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Traditionally, research focusing on the design of routing and staffing policies for service systems has modeled
servers as having fixed (possibly heterogeneous) service rates. However, service systems are generally staffed
by people. Furthermore, people respond to workload incentives; that is, how hard a person works can depend
both on how much work there is, and how the work is divided between the people responsible for it. In a
service system, the routing and staffing policies control such workload incentives; and so the rate servers
work will be impacted by the system’s routing and staffing policies. This observation has consequences when
modeling service system performance, and our objective in this paper is to investigate those consequences.

We do this in the context of the M/M/N queue, which is the canonical model for large service systems.
First, we present a model for “strategic” servers that choose their service rate in order to maximize a trade-
off between an “effort cost”, which captures the idea that servers exert more effort when working at a faster
rate, and a “value of idleness”, which assumes that servers value having idle time. Next, we characterize
the symmetric Nash equilibrium service rate under any routing policy that routes based on the server idle
time (such as the longest idle server first policy). We find that the system must operate in a quality-driven
regime, in which servers have idle time, in order for an equilibrium to exist. The implication is that to have
an equilibrium solution the staffing must have a first-order term that strictly exceeds that of the common
square-root staffing policy. Then, within the class of policies that admit an equilibrium, we (asymptotically)
solve the problem of minimizing the total cost, when there are linear staffing costs and linear waiting costs.
Finally, we end by exploring the question of whether routing policies that are based on the service rate,
instead of the server idle time, can improve system performance.

Key words : service systems; staffing; routing; scheduling; routing; strategic servers
Subject classifications : Primary: Queues: applications, limit theorems; secondary: Games/group decisions:

noncooperative

1. Introduction. There is a broad and deep literature studying the scheduling and staffing of
service systems that bridges operations research, applied probability, and computer science. This
literature has had, and is continuing to have, a significant practical impact on the design of call
centers (see, for example, the survey papers [18] and [1]), health care systems (see, for example,
the recent book [29]), and large-scale computing systems (see, for example, the recent book [26]),
among other areas. Traditionally, this literature on scheduling and staffing has modeled the servers
of the system as having fixed (possibly heterogeneous) service rates and then, given these rates,
scheduling and staffing policies are proposed and analyzed. However, in reality, when the servers
are people, the rate a server chooses to work can be, and often is, impacted by the scheduling and
staffing policies used by the system.
For example, if requests are always scheduled to the “fastest” server whenever that server is

available, then this server may have the incentive to slow her rate to avoid being overloaded with
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work. Similarly, if extra staff is always assigned to the division of a service system that is the
busiest, then servers may have the incentive to reduce their service rates in order to ensure their
division is assigned the extra staff. The previous two examples are simplistic; however, strategic
behavior has been observed in practice in service systems. For example, empirical data from call
centers shows many calls that last near 0 seconds [18]. This strategic behavior of the servers allowed
them to obtain “rest breaks” by hanging up on customers – a rather dramatic means of avoiding
being overloaded with work. For another example, academics are often guilty of strategic behavior
when reviewing for journals. It is rare for reviews to be submitted before an assigned deadline
since, if someone is known for reviewing papers very quickly, then they are likely to be assigned
more reviews by the editor.
Clearly, the strategic behavior illustrated by the preceding examples can have a significant impact

on the performance provided by a service system. One could implement a staffing or scheduling
policy that is provably optimal under classical scheduling models, where servers are nonstrategic,
and end up with far from optimal system performance as a result of undesirable strategic incentives
created by the policy. Consequently, it is crucial for service systems to be designed in a manner
that provides the proper incentives for such “strategic servers”.
In practice, there are two approaches used for creating the proper incentives for strategic servers:

one can either provide structured bonuses for employees depending on their job performance
(performance-based payments) or one can provide incentives in how scheduling and staffing is
performed that reward good job performance (incentive-aware scheduling). While there has been
considerable research on how to design performance-based payments in the operations manage-
ment and economics communities; the incentives created by scheduling and staffing policies are
much less understood. In particular, the goal of this paper is to initiate the study of incentive-aware
scheduling and staffing policies for strategic servers.
The design of incentive-aware scheduling and staffing policies is important for a wide variety of

service systems. In particular, in many systems performance-based payments such as bonuses are
simply not possible, e.g., in service systems staffed by volunteers such as academic reviewing. Fur-
thermore, many service systems do not use performance-based compensation schemes; for example,
the 2005 benchmark survey on call center agent compensation in the U.S. shows that a large
fraction of call centers pay a fixed hourly wage (and have no performance-based compensation) [3].
Even when performance-based payments are possible, the incentives created by scheduling

and staffing policies impact the performance of the service system, and thus impact the success
of performance-based payments. Further, since incentive-aware scheduling and staffing does not
involve monetary payments (beyond a fixed employee salary), it may be less expensive to provide
incentives through scheduling and staffing than through monetary bonuses. Additionally, providing
incentives through scheduling and staffing eliminates many concerns about “unfairness” that stem
from differential payments to employees.
Of course, the discussion above assumes that the incentives created by scheduling and staffing

can be significant enough to impact the behavior. A priori it is not clear if they are, since simply
changing the scheduling and staffing policies may not provide strong enough incentives to strate-
gic servers to significantly change service rates, and thus system performance. It is exactly this
uncertainty that motivates the current paper, which seeks to understand the impact of the incen-
tives created by scheduling and staffing, and then to design incentive-aware staffing and scheduling
policies that provide near-optimal system performance without the use of monetary incentives.

1.1. Contributions of this paper. This paper makes three main contributions. We intro-
duce a new model for the strategic behavior of servers in large service systems and, additionally,
we initiate the study of staffing and routing in the context of strategic servers. Each of these
contributions is described in the following.
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Modeling Strategic Servers (Sections 2 and 3): The essential first step for an analysis of strategic
servers is a model for server behavior that is simple enough to be analytically tractable and yet rich
enough to capture the salient influences on how each server may choose her service rate. Our model
is motivated by work in labor economics that identifies two main factors that impact the utility
of agents: effort cost and idleness. More specifically, it is common in labor economics to model
agents as having some “effort cost” function that models the decrease in utility which comes from
an increase in effort [12]. Additionally, it is a frequent empirical observation that agents in service
systems engage in strategic behavior to increase the amount of idle time they have [18]. The key
feature of the form of the utility we propose in Section 2 is that it captures the inherent trade-off
between idleness and effort. In particular, a faster service rate would mean quicker completion of
jobs and might result in a higher idle time, but it would also result in a higher effort cost.
In Section 3 of this paper, we apply our model in the context of a M/M/N system, analyzing

the first order condition, and provide a necessary and sufficient condition for a solution to the first
order condition to be a symmetric equilibrium service rate (Theorem 4). In addition, we discuss the
existence of solutions to the first order condition, and provide a sufficient condition for a unique
solution (Theorem 5). These results are necessary in order to study staffing and routing decisions,
as we do in Sections 4 and 5; however, it is important to note that the model is applicable more
generally as well.
Staffing Strategic Servers (Section 4): The second piece of the paper studies the impact strategic

servers have on staffing policies in multi-server service systems. The decision of a staffing level for
a service system has a crucial impact on the performance of the system. As such, there is a large
literature focusing on this question in the classical, nonstrategic, setting, and the optimal policy
is well understood. In particular, the number of servers that must be staffed to ensure stability
in a conventional M/M/N queue with arrival rate λ and fixed service rate µ should be strictly
larger than the offered load, λ/µ. However, when there are linear staffing and waiting costs, the
economically optimal number of servers to staff is more. Specifically, the optimal policy employs
the square root of the offered load more servers [8]. This results in efficient operation, because
the system loading factor λ/(Nµ) is close to one; and maintains quality of service, because the
customer wait times are small (on the order of 1/

√
λ). Thus, this is often referred to as the Quality

and Efficiency Driven (QED) regime or as square-root staffing.
Our contribution in this paper is to initiate the study of staffing strategic servers. In the presence

of strategic servers, the offered load depends on the arrival rate, the staffing, and the routing,
through the servers’ choice of their service rate. We show that an equilibrium service rate exists
only if the number of servers staffed is order λ more than the aforementioned square-root staffing
(Theorem 7). In particular, the system must operate in a quality-driven regime, in which the servers
have idle time, instead of the quality-and-efficiency driven regime that arises under square-root
staffing, in which servers do not have idle time. Then, within the set of policies that admit an
equilibrium service rate, we (asymptotically) solve the problem of minimizing the total cost, when
there are linear staffing costs and linear waiting costs (Theorem 8).
Routing to Strategic Servers (Section 5): The final piece of this paper studies the impact of

strategic servers on the design of scheduling policies in multi-server service systems. When servers
are not strategic, how to schedule (dispatch) jobs to servers in multi-server systems is well under-
stood. In particular, the most commonly proposed policies for this setting include Fastest Server
First (FSF), which dispatches arriving jobs to the idle server with the fastest service rate; Longest
Idle Server First (LISF), which dispatches jobs to the server that has been idle for the longest
period of time; and Random, which dispatches the job to each idle server with equal probability.
When strategic servers are not considered, FSF is the natural choice for reducing the mean response
time (though it is not optimal in general [16, 35]). However, in the context of strategic servers the
story changes. In particular, we prove that FSF has no symmetric equilibria when strategic servers
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are considered, even when there are just two servers. Further, we prove that LISF, a commonly
suggested policy for call centers due to its fairness properties, has the same, unique, symmetric
equilibrium as random dispatching. In fact, we prove that there is a large policy-space collapse – all
routing policies that are idle-time-order-based are equivalent in a very strong sense (Theorem 9).
With this in mind, one might suggest that Slowest Server First (SSF) would be a good dispatch

policy, since it could incentivize servers to work fast; however, we prove that, like FSF, SSF has
no symmetric equilibria (Theorem 10). However, by “softening” SSF’s bias toward slow servers,
we are able to identify policies that are guaranteed to have a unique symmetric equilibrium and
provide mean response times that are smaller than that under LISF and Random (Theorem 11).
A key message provided by the results described above is that scheduling policies must carefully

balance two conflicting goals in the presence of strategic servers: making efficient use of the service
capacity (e.g., by sending work to fast servers) while still incentivizing servers to work fast (e.g.,
by sending work to slow servers). While these two goals are inherently in conflict, our results show
that it is possible to balance them in a way that provides improved performance over Random.

