ y +x− y≤ x

2
, which is also impossible. Now, when n> 2

and D is located at an intermediate point, any feasible route must, at some point, “jump over” D
from some Si to another Sj, at which stage the analysis would be the same as that for n = 2, and is
therefore not SIR-feasible. A similar phenomenon can be observed when the underlying metric is
a tree rooted at D and the pickup points are located at the leaves, and αi = c for all i∈N . It can
be shown that instances where the pickup points are spread across more than one subtree rooted
at D cannot be SIR-feasible, and when the pickup points are all part of a single subtree rooted at
D, SIR-feasibility can be checked in polynomial time. We leave open the problem of determining
whether SIR-Feasibility is hard in general metric spaces.

EC.4.2. Optimizing over SIR-feasible routes is hard. Given an undirected weighted
graph, the problem of determining an optimal Hamiltonian cycle4 (one that minimizes the sum
of the weights of its edges) is a well known problem called the Traveling Salesperson Problem,
abbreviated as TSP. A slight variant of this problem, known as Path-TSP, is when the traveling
salesperson is not necessarily required to return to the starting point or depot, in which case we only
seek an optimal Hamiltonian path. These problems are NP-hard [46]. Special cases of the above
problems arise when the graph is complete and the edge weights correspond to distances between
vertices from a metric space. These variants, which we call Metric-TSP and Metric-Path-TSP,
respectively, are also NP-hard, e.g., [45] showed the hardness for the Euclidean metric.
Definition EC.2. Given a set N of n pickup points, a common dropoff point in an underlying

metric space, and positive coefficients αop, α1, α2, . . . , αn, Opt-SIR-Route is the problem of finding
an SIR-feasible route of length n of minimum total distance.

Theorem EC.2. Opt-SIR-Route is NP-hard.

Proof. Given an instance of Metric-Path-TSP in the form of a complete undirected graph
G = (V,E) and distances d(vi, vj) for each vi, vj ∈ V from a metric space, we construct an instance
of Opt-SIR-Route as follows. Let Pj denote a pickup point corresponding to vertex vj ∈ V . Let
N = {P1, P2, . . . , Pn} denote the set of pickup points, and D denote the common dropoff point.

We set the pairwise distances PiPj to be equal to d(vi, vj) for all vi, vj ∈ V . We also set PiD = L
for all i, where

L>n

(

max
1≤i<j≤n

PiPj

)

4 A Hamiltonian cycle is a Hamiltonian path that is a cycle. In other words, it is a cycle in the graph that visits each
vertex exactly once.
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is any constant. We also set c= α1 =α2 = . . .= αn, so that the SIR-feasibility constraints are given
by (35). It is easy to see that for any route (S1, S2, . . . , Sn,D), these SIR-feasibility constraints
reduce to d(Sj−1, Sj) ≤ ℓ

j
for 2 ≤ j ≤ n, which are true, by construction and our choice of L.

Thus, all n! routes in our constructed instance of Opt-SIR-Route are SIR-feasible. Moreover, by
construction, the distance traveled along any route is exactly L more than the weight of the path
determined by the corresponding sequence of vertices in G. This implies that any optimal SIR-
feasible route is given by a sequence of pickup points corresponding to an optimal Hamiltonian
path in G, followed by a visit to D. Hence, any algorithm for Opt-SIR-Route can be used to solve
Metric-Path-TSP with a polynomial overhead in running time. Since the latter is NP-hard, so is
the former. This completes the proof.

EC.4.3. Optimal allocation of totally ordered passengers to uncapacitated vehicles.
In this section, we present a polynomial time algorithm for optimal allocation of passengers to
vehicles (minimizing the total vehicle-miles traveled), given a total order on the pickups, and when
the capacity of any vehicle is unrestricted. To the best of our knowledge, this result is new; see [52]
for a survey on related problem variants.

Our result relies on reducing the allocation problem to a minimum cost flow problem on a flow
network with integral capacities. We are given the set N of passengers (that is, the set of n ordered
pickup locations) traveling to a common dropoff location D. Without loss of generality, we let the
indices in N reflect the position in the pickup order, that is, u∈N is the u-th pick up from location
Su. For convenience, we index the destination D as n + 1. Let the unknown optimal assignment
use 1 ≤ m′ ≤ n vehicles (we address how to find it later). A directed acyclic flow network (see
Figure EC.2) is then constructed as follows:
(1) s and t denote the source and sink vertices, respectively.
(2) For each passenger/pickup location u∈N , we create two vertices and an edge: an entry vertex

uin, an exit vertex uout, and an edge of cost 0 and capacity 1 directed from uin to uout. We also
create a vertex n+ 1 corresponding to the dropoff location.