1.2. Related work. As we have already described, the question of how to route and staff in
many-server systems when servers have fixed, nonstrategic, service rates is well-studied. In general,
this is a very difficult question, because the routing depends on the staffing and vice versa. However,
when all the servers serve at the same rate, the routing question is moot. Then, [8] shows that
square-root staffing, first introduced in [17] and later formalized in [25], is economically optimal
when both staffing and waiting costs are linear. Furthermore, square root staffing is remarkably
robust: there is theoretical support for why it works so well for systems of moderate size [30], and it
continues to be economically optimal both when abandonment is added to theM/M/N model [19]
and when there is uncertainty in the arrival rate [33]. Hence, to study the joint routing and staffing
question for more complex systems, that include heterogeneous servers that serve at different rates
and heterogeneous customers, many authors have assumed square root staffing and show how to
optimize the routing for various objective functions (see, for example, [4, 23, 6, 40, 41]). In relation
to this body of work, this paper shows that scheduling and routing results for classical many-server
systems that assume fixed service rates must be revisited when servers exhibit strategic behavior.
This is because they may not admit a symmetric equilibrium service rate in the case of square-root
staffing (see Section 4) or be feasible in the case of Fastest Server First routing (see Section 5).
Importantly, the Fastest Server First routing policy mentioned earlier has already been recog-

nized to be potentially problematic because it may be perceived as “unfair”. The issue from an
operational standpoint is that there is strong indication in the human resource management liter-
ature that the perception of fairness affects employee performance [15, 14]. This has motivated the
analysis of “fair” routing policies that, for example, equalize the cumulative server idleness [7, 38],
and the desire to find an optimal “fair” routing policy [5, 42]. Another approach is to formulate
a model in which the servers choose their service rate in order to balance their desire for idle
time (which is obtained by working faster) and the exertion required to serve faster. This leads
to a non-cooperative game for a M/M/N queue in which the servers act as strategic players that
selfishly maximize their utility.
Finally, the literature that is, perhaps, most closely related to the current paper is the literature

on queueing games, which is surveyed in [28]. The bulk of this literature focuses on the impact of
customers acting strategically (e.g., deciding whether to join and which queue to join) on queueing
performance. Still, there is a body of work within this literature that considers settings where
servers can choose their service rate, e.g., [31, 21, 10, 11]. However, in all of the aforementioned
papers, there are two servers that derive utility from some monetary compensation per job or per
unit of service that they provide, and there are no staffing decisions. In contrast, our work considers
systems with more than two servers, and considers servers that derive utility from idle time (and
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have a cost of effort). The idea that servers value idle time is most similar to the setting in [20],
but that paper restricts its analysis to a two server model. Perhaps the closest previous work to the
current paper in analysis spirit is [2], which characterizes approximate equilibria in a market with
many servers that compete on price and service level. However, this is similar in theme to [31, 10]
in the sense that they consider servers as competing firms in a market. This contrasts with the
current paper, where our focus is on competition between servers within the same firm.

2. A model for strategic servers. The objective of this paper is to initiate an investigation
into the effects of strategic servers on classical management decisions in service systems, e.g.,
staffing and routing. We start by, in this section, describing formally our model for the behavior
of a strategic server.
The term “strategic server” could be interpreted in many ways depending on the server’s goal.

Thus, the key feature of the model is the utility function for a strategic server. Our motivation comes
from a service system staffed by people who are paid a fixed wage, independent of performance.
In such settings, one may expect two key factors to have a first-order impact on the experience of
the servers: the amount of effort they put forth and the amount of idle time they have.
Thus, a first-order model for the utility of a strategic server is to linearly combine the cost of

effort with the idle time of the server. This gives the following form for the utility of server i in a
service system with N servers:

Ui(µ) = Ii(µ)− c(µi), i∈ {1, . . . ,N}, (1)

where µ is a vector of the rate of work chosen by each server (i.e., the service rate vector), Ii(µ)
is the time-average idle time experienced by server i given the service rate vector µ, and c(µi) is
the effort cost of server i. We take c to be an increasing, convex function which is the same for
all servers. We assume that the strategic behavior of servers (choosing a utility-maximizing service
rate) is independent of the state of the system and that the server has complete information about
the steady state properties of the system when choosing a rate, i.e., they know the arrival rate,
scheduling policy, staffing policy, etc., and thus can optimize Ui(µ).
The key feature of the form of the utility in (1) is that it captures the inherent trade-off between

idleness and effort. The idleness, and hence the utility, is a steady state quantity. In particular, a
faster service rate would mean quicker completion of jobs and might result in higher idle time in
steady state, but it would also result in a higher effort cost. This trade-off then creates a difficult
challenge for staffing and routing in a service system. To increase throughput and decrease response
times, one would like to route requests to the fastest servers, but by doing so the utility of servers
decreases, making it less desirable to maintain a fast service rate. Our model should be interpreted
as providing insight into the systemic incentives created by scheduling and staffing policies rather
than the transitive incentives created by the stochastic behavior of the system.
Our focus in this paper will be to explore the consequences of strategic servers for staffing and

routing in large service systems, specifically, in theM/M/N setting. However, the model is generic
and can be studied in non-queueing contexts as well.
To quickly illustrate the issues created by strategic servers, a useful example to consider is that

of a M/M/1 queue with a strategic server.

Example 1 (The M/M/1 queue with a strategic server). In a classic M/M/1 sys-
tem, jobs arrive at rate λ into a queue with an infinite buffer, where they wait to obtain service
from a single server having fixed service rate µ. When the server is strategic, instead of serving at
a fixed rate µ, the server chooses her service rate µ> λ in order to maximize the utility in (1). To
understand what service rate will emerge, recall that in a M/M/1 queue with µ > λ the steady
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state fraction of time that the server is idle is given by I(µ) = 1− λ
µ
. Substituting this expression

into (1) means that the utility of the server is given by the following concave function:

U(µ) = 1− λ

µ
− c(µ).

We now have two possible scenarios. First, suppose that c′(λ)< 1/λ, so that the cost function
does not increase too fast. Then, U(µ) attains a maximum in (λ,∞) at a unique point µ⋆, which is
the optimal (utility maximizing) operating point for the strategic server. Thus, a stable operating
point emerges, and the performance of this operating point can be derived explicitly when a specific
form of a cost function is considered.
On the other hand, if c′(λ)≥ 1/λ, then U(µ) is strictly decreasing in (λ,∞) and hence does not

attain a maximum in this interval. We interpret this case to mean that the server’s inherent skill
level (as indicated by the cost function) is such that the server must work extremely hard just to
stabilize the system, and therefore should not have been hired in the first place.
For example, consider the class of cost functions c(µ) = cEµ

p. If c(λ)< 1
p
, then µ⋆ solves µ⋆c(µ⋆) =

λ
p
, which gives µ⋆ =

(

λ
cEp

)
1

p+1

>λ. On the other hand, if c(λ)≥ 1
p
, then U(µ) is strictly decreasing

in (λ,∞) and hence does not attain a maximum in this interval.

Before moving on to the analysis of theM/M/N model with strategic servers, it is important to
point out that the model we study focuses on a linear trade-off between idleness and effort. There
are certainly many generalizations that are interesting to study in future work. One particularly
interesting generalization would be to consider a concave (and increasing) function of idle time in
the utility function, since it is natural that the gain from improving idle time from 10% to 20%
would be larger than the gain from improving idle time from 80% to 90%. A preliminary analysis
highlights that the results in this paper would not qualitatively change in this context.1

3. The M/M/N queue with strategic servers. Our focus in this paper is on the staffing
and routing decisions in large service systems, and so we adopt a classical model of this setting, the
M/M/N , and adjust it by considering strategic servers, as described in Section 2. The analysis of
staffing and routing policies is addressed in Sections 4 and 5, but before moving to such questions,
we start by formally introducing the M/M/N model, and performing some preliminary analysis
that is useful both in the context of staffing and routing.

3.1. Model and notation. In aM/M/N queue, customers arrive to a service system having
N servers according to a Poisson process with rate λ. Delayed customers (those that arrive to find
all servers busy) are served according to the First In First Out (FIFO) discipline. Each server is
fully capable of handling any customer’s service requirements. The time required to serve each
customer is independent and exponential, and has a mean of one time unit when the server works
at rate one. However, each server strategically chooses her service rate to maximize her own (steady
state) utility, and so it is not a priori clear what the system service rates will be.

1 Specifically, if g(Ii(µ)) replaces Ii(µ) in (1), all the results in Section 3 characterizing equilibria service rates
are maintained so long as g′′′ < 0, except for Theorem 5, whose sufficient condition would have to be adjusted to
accommodate g. In addition, our results could be made stronger depending on the specific form of g. For example, if
g is such that limµi→µ

i
+Ui(µ) =−∞, then, a preliminary analysis reveals that it would not be necessary to impose

the stability constraint µi > λ/N exogenously. Moreover, every solution to the symmetric first order condition (9)
would be a symmetric equilibrium (i.e., the sufficient condition of Theorem 4 as generalized for this case by Footnote
2 would automatically be satisfied).
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In this setting, the utility functions that the servers seek to maximize are given by

Ui(µ;λ,N,R) = Ii(µ;λ,N,R)− c(µi), i ∈ {1, . . . ,N}, (2)

where µ is the vector of service rates, λ is the arrival rate, N is the number of servers (staffing
level), and R is the routing policy. Ii(µ;λ,N,R) is the steady state fraction of time that server i
is idle. c(µ) is an increasing, convex function with c′′′(µ)≥ 0, that represents the server effort cost.
Note that, as compared with (1), we have emphasized the dependence on the arrival rate λ,

staffing level N , and routing policy of the system, R. In the remainder of this article, we expose or
suppress the dependence on these additional parameters as relevant to the discussion. In particular,
note that the idle time fraction Ii (and hence, the utility function Ui) in (2) depends on how
arriving customers are routed to the individual servers.
There are a variety of routing policies that are feasible for the system manager. In general, the

system manager may use information about the order in which the servers became idle, the rates
at which servers have been working, etc. This leads to the possibility of using simple policies such
as Random, which chooses an idle server to route to uniformly at random, as well as more complex
policies such as Longest/Shortest Idle Server First (LISF/SISF) and Fastest/Slowest Server First
(FSF/SSF). We study the impact of this decision in detail in Section 5.
Given the routing policy chosen by the system manager and the form of the server utilities

in (2), the situation that emerges is a competition among the servers for the system idle time. In
particular, the routing policy yields a division of idle time among the servers, and both the division
and the amount of idle time will depend on the service rates chosen by the servers.
As a result, the servers can be modeled as strategic players in a noncooperative game, and thus

the operating point of the system is naturally modeled as an equilibrium of this game. In particular,
a Nash equilibrium of this game is a set of service rates µ⋆, such that,

Ui(µ
⋆
i ,µ

⋆
−i;R) = max

µi>
λ
N

Ui(µi,µ
⋆
−i;R), (3)

where µ
⋆
−i = (µ⋆

1, . . . , µ
⋆
i−1, µ

⋆
i+1, . . . , µ

⋆
N) denotes the vector of service rates of all the servers except

server i. Note that we exogenously impose the (symmetric) constraint that each server must work
at a rate strictly greater than λ

N
in order to define a product action space that ensures the stability

of the system.2 Such a constraint is necessary to allow steady state analysis, and does not elimi-
nate any feasible symmetric equilibria. We treat this bound as exogenously fixed, however in some
situations a system manager may wish to impose quality standards on servers, which would corre-
spond to imposing a larger lower bound (likely with correspondingly larger payments for servers).
Investigating the impact of such quality standards is an interesting topic for future work.
Our focus in this paper is on symmetric Nash equilibria. With a slight abuse of notation, we

say that µ⋆ is a symmetric Nash equilibrium if µ⋆ = (µ⋆, . . . , µ⋆) is a Nash equilibrium (solves (3)).
Throughout, the term “equilibrium service rate” means a symmetric Nash equilibrium service rate.
We focus on symmetric Nash equilibria for two reasons. First, because the agents we model

intrinsically have the same skill level (as quantified by the effort cost functions), a symmetric

2 One can imagine that servers, despite being strategic, would endogenously stabilize the system. To test this, one
could study a related game where the action sets of the servers are (0,∞). Then, the definition of the idle time Ii(µ)
must be extended into the range of µ for which the system is overloaded; a natural way to do so is to define it
to be zero in this range, which would ensure continuity at µ for which the system is critically loaded. However, it
is not differentiable there, which necessitates a careful piecewise analysis. A preliminary analysis indicates that in
this scenario, no µ ∈

(

0, λ
N

]

can ever be a symmetric equilibrium, and then, the necessary and sufficient condition
of Theorem 4 would become U(µ⋆, µ⋆)≥ limµ1→0+U(µ1, µ

⋆), which is more demanding than (10) (e.g., it imposes a
finite upper bound on µ⋆), but not so much so that it disrupts the staffing results that rely on this theorem (e.g.,
Lemma 1 still holds).
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equilibrium corresponds to a fair outcome. As we have already discussed, this sort of fairness is often
crucial in service organizations [15, 14, 5]. A second reason for focusing on symmetric equilibria is
that analyzing symmetric equilibria is already technically challenging, and it is not clear how to
approach asymmetric equilibria in the contexts that we consider. Note that we do not rule out the
existence of asymmetric equilibria; in fact, they likely exist, and it would be interesting to study
whether they lead to better or worse system performance than their symmetric counterparts.

3.2. The M/M/N queue with strategic servers and Random routing. Before ana-
lyzing staffing and routing in detail, we first study the M/M/N queue with strategic servers
and Random routing. We focus on Random routing first because it is, perhaps, the most com-
monly studied policy in the classical literature on nonstrategic servers. Further, this importance is
magnified by a new “policy-space collapse” result included in Section 5.1.1, which shows that all
idle-time-order-based routing policies (e.g., LISF and SISF) have equivalent steady state behavior,
and thus have the same steady state behavior as Random routing. We stress that this result stands
on its own in the classical, nonstrategic setting of a M/M/N queue with heterogeneous service
rates, but is also crucial to analyze routing to strategic servers (Section 5).
The key goal in analyzing a queueing system with strategic servers is to understand the equilibria

service rates, i.e., show conditions that guarantee their existence and characterize the equilibria
when they exist. Theorems 4 and 5 of Section 3.2.2 summarize these results for theM/M/N queue
with Random routing. However, in order to obtain such results we must first characterize the idle
time in a M/M/N system in order to be able to understand the “best responses” for servers, and
thus analyze their equilibrium behavior. Such an analysis is the focus of Section 3.2.1.

3.2.1. The idle time of a tagged server. In order to characterize the equilibria service
rates, a key first step is to understand the idle time of a M/M/N queue. This is, of course, a
well-studied model, and so one might expect to be able to use off-the-shelf results. While this is
true when the servers are homogeneous (i.e., all the server rates are the same), for heterogeneous
systems, closed form expressions are challenging to obtain in general, and the resulting forms are
quite complicated [22].
To characterize equilibria, we do need to understand the idle time of heterogeneous M/M/N

queues. However, due to our focus on symmetric equilibria, we only need to understand a particular,
mild, form of heterogeneity. In particular, we need only understand the best response function for
a “deviating server” when all other servers have the same service rate. Given this limited form of
heterogeneity, the form of the idle time function simplifies, but still remains quite complicated, as
the following theorem shows.

Theorem 1. Consider a heterogenous M/M/N system with Random routing and arrival rate
λ > 0, where N − 1 servers operate at rate µ > λ

N
, and a tagged server operates at rate µ1 > µ

1
=

(λ− (N − 1)µ)
+
. The steady state probability that the tagged server is idle is given by:

I(µ1, µ;λ,N) =
(

1− ρ

N

)



1− ρ

N

(

1− µ

µ1

)



1+
ErlC(N,ρ)

N −
(

ρ+1− µ1
µ

)









−1

, (4)

where ρ= λ
µ
, and ErlC(N,ρ) denotes the Erlang C formula, given by:

ErlC(N,ρ) =

ρN

N !
N

N−ρ
∑N−1

j=0
ρj

j!
+ ρN

N !
N

N−ρ

.
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In order to understand this idle time function more, we derive expressions for the first two
derivatives of I with respect to µ1 in the following theorem. These results are crucial to the analysis
of equilibrium behavior.

Theorem 2. The first two partial derivatives of I with respect to µ1 are given by

∂I

∂µ1

=
I2

µ2

1

λ

N − ρ






1+

ErlC(N,ρ)

N −

(

ρ+1− µ1

µ

) +

(

1−
µ1

µ

)

µ1

µ

ErlC(N,ρ)
(

N −

(

ρ+1− µ1

µ

))

2






(5)

∂2I

∂µ2

1

=−

2I3

µ3

1

λ

N − ρ












1−

ρ ErlC(N,ρ)
(

N −

(

ρ+1− µ1

µ

))

2









1+
ErlC(N,ρ)

N −

(

ρ+1− µ1

µ

)



+

(

N −

(

1−
µ1

µ

)

2
)

µ1

µ

ErlC(N,ρ)
(

N −

(

ρ+1− µ1

µ

))

3







(6)

Importantly, it can be shown that the right hand side of (5) is always positive, and therefore, the
idle time is increasing in the service rate µ1, as expected. However, it is not clear through inspection
of (6) whether the second derivative is positive or negative. Our next theorem characterizes the
second derivative, showing that the idle time could be convex at µ1 = µ

1
to begin with, but if so,

then as µ1 increases, it steadily becomes less convex, and is eventually concave. This behavior adds
considerable complication to the equilibrium analysis.

Theorem 3. The second derivative of the idle time satisfies the following properties:
(a) There exists a threshold µ†

1 ∈ [µ
1
,∞) such that ∂2I

∂µ2
1
> 0 for µ

1
< µ1 < µ†

1, and ∂2I
∂µ2

1
< 0 for

µ†
1 <µ1 <∞.

(b) ∂2I
∂µ2

1
> 0⇒ ∂3I

∂µ3
1
< 0.

We remark that it is possible that the threshold µ† could be greater than λ
N
, so, restricting the

service rate of server 1 to be greater than λ
N

does not necessarily simplify the analysis.

3.2.2. Symmetric equilibrium analysis for a finite system. The properties of the idle
time function derived in the previous section provide the key tools we need to characterize the
symmetric equilibria service rates under Random routing for a M/M/N system.
To characterize the symmetric equilibria, we consider the utility of a tagged server, without loss

of generality, server 1, under the mildly heterogeneous setup of Theorem 1. We denote it by

U(µ1, µ;λ,N) = I(µ1, µ;λ,N)− c(µ1) (7)

For a symmetric equilibrium in ( λ
N
,∞), we explore the first order and second order conditions for

U as a function of µ1 to have a maximum in (µ
1
,∞).

The first order condition for an interior local maximum at µ1 is given by:

∂U

∂µ1

=0 =⇒ ∂I

∂µ1

= c′(µ1) (8)

Since we are interested in a symmetric equilibrium, we analyze the symmetric first order condition,
obtained by plugging in µ1 = µ in (8):

∂U

∂µ1

∣

∣

∣

∣

µ1=µ

=0 =⇒ λ

N2µ2

(

N − λ

µ
+ErlC

(

N,
λ

µ

))

= c′(µ) (9)

Now, suppose that µ⋆ > λ
N

satisfies the symmetric first order condition (9). Then, µ1 = µ⋆ is
a stationary point of U(µ1, µ

⋆). It follows then, that µ⋆ will be a symmetric equilibrium for the
servers (satisfying (3)) if and only if U(µ1, µ

⋆) attains a global maximum at µ1 = µ⋆ in the interval
( λ
N
,∞). While an obvious necessary condition for this is that U(µ⋆, µ⋆) ≥ U( λ

N
, µ⋆), we show,

perhaps surprisingly, that it is also sufficient, in the following theorem.
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Theorem 4. µ⋆ > λ
N

is a symmetric equilibrium if and only if it satisfies the symmetric first
order condition (9), and the inequality U(µ⋆, µ⋆)≥U( λ

N
, µ⋆), i.e.,

c(µ)≤ c

(

λ

N

)

+
(

1− ρ

N

)

(

1+

(

1− ρ

N
+
ErlC(N,ρ)

N − 1

)−1
)−1

. (10)

Finally, we need to understand when the symmetric first order condition (9) admits a feasible
solution µ⋆ > λ

N
. Towards that, we present sufficient conditions for at least one feasible solution,

as well as for a unique feasible solution.

Theorem 5. If c′
(

λ
N

)

< 1
λ
, then the symmetric first order condition (9) has at least one solu-

tion for µ in
(

λ
N
,∞
)

. In addition, if 2 λ
N
c′
(

λ
N

)

+
(

λ
N

)2
c′′
(

λ
N

)

≥ 1, then the symmetric first order
condition (9) has a unique solution for µ in

(

λ
N
,∞
)

.

In the numerical results that follow, we see instances of zero, one, and two equilibria.3 Inter-
estingly, when more than one equilibrium exists, the equilibrium with the largest service rate,
which leads to best system performance, also leads to highest server utility, and hence is also most
preferred by the servers, as the following theorem shows.

Theorem 6. If the symmetric first order condition (9) has two solutions, say µ⋆
1 and µ⋆

2, with
µ⋆
1 >µ

⋆
2 >

λ
N
, then U(µ⋆

1, µ
⋆
1)>U(µ⋆

2, µ
⋆
2).

3.3. Numerical examples. Because of the complexity of the expression for the equilibrium
service rate(s) given by the first order condition (9) and the possibility of multiple equilibria, we
discuss a few numerical examples here in order to provide intuition. In addition, we point out some
interesting characteristics that emerge as a consequence of strategic server behavior.
We present two sets of graphs below: one that varies the arrival rate λ while holding the staffing

level fixed at N = 20 (Figure 1), and one that varies the staffing level N while holding the arrival
rate fixed at λ = 2 (Figure 2). In each set, we plot the following two equilibrium quantities: (a)
service rates, and (b) mean steady state waiting times. Note that the graphs in Figure 2 only show
data points corresponding to integer values of N ; the thin line through these points is only meant
as a visual tool that helps bring out the pattern. Each of the four graphs shows data for three
different effort cost functions: c(µ) = µ, c(µ) = µ2, and c(µ) = µ3, which are depicted in red, blue,
and green respectively. The data points in Figure 2 marked × and ⋄ correspond to special staffing
levels Nao,2 and Nopt,2 respectively, which are introduced later, in Section 4.
The first observation we make is that there are at most two equilibria. Further, for large enough

values of the minimum service rate λ
N
, there is no equilibrium. (In Figure 1(a) where N is fixed,

this happens for large λ, and in Figure 2(a) where λ is fixed, this happens for small N .) On the
other hand, when the minimum service rate λ

N
is small enough, there is a unique equilibrium; for

this range, even if the symmetric first order condition (9) has another solution greater than λ
N
,

it fails to satisfy (10). If an intermediate value of λ
N

is small enough for (9) to have two feasible
solutions, but not too small so that both solutions satisfy (10), then there are two equilibria.
The second observation we make is that the two equilibria have very different behaviors. As

illustrated in Figure 1(a), the larger equilibrium service rate first increases and then decreases while

3 In general, the symmetric first order condition (9) can be rewritten as

µ2c′(µ)+
λ

N2
(ρ−ErlC (N,ρ))−

λ

N
=0.

Note that, when the term ρ−ErlC(N,ρ) is convex in µ, it follows that the left hand side of the above equation is
also convex in µ, which implies that there are at most two symmetric equilibria.