(3) We create n edges, one each of cost 0 and capacity 1 from the source vertex s to each of the
entry vertices uin, u∈N .

(4) We create n edges, one each of cost SuD and capacity 1 from each of the exit vertices uout,
u∈N , to the dropoff vertex n+ 1.

(5) To encode the pickup order, for each 1 ≤ u < v ≤ n we create an edge of cost (SuSv − L)
and capacity 1 directed from uout to vin, where L is a sufficiently large number satisfying
L> 2 maxu,v∈N∪{n+1} SuSv.

(6) We add a final edge of cost 0 and capacity m′ from the dropoff vertex n+ 1 to the sink vertex
t, thereby limiting the maximum flow in the network to m′ units.

Since all the edge capacities are integral, the integrality theorem guarantees an integral minimum
cost maximum flow, and we assume access to a poly-time algorithm to compute it in a network
with possibly negative costs on edges. Notice that we do have negative edge costs (step (5) of the
above construction); however, our network is a directed acyclic graph, owing to the fact that there
is a total ordering on the pickup locations. Hence, there are no negative cost cycles.

Before presenting the full proof, we briefly outline the steps involved:
• Any integral maximum flow from s to t must be comprised of m′ vertex-disjoint paths between

the source vertex s and the dropoff vertex n+ 1.
• Any integral minimum cost flow must cover all the 2n pickup vertices, that is, a unit of flow

enters every entry vertex uin, and a unit of flow exits each exit vertex uout, u∈N .
• The partition of N according to the m′ vertex-disjoint paths between s and n + 1 in an

integral minimum cost maximum flow corresponds to the optimal allocation of the n totally ordered
passengers among m′ uncapacitated vehicles.
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Figure EC.2. Illustration of the directed acyclic flow network, a minimum cost maximum flow on which corresponds
to an assignment of n totally ordered passengers to m′ uncapacitated vehicles. Each of the edge labels correspond to
a tuple consisting of edge cost and edge capacity.

Finally, we argue that the overall optimal assignment can be obtained by computing the optimal
assignments using the above reduction for each 1 ≤m′ ≤ n and choosing the one with the overall
minimum cost, which completes the reduction. Next, we present the detailed proofs of the above
steps.

Lemma EC.1. Any integral maximum flow from s to t must be comprised of m′ vertex-disjoint
paths between the source vertex s and the dropoff vertex n+ 1.

Proof. First, we observe that any integral feasible flow from s to t in the network is comprised
of vertex-disjoint paths between the source vertex s and the dropoff vertex n + 1, each carrying
one unit of flow. This is because, every entry vertex uin has only one outgoing edge, namely, the
one directed to its corresponding exit vertex uout, which has unit capacity. (Similarly, every exit
vertex only has one incoming edge, of unit capacity.) Thus, once a unit of flow is routed through
uin and uout by some path, another path cannot route any additional flow through these vertices.
Since the maximum flow on the network is m′ units, any integral feasible maximum flow would
have to have m′ such vertex-disjoint paths between s and n + 1, each carrying one unit of flow.
This completes the proof.

Lemma EC.2. In any integral minimum cost flow, for every u ∈N , there is exactly one unit
of flow entering uin and exactly one unit of flow leaving uout.

Proof. From the proof of Lemma EC.1, any integral feasible flow from s to t in the network
is comprised of vertex-disjoint paths between the source vertex s and the dropoff vertex n + 1.
Suppose by way of contradiction, an integral minimum cost flow does not route any flow through
vin for some v ∈N . Let Gv denote the set of passengers z ∈N such that z < v and a unit of flow is
routed via (zin, zout). Consider two cases:

1. Case 1: Gv 6= ∅. Let u = maxGv, and let Pu be the path that carries a unit of flow from s
to n+ 1 through uin and uout. The first vertex in Pu after uout is either an entry vertex win
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for some w ∈ N (with w > v), or the dropoff vertex n + 1. Then, we construct a new flow
where Pu is modified to route its unit of flow from uout first to vin to vout and then to win or
n+ 1, as the case may be. (Note that this new flow is feasible, since u < v <w <n+ 1.) If M
and M ′ denote the costs of the original flow and the new flow, then, we show that M ′ <M ,
contradicting the optimality of M :
• If the original flow took the route uout → win, and consequently, the new flow takes the

route uout → vin → vout →win, then, M ′ = M +SuSv −L+SvSw−L− (SuSw −L)<M by our
choice of L.
• If the original flow took the route uout → n+ 1, and consequently, the new flow takes the

route uout → vin → vout → n + 1, then, M ′ = M + SuSv − L + SvSn+1 − SuSn+1 <M by our
choice of L.