Gopalakrishnan, Doroudi, Ward, and Wierman: Routing and Staffing when Servers are Strategic 11

µ⋆

λ0

0.2

0.4

2 4 6

c(µ) = µ

c(µ) = µ2

c(µ) = µ3

•

•

◦

(a) Service Rates

log10(W
⋆
)

λ0

3

-3

-6

2 4 6

c(µ) = µ

c(µ) = µ2

c(µ) = µ3

•

•

(b) Mean Steady State Waiting Times

Figure 1. Equilibrium behavior as a function of the arrival rate when the staffing level is fixed at N = 20, for three
different effort cost functions: linear, quadratic, and cubic. The dotted line in (a) is µ= λ/N = λ/20.
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(b) Mean Steady State Waiting Times

Figure 2. Equilibrium behavior as a function of the staffing level when the arrival rate is fixed at λ= 2, for three
different effort cost functions: linear, quadratic, and cubic. The dotted curve in (a) is µ= λ/N = 2/N . The data points
marked × and ⋄ correspond to Nao,2 and Nopt,2 respectively.

the corresponding mean steady state waiting time in Figure 1(b) steadily increases. In contrast, as
the smaller equilibrium service rate increases, the corresponding mean steady state waiting time
decreases. The relationship between the equilibrium service rates and waiting times is similarly
inconsistent in Figure 2. This behavior is not consistent with results from classical, nonstrategic
models, and could serve as a starting point to explaining empiric observations that are also not
consistent with classical, nonstrategic models. For example, the non-monotonicity of service rate
in workload is consistent with behavior observed in a hospital setting in [32].

4. Staffing strategic servers. One of the most studied questions for the design of service
systems is staffing. Specifically, how many servers should be used for a given arrival rate. In the
classical, nonstrategic setting, this question is well understood. In particular, as mentioned in the
introduction, square-root staffing is known to be optimal when there are linear staffing and waiting
costs [8].
In contrast, there is no previous work studying staffing in the context of strategic servers. The

goal of this section is to initiate the study of the impact that strategic servers have on staffing. To
get a feeling for the issues involved, consider a system with arrival rate λ and two possible staffing
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policies: N1 = λ and N2 = 2λ, where Ni is the number of servers staffed under policy i given arrival
rate λ. Under N1, if the servers work at any rate slightly larger than 1, then they will have almost
no idle time, and so they will have incentive to work harder. However, if servers are added, so that
the provisioning is as in N2, then servers will have plentiful idle time when working at rate 1, and
thus not have incentive to work harder. Thus, the staffing level has a fundamental impact on the
incentives of the servers.
The above highlights that one should expect significant differences in staffing when strategic

servers are considered. In particular, the key issue is that the staffing level itself creates incentives
for the servers to speed up or slow down, because it influences the balance between effort and idle
time. Thus, the policies that are optimal in the nonstrategic setting are likely suboptimal in the
strategic setting, and vice versa.
The goal of the analysis in this section is to find the staffing level that minimizes costs when the

system manager incurs linear staffing and waiting costs, within the class of policies that admit a
symmetric equilibrium service rate. However, the analysis in the previous section highlights that
determining the exact optimal policy is difficult, since we only have an implicit characterization
of a symmetric equilibrium service rate in (9). As a result, we focus our attention on the setting
where λ is large, and look for an asymptotically optimal policy.
As expected, the asymptotically optimal staffing policy we design for the case of strategic servers

differs considerably from the optimal policies in the nonstrategic setting. In particular, in order for
a symmetric equilibrium service rate to exist, the staffing level must be order λ larger than the
optimal staffing in the classical, nonstrategic setting. Then, the system operates in a quality-driven
(QD) regime instead of the quality-and-efficiency-driven (QED) regime that results from square-
root staffing. This is intuitive given that the servers value their idle time, and in the QD regime
they have idle time but in the QED regime their idle time is negligible.
The remainder of this section is organized as follows. We first introduce the cost structure and

define asymptotic optimality in Section 4.1. Then, in Section 4.2, we provide a simple approximation
of a symmetric equilibrium service rate and an asymptotically optimal staffing policy. Finally, in
Section 4.3, we compare our asymptotically optimal staffing policy for strategic servers with the
square-root staffing policy that is asymptotically optimal in the nonstrategic setting.

4.1. Preliminaries. Our focus in this section is on a M/M/N queue with strategic servers,
as introduced in Section 3. We assume Random routing throughout this section. It follows that
our results hold for any “idle-time-order-based” routing policy (as explained in the beginning of
Section 3.2 and validated by Theorem 9). The cost structure we assume is consistent with the one
in [8], under which square-root staffing is asymptotically optimal when servers are not strategic.
In their cost structure, there are linear staffing and waiting costs. One difference in our setting is
that there may be multiple equilibrium service rates. In light of Theorem 6, we focus on the largest
symmetric equilibrium service rate, and assume W

⋆
denotes the mean steady state waiting time

in a M/M/N queue with arrival rate λ, and strategic servers that serve at the largest symmetric
equilibrium service rate (when there is more than one equilibrium).4 Then, the total system cost is

C⋆(N,λ) = cSN +wλW
⋆
,

where cS is the per-unit staffing cost and w is the per-unit waiting cost. The ⋆ superscript indicates
that the mean steady state waiting time, and hence, the cost function, depends on the (largest)
symmetric equilibrium service rate µ⋆, which in turn depends on N and λ.

4 Note that the staffing policy we derive in this section (Theorem 8) will be asymptotically optimal regardless of
which equilibrium service rate the servers choose.
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The function C⋆(N,λ) is well-defined only if a symmetric equilibrium service rate, under which
the system is stable, exists. Furthermore, we would like to rule out having an unboundedly large
symmetric equilibrium service rate because then the server utility (1) will be large and negative –
and it is hard to imagine servers wanting to participate in such a game.
Definition 1. A staffing policy Nλ is admissible if the following two properties hold:
(i) There exists a symmetric equilibrium µ⋆,λ under which the system is stable (λ< µ⋆,λNλ) for

all large enough λ.
(ii) There exists a sequence of symmetric equilibria {µ⋆,λ, λ > 0} for which limsupλ→∞ µ⋆,λ <∞.
If the requirement (ii) in the above definition is not satisfied, then the server utility will approach
−∞ as the service rates become unboundedly large. The servers will not want to participate in
such a game. As long as the requirement (ii) is satisfied, we can assume the server payment is
sufficient to ensure that the servers have positive utility.
We let Π denote the set of admissible staffing policies. We would like to solve for

Nopt,λ = argmin
N∈Π

C⋆(N,λ). (11)

However, given the difficulty of deriving Nopt,λ directly, we instead characterize the first order
growth term of Nopt,λ in terms of λ. To do this, we consider a sequence of systems, indexed by the
arrival rate λ, and let λ become large.
Our convention when we wish to refer to any process or quantity associated with the system

having arrival rate λ is to superscript the appropriate symbol by λ. In particular, Nλ denotes
the staffing level in the system having arrival rate λ, and µ⋆,λ denotes an equilibrium service rate

(assuming existence) in the system with arrival rate λ and staffing level Nλ. We assume W
⋆,λ

equals the mean steady state waiting time in a M/M/Nλ queue with arrival rate λ when the
servers work at the largest equilibrium service rate. The associated cost is

C⋆,λ(Nλ) = cSN
λ +wλW

⋆,λ
. (12)

Given this setup, we would like to find an admissible staffing policy Nλ that has close to the
minimum cost C⋆,λ(Nopt,λ).
Definition 2. A staffing policy Nλ is asymptotically optimal if it is admissible (Nλ ∈Π) and

lim
λ→∞

C⋆,λ(Nλ)

C⋆,λ(Nopt,λ)
= 1.

In what follows, we use the o and ω notations to denote the limiting behavior of functions.
Formally, for any two real-valued functions f(x), g(x) that take nonzero values for sufficiently large
x, we say that f(x) = o(g(x)) (equivalently, g(x) = ω(f(x))) if limx→∞

f(x)

g(x)
= 0. In other words, f

is dominated by g asymptotically (equivalently, g dominates f asymptotically).

4.2. An asymptotically optimal staffing policy. The class of policies we study are those
that staff independently of the equilibrium service rates, which are endogenously determined
according to the analysis in Section 3.2. More specifically, these are policies that choose Nλ purely
as a function of λ. Initially, it is unclear what functional form an asymptotically optimal staffing
policy can take in the strategic server setting. Thus, to begin, it is important to rule out policies
that cannot be asymptotically optimal. The following proposition does this, and highlights that
asymptotically optimal policies must be asymptotically linear in λ.

Proposition 1. Suppose Nλ = f(λ) + o(f(λ)) for some function f. If either f(λ) = o(λ) or
f(λ) = ω(λ), then the staffing policy Nλ cannot be asymptotically optimal.
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Intuitively, if f(λ) = o(λ), understaffing forces the servers to work too hard, their service rates
growing unboundedly (and hence their utilities approaching −∞) as λ becomes large. On the other
hand, the servers may prefer to have f(λ) = ω(λ) because the overstaffing allows them to be lazier;
however, the overstaffing is too expensive for the system manager.
Proposition 1 implies that to find a staffing policy that is asymptotically optimal, we need only

search within the class of policies that have the following form:

Nλ =
1

a
λ+ o(λ), for a∈ (0,∞). (13)

However, before we can search for the cost-minimizing a, we must ensure that the staffing (13)
guarantees the existence of a symmetric equilibria µ⋆,λ for all large enough λ. It turns out that this
is only true when a satisfies certain conditions. After providing these conditions (see Theorem 7
in the following), we evaluate the cost function as λ becomes large to find the a⋆ (defined in (17))
under which (13) is an asymptotically optimal staffing policy (see Theorem 8).

Equilibrium characterization. The challenge in characterizing equilibria comes from the
complexity of the first order condition derived in Section 3. This complexity drives our focus on
the large λ regime.
The first order condition for a symmetric equilibrium (9) is equivalently written as

λ

Nλ

(

µ

(

1+
ErlC(Nλ, λ/µ)

Nλ

)

− λ

Nλ

)

= µ3c′(µ). (14)

Under the staffing policy (13), when the limit λ→∞ is taken, this becomes

a(µ− a) = µ3c′(µ). (15)

Since µ3c′(µ)> 0, it follows that any solution µ has µ> a. Therefore, under the optimistic assump-
tion that a symmetric equilibrium solution µ⋆,λ converging to the aforementioned solution µ exists,
it follows that

λ/µ⋆,λ<λ/a

for all large enough λ. In words, the presence of strategic servers that value their idle time forces
the system manager to staff order λ more servers than the offered load λ/µ⋆,λ. In particular, since
the growth rate of Nλ is λ/a, the system will operate in the quality-driven regime.
The properties of the equation (15) are easier to see when it is rewritten as

1

a
=
µ2

a2
c′(µ)+

1

µ
. (16)

Note that the left-hand side of (16) is a constant function and the right-hand side is a convex
function. These functions either cross at exactly two points, at exactly one point, or never intersect,
depending on a. That information then can be used to show whether or not there exists a solution
to the first order condition (14), depending on the value of a in the staffing policy (13).

Theorem 7. The following holds for all large enough λ.
(i) Suppose a > 0 is such that there exists µ2 > µ1 > 0 that solve (16). Then, there exist two

solutions that solve (14).
(ii) Suppose a> 0 is such that there exists exactly one µ1 > 0 that solves (16).

(a) Suppose Nλ − λ
a
≥ 0. Then, there exist two solutions that solve (14).

(b) Otherwise, if Nλ − λ
a
<−3, then there does not exist a solution µλ to (14).

Furthermore, for any ǫ > 0, if µλ solves (14), then |µλ −µ|< ǫ for some µ that solves (16).
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We are not sure if there exists a solution in the case of Nλ − 1
a
λ ∈ [−3,0); however, given that we

are focusing on a large λ asymptotic regime, the range [-3,0) is vanishingly small.
Moving forward, once the existence of a solution to the first order condition (14) is established,

to conclude that solution is a symmetric equilibrium service rate also requires verifying the con-
dition (10) in Theorem 4. This can be done for any staffing policy (13) under which the system
operates in the quality driven-regime.

Lemma 1. For any staffing policy Nλ and associated µλ that satisfies the first order condi-
tion (14), if

lim inf
λ→∞

Nλµλ

λ
= d> 1 and limsup

λ→∞
µλ <∞,

then µ⋆,λ = µλ is a symmetric equilibrium for all large enough λ.

Under the conditions for the existence of a solution to the first order condition (14) in Theorem 7,
it is also true that the conditions of Lemma 1 are satisfied. In particular, there exists a bounded
sequence {µλ} having

lim inf
λ→∞

Nλµλ

λ
= lim inf

λ→∞

µλ

a
+µλ o(λ)

λ
> 1.

This then guarantees that, for all large enough λ, there exists a solution µ⋆,λ to (14) that is a
symmetric equilibrium, under the conditions of Theorem 7.
There are either multiple symmetric equilibria for each λ or 0, because from Theorem 7 there

are either multiple or zero solutions to the first order condition (14). These symmetric equilibria
will be close when there exists exactly one µ that solves (16); however, they may not be close when
there exist two µ that solve (16). We show in the following that this does not affect what staffing
policy should be asymptotically optimal.

Optimal staffing. Given the characterization of symmetric equilibria under a staffing pol-
icy (13), we can now move to the task of optimizing the staffing level, i.e., optimizing a. The first
step is to characterize the associated cost, which is done in the following proposition.

Proposition 2. Suppose a > 0 is such that there exists µ > 0 that solves (16). Then, under
the staffing policy (13),

C⋆,λ(Nλ)

λ
→ 1

a
cS, as λ→∞.

Proposition 2 implies that to minimize costs within the class of staffing policies that satisfy (13),
the maximum a under which there exists at least one solution to (16) should be used. That is, we
should choose a to be

a⋆ := supA, where A := {a> 0 : there exists at least one solution µ> 0 to (16)} . (17)

Lemma 2. a⋆ ∈A is finite.

Importantly, this a⋆ is not only optimal among the class of staffing policies that satisfy (13), it is
asymptotically optimal among all admissible staffing policies. In particular, the following theorem
shows that as λ becomes unboundedly large, no other admissible staffing policy can asymptotically
achieve strictly lower cost than the one in (13) with a= a⋆.

Theorem 8. If Nao,λ satisfies (13) with a = a⋆, then Nao,λ is admissible and asymptotically
optimal. Furthermore,

lim
λ→∞

C⋆,λ(Nao,λ)

λ
= lim

λ→∞

C⋆,λ(Nopt,λ)

λ
= cS

1

a⋆
.
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Note that an inspection of the proof of Theorem 8 shows that it holds regardless of which

equilibrium service rate is used to defineW
⋆,λ

. Hence, even though we have definedW
⋆,λ

to be the
mean steady state waiting time when the servers serve at the largest equilibrium service rate, this
is not necessary. The staffing policy Nao,λ in Theorem 8 will be asymptotically optimal regardless
of which equilibrium service rate the servers choose.
Though the above theorem characterizes an asymptotically optimal staffing level, because the

definition of a⋆ is implicit, it is difficult to develop intuition. To highlight the structure more clearly,
the following lemma characterizes a⋆ for a specific class of effort cost functions.

Lemma 3. Suppose c(µ) = cEµ
p for some cE ∈ [1,∞) and p≥ 1. Then,

a⋆ =

[

(p+1)

(p+2)

(

1

cEp(p+2)

)
1

p+1

](p+1)/p

<µ⋆ =

(

p+1

cEp(p+2)2

)
1
p

< 1,

and a⋆ and µ⋆ are both increasing in p. Furthermore,

if a







<
>
=







a⋆, then







there are 2 non-negative solutions to (16)
there is no non-negative solution to (16)
there is exactly one solution to (16)

.

There are several interesting relationships between the effort cost function and the staffing level
that follow from Lemma 3. First, for fixed p,

a⋆(p) ↓ 0 as cE →∞.

In words, the system manager must staff more and more servers as effort becomes more costly.
Second, for fixed cE, since a

⋆(p) is increasing in p, the system manager can staff less servers when
the cost function becomes “more convex”. The lower staffing level forces the servers to work at a
higher service rate since since µ⋆(p) is also increasing in p. We will revisit this idea that convexity
is helpful to the system manager in the next section.

4.3. Contrasting staffing policies for strategic and nonstrategic servers. One of the
most crucial observations that the previous section makes about the impact of strategic servers on
staffing is that the strategic behavior leads the system to a quality-driven regime. In this section,
we explore this issue in more detail, by comparing to the optimal staffing rule that arises when
servers are not strategic, and then attempting to implement that staffing rule.

Nonstrategic servers. Recall that, for the conventional M/M/N queue (without strategic
servers), square-root staffing minimizes costs as λ becomes large (see equation (1), Proposition 6.2,
and Example 6.3 in [8]). So, we can define

Cλ
µ (N) = cSN +wλW

λ

µ

to be the cost associated with staffing N nonstrategic servers that work at the fixed service rate
µ. Further,

Nopt,λ
µ = argmin

N>λ
µ

Cλ
µ(N)

is the staffing level that minimizes expected cost when the system arrival rate is λ and the service
rate is fixed to be µ. So, the staffing rule

NBMR,λ
µ =

λ

µ
+ y⋆

√

λ

µ
(18)
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is asymptotically optimal in the sense that

lim
λ→∞

Cλ
µ(N

BMR,λ
µ )

Cλ
µ(N

opt,λ
µ )

= 1.

Here, y⋆ := argminy>0

{

cSy+
wα(y)

y

}

, where α(y) =
(

1+ y
h(−y)

)−1

with h(·) being the hazard rate

function of the standard normal distribution, namely, h(x) := φ(x)

1−Φ(x)
with φ(x) = 1√

2π
e−

x2

2 and

Φ(x) =
∫ x

−∞ φ(t)dt. The staffing rule (18) is the famous square-root safety staffing rule.

Contrasting strategic and nonstrategic servers. In order to compare the case of strategic
servers to the case of nonstrategic servers, it is natural to fix µ in (18) to the limiting service rate
that results from using the optimal staffing rule Nao,λ defined in Theorem 8. We see that Nao,λ

staffs order λ more servers than NBMR,λ
µ⋆ , where µ⋆ solves (16) for a = a⋆, because any solution

to (16) has a > µ. When the effort cost function is c(µ) = cEµ
p for p≥ 1, we know from Lemma 3

and Theorem 7 (since the a⋆ is unique) that

µ⋆,λ → µ⋆ as λ→∞,

where µ⋆ is as given in Lemma 3. Then, the difference in the staffing levels is

Nao,λ−NBMR,λ
µ⋆ =

(

1

a⋆
− 1

µ⋆

)

λ+ o(λ) =
1

a⋆

(

1

p+2

)

λ+ o(λ).

Since a⋆ = a⋆(p) is increasing in p from Lemma 3, we see that the difference Nao,λ − NBMR,λ
µ⋆

decreases to 0 as the cost function becomes “more convex”. This is consistent with our observation
at the end of the previous subsection that convexity is helpful to the system manager.
It is natural to wonder if a system manager can force the servers to work harder by adopting

the staffing policy suggested by the analysis of nonstrategic servers, i.e.,

N⋆,BMR,λ =
λ

µ⋆,λ
+ y⋆

√

λ

µ⋆,λ
. (19)

The interpretation of this staffing rule requires care, because the offered load λ/µ⋆,λ is itself a
function of the staffing level (and the arrival rate) through an equilibrium service rate µ⋆,λ. The
superscript ⋆ emphasizes this dependence.
The first question concerns whether or not the staffing policy (19) is even possible in practice,

because the staffing level depends on an equilibrium service rate and vice versa. More specifically,
for a given staffing level, the servers relatively quickly arrive at an equilibrium service rate. Then,
when system demand grows, the system manager increases the staffing, and the servers again arrive
at an equilibrium service rate. In other words, there are two games, one played on a faster time
scale (that is the servers settling to an equilibrium service rate), and one played on a slower time
scale (that is the servers responding to added capacity).
To analyze the staffing policy (19), note that the first order condition for a symmetric equilib-

rium (9) is equivalently written as

λ/µ

(N⋆,BMR,λ)
2

(

N⋆,BMR,λ − λ

µ
+ErlC

(

N⋆,BMR,λ,
λ

µ

))

= µc′(µ).
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Then, if µλ is a solution to the first order condition under the staffing N⋆,BMR,λ from (19), from
substituting N⋆,BMR,λ into the above expression, µλ must satisfy

λ/µλ

(

λ/µλ+ y⋆
√

λ/µλ

)2

(

y⋆
√

λ/µλ +ErlC

(

λ/µλ + y⋆
√

λ/µλ,
λ

µλ

))

= µλc′(µλ).

As λ becomes large, since ErlC
(

λ/µ+ y
√

λ/µ, λ
µ

)

is bounded above by 1, the left-hand side of

the above expression has limit 0. Furthermore, the right-hand side of the above equation is non-
negative and increasing as a function of µ. Hence any sequence of solutions µλ to the first order
condition has the limiting behavior

µλ → 0, as λ→∞,

which cannot be a symmetric equilibrium service rate because we require the servers to work fast
enough to stabilize the system.
One possibility is to expand the definition of an equilibrium service rate in (1) to allow the

servers to work exactly at the lower bound λ/N . In fact, the system manager may now be tempted
to push the servers to work even faster. However, faster service cannot be mandated for free – there
must be a trade-off; for example, the service quality may suffer or the salaries should be higher.

4.4. Numerical examples. In order to understand how well our asymptotically optimal
staffing policy Nao,λ performs in comparison with the optimal policy Nopt,λ for finite λ, and how
fast the corresponding system cost converges to the optimal cost, we present some results from
numerical analysis in this section.
We consider two staffing policies: (i) Nopt,λ (defined in (11)), and (ii) Nao,λ (defined in Theorem 8

and (17)) where we ignore the o(λ) term of (13). For each, we first round up the staffing level if
necessary, and then plot the following two equilibrium quantities as a function of the arrival rate
λ: (a) service rates µ⋆,λ (if there is more than one, we pick the largest), and (b) normalized costs
C⋆,λ/λ. We calculate Nopt,λ numerically, by iterating over the staffing levels that admit equilibria
(and we choose the lowest cost when there are multiple equilibria). These plots are shown in Figure 3
for three different effort cost functions: c(µ) = µ, c(µ) = µ2, and c(µ) = µ3, which are depicted
in red, blue, and green respectively. For each color, the curve with the darker shade corresponds
to Nopt,λ and the curve with the lighter shade corresponds to Nao,λ. The horizontal dashed lines
correspond to the limiting values as λ→∞.
An immediate first observation is the jaggedness of the curves, which is a direct result of the

discreteness of the staffing levels Nopt,λ and Nao,λ. In particular, as the arrival rate λ increases,
the equilibrium service rate µ⋆,λ decreases (respectively, the equilibrium normalized cost C⋆,λ/λ
increases) smoothly until the staffing policy adds an additional server, which causes a sharp increase
(respectively, decrease). The jaggedness is especially pronounced for smaller λ, resulting in a com-
plex pre-limit behavior that necessitates asymptotic analysis in order to obtain analytic results.
However, despite the jaggedness, the plots illustrate clearly that both the equilibrium service

rates and normalized costs of the optimal policy Nao,λ converge quickly to those of the optimal
policy Nopt,λ, highlighting that our asymptotic results are predictive at realistically sized systems.