2. Case 2: Gv = ∅. Let w ∈N be such that a unit of flow is routed from s to win, Pw denoting the
corresponding path. There may be more than one choice for win as defined, but all of them
satisfy v <w, since Gv = ∅, so it does not matter which one is picked. As before, we construct
a new flow where Pw is modified to route its unit of flow from s first to vin to vout and then
to win. (Note that this new flow is feasible, since v <w.) If M and M ′ denote the costs of the
original flow and the new flow, M ′ = M +SvSw −L<M by our choice of L, contradicting the
optimality of M .

This completes the proof.

Lemma EC.3. The partition of N according to the m′ vertex-disjoint paths between s and n+1
in an integral minimum cost maximum flow corresponds to the optimal allocation of the n totally
ordered passengers among m′ uncapacitated vehicles.

Proof. From Lemma EC.1 and Lemma EC.2, we know that any integral minimum cost maxi-
mum flow F is comprised of m′ vertex-disjoint paths between s and n+ 1 that cover all n pickup
points between them, by routing a unit of flow along (uin, uout) for all u∈N . We adopt a simplified
representation of a path by removing the edges from the source vertex s, as well as the edges
between uin and uout, the entry and exit vertices corresponding to pickup points u∈N . For exam-
ple, a path s→ uin → uout → vin → vout → n+ 1 would be contracted to u→ v→ n+ 1. Note that
this does not affect the cost computation, since only zero cost edges are removed. For any u, v ∈N ,
the cost of any edge (u, v) in the new representation is simply the cost of the edge (uout, vin) in the
old representation. Similarly, for any u∈N , the cost of any edge (u,n+1) in the new representation
is simply the cost of the edge (uout, n+ 1) in the old representation. Let the set of these m′ paths
be denoted as PF . Thus, we have established a one-to-one correspondence between (a) the set of
all integral flows F comprised of m′ vertex-disjoint paths PF that collectively cover all n pickup
locations, and (b) the set of all allocations of n totally ordered passengers (traveling to a common
dropoff location n+ 1) to m′ uncapacitated vehicles.

For any path P ∈PF , let |P | denote the length of the path, that is, the number of edges in the
path. The cost of path P is then given by

c(P ) =
∑∑

1≤u<v≤n
(u,v)∈P

(SuSv −L) +
∑

1≤u≤n
(u,n+1)∈P

SuSn+1.

Since all paths end with vertex n+ 1, there are |P | − 1 terms in the first sum and 1 term in the
last sum. Thus, c(P ) can be equivalently written as

c(P ) =
∑∑

1≤u<v≤n+1
(u,v)∈P

SuSv − (|P | − 1)L.
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The cost of flow F is simply the sum of the costs of the paths in PF , given by

c(F) =
∑

P∈PF

c(P ) =
∑∑

1≤u<v≤n+1
(u,v)∈ ⋃PF

SuSv −
∑

P∈PF

(|P | − 1)L.

Since |P |, the length of path P , also denotes the number of pickup points covered by P , and all
the m′ paths are vertex-disjoint (except for n + 1), the summation in the second term is simply
n−m′, independent of the flow F . Thus,

c(F) =
∑∑

1≤u<v≤n+1
(u,v)∈ ⋃PF

SuSv − (n−m′)L= c(AF)− (n−m′)L, (EC.20)

where c(AF) denotes the cost (total vehicle-miles traveled) of the corresponding allocation of n
totally ordered passengers (traveling to a common dropoff location n+1) to m′ uncapacitated vehi-
cles. From (EC.20), it is clear that the set of integral minimum cost maximum flows arg minF c(F)
also corresponds to the set of optimal allocations of n totally ordered passengers among m′ unca-
pacitated vehicles. This completes the proof.

Theorem EC.3. There exists a polynomial time algorithm to find an optimal allocation of
totally ordered passengers to uncapacitated vehicles.

Proof. Using the one-to-one correspondence established in Lemma EC.3, for each “guess” 1 ≤
m′ ≤ n, we find the corresponding optimal allocation by solving a minimum cost maximum flow
problem in poly-time, finally choosing a guess with the overall least cost allocation.
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