5. Routing to strategic servers. Thus far we have focused our discussion on staffing, assum-
ing that jobs are routed randomly to servers when there is a choice. Of course, the decision of
how to route jobs to servers is another crucial aspect of the design of service systems. As such,
the analysis of routing policies has received considerable attention in the queueing literature, when
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Figure 3. Equilibrium behavior as a function of the arrival rate for the optimal and asymptotically optimal staffing
policies, for three different effort cost functions: linear, quadratic, and cubic.

servers are not strategic. In this section, we begin to investigate the impact of strategic servers on
the design of routing policies.
In the classical literature studying routing when servers are nonstrategic, a wide variety of policies

have been considered. These include “rate-based policies” such as Fastest Server First (FSF) and
Slowest Server First (SSF); as well as “idle-time-order-based policies” such as Longest Idle Server
First (LISF) and Shortest Idle Server First (SISF). Among these routing policies, FSF is a natural
choice to minimize the mean response time (although, as noted in the Introduction, it is not
optimal in general). This leads to the question: how does FSF perform when servers are strategic?
In particular, does it perform better than the Random routing that we have so far studied?
Before studying optimal routing to improve performance, we must first answer the following

even more fundamental question: what routing policies admit symmetric equilibria? This is a very
challenging goal, as can be seen by the complexity of the analysis for the M/M/N under Random
routing. This section provides a first step towards that goal.
The results in this section focus on two broad classes of routing policies idle-time-order-based

policies and rate-based policies, which are introduced in turn in the following.

5.1. Idle-time-order-based policies. Informally, idle-time-order-based policies are those
routing policies that use only the rank ordering of when servers last became idle in order to deter-
mine how to route incoming jobs. To describe the class of idle-time-order-based policies precisely,
let I(t) be the set of servers idle at time t > 0, and, when I(t) 6= ∅, let s(t) = (s1, . . . , s|I(t)|) denote
the ordered vector of idle servers at time t, where server sj became idle before server sk when-
ever j < k. For n ≥ 1, let Pn = ∆({1, . . . , n}) denote the set of all probability distributions over
the set {1, . . . , n}. An idle-time-order-based routing policy is defined by a collection of probability
distributions p= {pS}S∈2{1,2,...,N}\∅, such that pS ∈ P|S|, for all S ∈ 2{1,2,...,N}\∅. Under this policy,
at time t, the next job in queue is assigned to idle server sj with probability pI(t)(j). Examples of
idle-time-order-based routing policies are as follows.
1. Random. An arriving customer that finds more than one server idle is equally likely to be

routed to any of those servers. Then, pS = (1/|S|, . . . ,1/|S|) for all S ∈ 2{1,2,...,N}\∅.
2. Weighted Random. Each such arriving customer is routed to one of the idle servers with

probabilities that may depend on the order in which the servers became idle. For example, if

pS(j) =
|S|+1− j
∑|S|

n=1 n
, j ∈ S, for sj ∈ S, for all S ∈ 2{1,2,...,N}\∅,
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then the probabilities are decreasing according to the order in which the servers became idle.

Note that
∑

j p
S(j) =

|S|(|S|+1)−1
2 |S|(|S|+1)

1
2 |S|(|S|+1)

= 1.

3. Longest Idle Server First (Shortest Idle Server First). Each such arriving customer is routed
to the server that has idled the longest (idled the shortest). Then, pS = (1,0, . . . ,0) (pS =
(0, . . . ,0,1)) for all S ⊆ {1,2, . . . ,N}.

5.1.1. Policy-space collapse. Surprisingly, it turns out that all idle-time-order-based poli-
cies are “equivalent” in a very strong sense — they all lead to the same steady state probabilities,
resulting in a remarkable policy-space collapse result, which we discuss in the following.
Fix R to be some idle-time-order-based routing policy, defined through the collection of prob-

ability distributions p = {pS}∅6=S⊆{1,2,...,N}. The states of the associated continuous time Markov
chain are defined as follows:

• State B is the state where all servers are busy, but there are no jobs waiting in the queue.
• State s= (s1, s2, . . . , s|I|) is the ordered vector of idle servers I. When I = ∅, we identify the

empty vector s with state B.
• State m (m≥ 0) is the state where all servers are busy and there are m jobs waiting in the

queue (i.e., there are N +m jobs in the system). We identify state 0 with state B.
When all servers are busy, there is no routing, and so the system behaves exactly as a M/M/1

queue with arrival rate λ and service rate µ1 + · · ·+ µN . Then, from the local balance equations,
the associated steady state probabilities πB and πm for m= 0,1,2, . . ., must satisfy

πm = (λ/µ)mπB where µ=
N
∑

j=1

µj. (20)

One can anticipate that the remaining steady state probabilities satisfy

πs = πB

∏

s∈I

µs

λ
for all s= (s1, s2, . . . , s|I|) with |I|> 0, (21)

and the following theorem verifies this by establishing that the detailed balance equations are
satisfied.

Theorem 9. All idle-time-order-based policies have the steady state probabilities that are
uniquely determined by (20)-(21), together with the normalization constraint that their sum is one.

Theorem 9 is remarkable because there is no dependence on the collection of probability distri-
butions p that define R. Therefore, it follows that all idle-time-order-based routing policies result
in the same steady state probabilities. Note that, concurrently, a similar result has been discovered
independently in the context of loss systems [24].
In relation to our server game, it follows from Theorem 9 that all idle-time-order-based policies

have the same equilibrium behavior as Random. This is because an equilibrium service rate depends
on the routing policy through the server idle time vector (I1(µ;R), . . . , IN(µ;R)), which can be
found from the steady state probabilities in (20)-(21). As a consequence, if there exists (does not
exist) an equilibrium service rate under Random, then there exists (does not exist) an equilibrium
service rate under any idle-time-order-based policy. In summary, it is not possible to achieve better
performance than under Random by employing any idle-time-order-based policy.

5.2. Rate-based policies. Informally, a rate-based policy is one that makes routing decisions
using only information about the rates of the servers. As before, let I(t) denote the set of idle
servers at time t. In a rate-based routing policy, jobs are assigned to idle servers only based on
their service rates. We consider a parameterized class of rate-based routing policies that we term
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r-routing policies (r ∈R). Under an r-routing policy, at time t, the next job in queue is assigned
to idle server i∈ I(t) with probability

pi(µ, t; r) =
µr
i

∑

j∈I(t)
µr
j

Notice that for special values of the parameter r, we recover well-known policies. For example,
setting r= 0 results in Random; as r→∞, it approaches FSF; and as r→−∞, it approaches SSF.
In order to understand the performance of rate-based policies, the first step is to perform an

equilibrium analysis, i.e., we need to understand what the steady state idle times look like under
any r-routing policy. The following proposition provides us with the required expressions.

Proposition 3. Consider a heterogeneous M/M/2 system under an r-routing policy, with
arrival rate λ > 0 and servers 1 and 2 operating at rates µ1 and µ2 respectively. The steady state
probability that server 1 is idle is given by:

Ir1 (µ1, µ2) =
µ1(µ1 +µ2 −λ)

[

(λ+µ2)
2 +µ1µ2 +

µr
2

µr
1+µr

2
(λµ1 +λµ2)

]

µ1µ2(µ1 +µ2)2 +(λµ1 +λµ2)
[

µ2
1 +2µ1µ2 − µr

1
µr
1+µr

2
(µ2

1 −µ2
2)
]

+(λµ1)2 +(λµ2)2
,

and the steady state probability that server 2 is idle is given by Ir2 (µ1, µ2) = Ir1 (µ2, µ1).

Note that we restrict ourselves to a 2-server system for this analysis. This is due to the fact that
there are no closed form expressions known for the resulting Markov chains for systems with more
than 3 servers. It may be possible to extend these results to 3 servers using results from [37]; but,
the expressions are intimidating, to say the least. However, the analysis for two servers is already
enough to highlight important structure about the impact of strategic servers on policy design.
In particular, our first result concerns the FSF and SSF routing policies, which can be obtained

in the limit when r → ∞ and r → −∞ respectively. Recall that FSF is asymptotically optimal
in the nonstrategic setting. Intuitively, however, it penalizes the servers that work the fastest by
sending them more and more jobs. In a strategic setting, this might incentivize servers to decrease
their service rate, which is not good for the performance of the system. One may wonder if by doing
the opposite, that is, using the SSF policy, servers can be incentivized to increase their service rate.
However, our next theorem (Theorem 10) shows that neither of these policies is useful if we are
interested in symmetric equilibria.
Recall that our model for strategic servers already assumes an increasing, convex effort cost

function with c′′′(µ)≥ 0. For the rest of this section, in addition, we assume that c′(λ
2
)< 1

λ
. (Recall

that this is identical to the sufficient condition c′( λ
N
)< 1

λ
which we introduced in Section 3.2, on

substituting N = 2.)5

Theorem 10. Consider a M/M/2 queue with strategic servers. Then, FSF and SSF do not
admit a symmetric equilibrium.

Moving beyond FSF and SSF, we continue our equilibrium analysis (for a finite r) by using the
first order conditions to show that whenever an r-routing policy admits a symmetric equilibrium,
it is unique. Furthermore, we provide an expression for the corresponding symmetric equilibrium
service rate in terms of r, which brings out a useful monotonicity property.

5 The sufficient condition c′(λ
2
) < 1

λ
might seem rather strong, but it can be shown that it is necessary for the

symmetric first order condition to have a unique solution. This is because, if c′(λ
2
) > 1

λ
, then the function ϕ(µ),

defined in (22), ceases to be monotonic, and as a result, for any given r, the first order condition ϕ(µ) = r could have
more than one solution.
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Theorem 11. Consider a M/M/2 queue with strategic servers. Then, any r-routing policy
that admits a symmetric equilibrium, admits a unique symmetric equilibrium, given by µ⋆ =ϕ−1(r),
where ϕ : (λ

2
,∞)→R is the function defined by

ϕ(µ) =
4(λ+µ)

λ(λ− 2µ)
(µ(λ+2µ)c′(µ)−λ) . (22)

Furthermore, among all such policies, µ⋆ is decreasing in r, and therefore, E[T ], the mean response
time (a.k.a. sojourn time) at symmetric equilibrium is increasing in r.

In light of the inverse relationship between r and µ⋆ that is established by this theorem, the system
manager would ideally choose the smallest r such that the corresponding r-routing policy admits
a symmetric equilibrium, which is in line with the intuition that a bias towards SSF (the limiting
r-routing policy as r→−∞) incentivizes servers to work harder. However, there is a hard limit
on how small an r can be chosen (concurrently, how large an equilibrium service rate µ⋆ can be
achieved) so that there exists a symmetric equilibrium, as evidenced by our next theorem.

Theorem 12. Consider a M/M/2 queue with strategic servers. Then, there exists µ, r ∈ R,
with r= ϕ(µ), such that no service rate µ> µ can be a symmetric equilibrium under any r-routing
policy, and no r-routing policy with r < r admits a symmetric equilibrium.

The proof of this theorem is constructive and we do exhibit an r, however, it is not clear whether
this is tight, that is, whether there exists a symmetric equilibrium for all r-routing policies with
r≥ r. We provide a partial answer to this question of what r-routing policies do admit symmetric
equilibria in the following theorem.

Theorem 13. Consider a M/M/2 queue with strategic servers. Then, there exists a unique
symmetric equilibrium under any r-routing policy with r ∈ {−2,−1,0,1}.
Notice that we show equilibrium existence for four integral values of r. It is challenging to show

that all r-routing policies in the interval [−2,1] admit a symmetric equilibrium. This theorem
provides an upper bound on the r of the previous theorem, that is, r ≤ −2. Therefore, if the
specific cost function c is unknown, then the system manager can guarantee better performance
than Random (r= 0), by setting r=−2. If the specific cost function is known, the system manager
may be able to employ a lower r to obtain even better performance. For example, consider a 2-
server system with λ= 1/4 and one of three different effort cost functions: c(µ) = µ, c(µ) = µ2, and
c(µ) = µ3. Figure 4 shows the corresponding equilibrium mean response times (in red, blue, and
green, respectively). It is worth noting that the more convex the effort cost function, larger the
range of r (and smaller the minimum value of r) for which a symmetric equilibrium exists.

6. Concluding remarks. The rate at which each server works in a service system has impor-
tant consequences for service system design. However, traditional models of large service systems
do not capture the fact that human servers respond to incentives created by scheduling and staffing
policies, because traditional models assume each server works at a given fixed service rate. In this
paper, we initiate the study of a class of strategic servers that seek to optimize a utility function
which values idle time and includes an effort cost.
Our focus is on the analysis of staffing and routing policies for a M/M/N queue with strategic

servers, and our results highlight that strategic servers have a dramatic impact on the optimal
policies in both cases. In particular, policies that are optimal in the classical, nonstrategic setting
can perform quite poorly when servers act strategically.
For example, a consequence of the strategic server behavior is that the cost-minimizing staffing

level is order λ larger than square-root staffing, the cost minimizing staffing level for systems with
fixed service rate. In particular, any system with strategic servers operates in the quality-driven
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Figure 4. Equilibrium mean response time (a.k.a. sojourn time) as a function of the policy parameter, r, when the
arrival rate is λ= 1

4
, for three different effort cost functions: linear, quadratic, and cubic.

regime at equilibrium (as opposed to the quality-and-efficiency-driven regime that arises under
square-root staffing), in which the servers all enjoy non-negligible idle time.
The intuitive reason square-root staffing is not feasible in the context of strategic servers is

that the servers do not value their idleness enough in comparison to their effort cost. This causes
the servers to work too slowly, making idle time scarce. In the economics literature [9, 36], it is
common to assume that scarce goods are more highly valued. If we assume that the servers valued
their idle time more heavily as the idle time becomes scarcer, then the servers would work faster in
order to make sure they achieved some. This suggests the following interesting direction for future
research: what is the relationship between the assumed value of idle time in (2) and the resulting
cost minimizing staffing policy? Another situation in which servers may not care about idle time
becoming scarce is when their compensation depends on their service volume (which is increasing
in their service rate). Then, it is reasonable to expect the servers prefer to have negligible idle time.
It would be interesting to be able to identify a class of compensation schemes under which that is
the case.
The aforementioned two future research directions become even more interesting when the class

of routing policies is expanded to include rate-based policies. This paper solves the joint routing
and staffing problem within the class of idle-time-order-based policies. Section 5 suggests that
by expanding the class of routing policies to also include rate-based policies we should be able
to achieve better system performance (although it is clear that the analysis becomes much more
difficult). The richer question also aspires to understand the relationship between the server idle
time value, the compensation scheme, the (potentially) rate-based routing policy, and the number
of strategic servers to staff.
Finally, it is important to note that we have focused on symmetric equilibrium service rates. We

have not proven that asymmetric equilibria do not exist. Thus, it is natural to wonder if there are
routing and staffing policies that result in an asymmetric equilibrium. Potentially, there could be
one group of servers that have low effort costs but negligible idle time and another group of servers
that enjoy plentiful idle time but have high effort costs. The question of asymmetric equilibria
becomes even more interesting when the servers have different utility functions. For example, more
experienced servers likely have lower effort costs than new hires. Also, different servers can value
their idle time differently. How do we design routing and staffing policies that are respectful of
such considerations?
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Routing and Staffing when Servers are Strategic: Technical

Appendix
Ragavendran Gopalakrishnan, Sherwin Doroudi, Amy R. Ward, and Adam Wierman

In this technical appendix, we provide proofs for the results stated in the main body of the
manuscript titled: “Routing and Staffing when Servers are Strategic”. The proofs of these results
are in the order in which they appear in the main body.

PROOFS FROM SECTION 3

Proof of Theorem 1. The starting point of this proof is the expression for the steady
state probabilities of a general heterogeneous M/M/N system with Random routing, which was
derived in [22]. Before stating this more general result, we first set up the required notation. Let
µ1, µ2, . . . , µN denote the service rates of the N servers, and let ρj =

λ
µj
, 1≤ j ≤N . We assume that

∑N

j=1 ρ
−1
j > 1 for stability. Let (a1, a2, . . . , ak) denote the state of the system when there are k jobs in

the system (0< k <N) and the busy servers are {a1, a2, . . . , ak}, where 1≤ a1 < a2 < · · ·< ak ≤N .
Let P (a1, a2, . . . , ak) denote the steady state probability of the system being in state (a1, a2, . . . , ak).
Also, let Pk denote the steady state probability of k jobs in the system. Then,

P (a1, a2, . . . , ak) =
(N − k)! P0 ρa1ρa2 · · ·ρak

N !
, (EC.1)

where P0, the steady state probability that the system is empty, is given by:

P0 =
N ! CN

N

DN

, (EC.2)

where, for 1≤ j ≤N ,

CN
j = sum of combinations of j ρ−1

i values from N ρ−1
i values

=

N−j+1
∑

a1=1

N−j+2
∑

a2=a1+1

· · ·
N−j+j−1
∑

aj−1=aj−2+1

N
∑

aj=aj−1+1

ρ−1
a1
ρ−1
a2

· · ·ρ−1
aj
,

(EC.3)

and

DN =
N
∑

j=1

j! CN
j +

CN
1

CN
1 − 1

. (EC.4)

Note that,

CN
N =

N
∏

i=1

ρ−1
i and CN

1 =
N
∑

i=1

ρ−1
i .

Also, by convention, we write CN
0 = 1. The steady state probability that a tagged server, say server

1, is idle is obtained by summing up the steady state probabilities of every state in which server 1
is idle:

I(µ1, µ2, . . . , µN ;λ,N) = P0 +
N−1
∑

k=1

∑

2≤a1≤···≤ak≤N

P (a1, a2, . . . , ak) (EC.5)

We now simplify the expressions above for our special system where the tagged server works at
a rate µ1 and all other servers work at rate µ. Without loss of generality, we pick server 1 to be
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the tagged server, and we set µ2 = µ3 = · · · = µN = µ, and therefore, ρ2 = ρ3 = · · · = ρN = ρ = λ
µ
.

Then, (EC.1) simplifies to:

P (a1, a2, . . . , ak) =
(N − k)! P0 ρ

k

N !
,2≤ a1 ≤ · · · ≤ ak ≤N (EC.6)

In order to simplify (EC.3), we observe that

CN
j = ρ−1

1 CN−1
j−1 +CN−1

j

where the terms CN−1
j−1 and CN−1

j are obtained by applying (EC.3) to a homogeneousM/M/(N−1)
system with arrival rate λ and all servers operating at rate µ. This results in:

CN
j =

ρ

Nρ1

(

j

(

N

j

)

ρ−j

)

+
1

N

(

(N − j)

(

N

j

)

ρ−j

)

(EC.7)

The corresponding special cases are given by: CN
0 = 1, CN

1 = ρ−1
1 +(N − 1)ρ, and CN

N = ρ
ρ1
ρ−N . We

then simplify (EC.4) by substituting for CN
j from (EC.7), to obtain:

DN =

(

N !

ρN

(

ρ

ρ1
+
ρ

N

(

1− ρ

ρ1

))N−1
∑

j=0

ρj

j!
+
ρ

ρ1
− 1

)

+

(

1+
1

CN
1 − 1

)

=
ρ

ρ1





N !

ρN

(

1− ρ

N

(

1− ρ1
ρ

))N−1
∑

j=0

ρj

j!
+ 1+

ρ1
ρ

ρ

N −
(

ρ+1− ρ
ρ1

)





(EC.8)

Next, we simplify (EC.2) by substituting for DN from (EC.8), to obtain:

P0 =





(

1− ρ

N

(

1− ρ1
ρ

))N−1
∑

j=0

ρj

j!
+
ρN

N !



1+
ρ1

N −
(

ρ+1− ρ
ρ1

)









−1

To express P0 in terms of ErlC(N,ρ), the Erlang C formula, we add and subtract the term N
N−ρ

ρN

N !

within, to obtain:

P0 =





(

1−
ρ

N

(

1−
ρ1
ρ

))

(

N−1
∑

j=0

ρj

j!
+

N

N − ρ

ρN

N !

)

+
ρN

N !



1+
ρ1

N −
(

ρ+1− ρ
ρ1

) −
N

N − ρ

(

1−
ρ

N

(

1−
ρ1
ρ

))









−1

which reduces to:

P0 =





(

1− ρ

N

(

1− ρ1
ρ

))

(

N−1
∑

j=0

ρj

j!
+

N

N − ρ

ρN

N !

)

− ρ

N

(

1− ρ1
ρ

) N
N−ρ

ρN

N !

N −
(

ρ+1− ρ
ρ1

)





−1

=

(

N−1
∑

j=0

ρj

j!
+

N

N − ρ

ρN

N !

)−1


1− ρ

N

(

1− ρ1
ρ

)



1+
ErlC(N,ρ)

N −
(

ρ+1− ρ
ρ1

)









−1 (EC.9)

Finally, (EC.5) simplifies to:

I(µ1, µ,µ, . . . , µ;λ,N) = P0 +
N−1
∑

k=1

(

N − 1

k

)

P (2,3, . . . , k+1)
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Substituting for P0 from (EC.9) and P (2,3, . . . , k+1) from (EC.6), we get:

I(µ1, µ;λ,N) =P0 +
N−1
∑

k=1

(

N − 1

k

)(

(N − k)! P0 ρ
k

N !

)

=
(

1− ρ

N

)

(

N−1
∑

k=0

ρk

k!
+

N

N − ρ

ρN

N !

)

P0

=
(

1− ρ

N

)



1− ρ

N

(

1− ρ1
ρ

)



1+
ErlC(N,ρ)

N −
(

ρ+1− ρ
ρ1

)









−1

=
(

1− ρ

N

)



1− ρ

N

(

1− µ

µ1

)



1+
ErlC(N,ρ)

N −
(

ρ+1− µ1
µ

)









−1

,

as desired.

Proof of Theorem 2. We start with the expression for I from (4), and take its first partial
derivative with respect to µ1:

∂I

∂µ1

=−

(

1−
ρ

N

)



1−
ρ

N

(

1−
µ

µ1

)



1+
ErlC(N,ρ)

N −

(

ρ+1− µ1

µ

)









−2

∂

∂µ1



1−
ρ

N

(

1−
µ

µ1

)



1+
ErlC(N,ρ)

N −

(

ρ+1− µ1

µ

)









=−

N

N − ρ
I2

∂

∂µ1



1−
ρ

N

(

1−
µ

µ1

)



1+
ErlC(N,ρ)

N −

(

ρ+1− µ1

µ

)







=
ρ

N − ρ
I2

∂

∂µ1





(

1−
µ

µ1

)



1+
ErlC(N,ρ)

N −

(

ρ+1− µ1

µ

)









Applying the product rule, and simplifying the expression, we get (5). Next, for convenience, we
rewrite (5) as:

N − ρ

λ

∂I

∂µ1

=
I2

µ2

1






1+

ErlC(N,ρ)

N −

(

ρ+1− µ1

µ

) +

(

1−
µ1

µ

)

µ1

µ

ErlC(N,ρ)
(

N −

(

ρ+1− µ1

µ

))

2






(EC.10)

Differentiating this equation once more with respect to µ1 by applying the product rule, we get:

N − ρ

λ

∂2I

∂µ2

1

=

(

2I

µ2

1

∂I

∂µ1

−

2I2

µ3

1

)






1+

ErlC(N,ρ)

N −

(

ρ+1− µ1

µ

) +

(

1−
µ1

µ

)

µ1

µ

ErlC(N,ρ)
(

N −

(

ρ+1− µ1

µ

))

2







+
I2

µ2

1

∂

∂µ1






1+

ErlC(N,ρ)

N −

(

ρ+1− µ1

µ

) +

(

1−
µ1

µ

)

µ1

µ

ErlC(N,ρ)
(

N −

(

ρ+1− µ1

µ

))

2







=

(

2I

µ2

1

∂I

∂µ1

−

2I2

µ3

1

)

µ2

1

I2

N − ρ

λ

∂I

∂µ1

+
I2

µ2

1

∂

∂µ1






1+

ErlC(N,ρ)

N −

(

ρ+1− µ1

µ

) +

(

1−
µ1

µ

)

µ1

µ

ErlC(N,ρ)
(

N −

(

ρ+1− µ1

µ

))

2







Applying the product rule for the second term, and simplifying the expression, we get:

∂2I

∂µ2

1

=
2

I

(

∂I

∂µ1

)

2

−

2

µ1

(

∂I

∂µ1

)

−

2I2

µ1µ2

λ

N − ρ

ErlC(N,ρ)
(

N −

(

ρ+1− µ1

µ

))

2



1+

(

1−
µ1

µ

)

1

N −

(

ρ+1− µ1

µ

)





The expression in (6) is then obtained by substituting for ∂I
∂µ1

from (5), and carefully going through
some incredibly messy (but straightforward) algebra.
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Proof of Theorem 3. In order to prove this theorem, we make the transformation

t= ρ+1− µ1

µ
(EC.11)

For example, when µ1 = µ
1
= (λ− (N − 1)µ)

+
, t = t = min(ρ+1,N). Using this transformation,

the I
µ1

term that appears in the beginning of the expression for the second derivative of the idle
time (6) can be written in terms of t as follows.

I

µ1

=
(N − ρ) (N − t)

µg(t)

where
g(t) =N (N − t) (ρ+1− t)− ρ (ρ− t) (N − t+ErlC(N,ρ))

Note that g(t) > 0, since I > 0, N > ρ, and from stability, N > t. Substituting this in (6), and
using (EC.11) to complete the transformation, we get the following expression for the second
derivative of the idle time in terms of t.

∂2I

∂µ2
1

=H(t) =−2λ (N − ρ)
2
f(t)

µ3g3(t)

where we use the notation g3(t) to denote (g(t))
3
, and

f(t) =
(

(N − t)
2 − ρErlC(N,ρ)

)

(N − t+ErlC(N,ρ))+
(

N − (ρ− t)
2
)

(ρ+1− t)ErlC(N,ρ)

In order to prove the theorem, we now need to show that
(a) There exists a threshold t† ∈

(

−∞, t
]

such that H(t)< 0 for −∞< t < t†, and H(t)> 0 for
t† < t< t.

(b) H(t)> 0⇒H ′(t)> 0.
To show these statements, we prove the following three properties of f and g.

• f(t) is a decreasing function of t.
• g(t) is a decreasing function of t.
• f(0)> 0.

In what follows, for convenience, we denote ErlC(N,ρ) simply by C. Differentiating f(t), we get

f ′(t) =−
(

(N − t)2 − ρC
)

− 2(N − t)(N − t+C)−
(

N − (ρ− t)2
)

C +2(ρ− t)(ρ+1− t)C

=−3
(

(N − t)2 +
(

−(ρ− t)2 +(N − ρ)
)

C
)

=−3
(

(N − t)2(1−C)+
((

(N − t)2 − (ρ− t)2
)

+(N − ρ)
)

C
)

=−3
(

(N − t)2(1−C)+ ((N − t+ ρ− t)(N − ρ)+ (N − ρ))C
)

=−3
(

(N − t)2(1−C)+ (N − t+ ρ+1− t)(N − ρ)C
)

< 0

The last step follows by noting that N − t > 0, ρ+ 1− t≥ 0, N − ρ > 0, and 0< ErlC(N,ρ) < 1
when 0< ρ <N . This shows that f(t) is a decreasing function of t. Next, differentiating g(t), we
get

g′(t) =−N(N − t)−N(ρ+1− t)+ ρ(ρ− t)+ ρ(N − t+C)

=−N(N − t+ ρ+1− t)+ ρ(ρ+1− t)+ ρ(N − t)− ρ(1−C)

=−(N − ρ)(N − t+ ρ+1− t)− ρ(1−C)

< 0
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The last step follows by noting that N − t > 0, ρ+ 1− t≥ 0, N − ρ > 0, and 0< ErlC(N,ρ) < 1
when 0< ρ<N . This shows that g(t) is a decreasing function of t. Finally, evaluating f(0), we get

f(0) = (N2 − ρC)(N +C)+ (N − ρ2)(ρ+1)C

=N3 − ρ3C +N2C − ρ2C +NC − ρC2

= (N3 − ρ3)+ ρ3(1−C)+ (N2 − ρ2)C +(N − ρ)C + ρC(1−C)

> 0

The last step follows by noting that N − ρ > 0, and 0<ErlC(N,ρ)< 1 when 0< ρ<N .
We are now ready to prove the statements (a-b).

(a) First, note that because f(t) is decreasing and f(0)> 0, there exists a threshold t† ∈
(

0, t
]

such that f(t)> 0 for −∞< t< t†, and f(t)< 0 for t† < t < t. (Note that if f(t)> 0, then we
let t† = t so that f(t)< 0 in an empty interval.) Next, since g(t)> 0 for all t ∈

(

−∞, t
]

, the
sign of H(t) is simply the opposite of the sign of f(t). Statement (a) now follows directly.

(b) Statement (b) is equivalent to showing that f(t)< 0⇒H ′(t)> 0. Differentiating H(t), we get

H ′(t) =−2λ(N − ρ)2

µ3

(

g3(t)f ′(t)− 3f(t)g2(t)g′(t)

g6(t)

)

=−2λ(N − ρ)2

µ3

(

g(t)f ′(t)− 3f(t)g′(t)

g4(t)

)

Since g(t)> 0, f ′(t)< 0, and g′(t)< 0, it follows that H ′(t)> 0 whenever f(t)< 0.
This concludes the proof.

Proof of Theorem 4. The “only if” direction is straightforward. Briefly, it follows from the
fact that, by definition, any symmetric equilibrium µ∗ > λ

N
must be an interior global maximizer

of U(µ1, µ
⋆) in the interval µ1 ∈ ( λ

N
,∞).

The “if” direction requires more care. We first show that the utility function U(µ1, µ
⋆) inherits

the properties of the idle time function I(µ1, µ
⋆) as laid out in Theorem 3, and then consider the

two cases when it is either increasing or decreasing at µ1 =
λ
N
.

Recall that U(µ1, µ
⋆) = I(µ1, µ

⋆)− c(µ1). Let µ
†
1 ∈
[

µ
1
,∞
)

be the threshold of Theorem 3. We

subdivide the interval (µ
1
,∞) as follows, in order to analyze U(µ1, µ

⋆).

• Consider the interval (µ
1
, µ†

1), where, from Theorem 3, we know that I ′′′(µ1, µ
⋆)< 0. Therefore,

U ′′′(µ1, µ
⋆) = I ′′′(µ1, µ

⋆)−c′′′(µ1)< 0. This means that U ′′(µ1, µ
⋆) is decreasing in this interval.

(Note that this interval could be empty, i.e., it is possible that µ†
1 = µ

1
.)

• Consider the interval (µ†
1,∞), where, from Theorem 3, we know that I ′′(µ1, µ

⋆)< 0. Therefore,
U ′′(µ1, µ

⋆) = I ′′(µ1, µ
⋆)− c′′(µ1)< 0. This means that U(µ1, µ

⋆) is concave in this interval.
Thus, the utility function U(µ1, µ

⋆), like the idle time function I(µ1, µ
⋆), may start out as a convex

function at µ1 = µ
1
, but it eventually becomes concave, and stays concave thereafter. Moreover,

because the cost function c is increasing and convex, limµ1→∞U(µ1, µ
⋆) =−∞, which implies that

U(µ1, µ
⋆) must eventually be decreasing concave.

We now consider two possibilities for the behavior of U(µ1, µ
⋆) in the interval ( λ

N
,∞):

Case (I): U(µ1, µ
⋆) is increasing at µ1 =

λ
N
. If µ†

1 >
λ
N

(see Figure 1(a)), U(µ1, µ
⋆) would

start out being increasing convex, reach a rising point of inflection at µ1 = µ†
1, and then become

increasing concave. (Otherwise, if µ†
1 ≤ λ

N
, U(µ1, µ

⋆) would just be increasing concave to begin
with.) It would then go on to attain a (global) maximum, and finally become decreasing concave.
This means that the unique stationary point of U(µ1, µ

⋆) in this interval must be at this (interior)
global maximum. Since U ′(µ⋆, µ⋆) = 0 (from the symmetric first order condition (9)), µ1 = µ⋆ must
be the global maximizer of the utility function U(µ1, µ

⋆), and hence a symmetric equilibrium.
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Case (II): U(µ1, µ
⋆) is decreasing at µ1 =

λ
N
. Because U(µ⋆, µ⋆)≥U( λ

N
, µ⋆), U(µ1, µ

⋆) must

eventually increase to a value at or above U( λ
N
, µ⋆), which means it must start out being decreasing

convex (see Figure 1(b)), attain a minimum, then become increasing convex. It would then follow

the same pattern as in the previous case, i.e., reach a rising point of inflection at µ1 = µ†
1, and then

become increasing concave, go on to attain a (global) maximum, and finally become decreasing

concave. This means that it admits two stationary points – a minimum and a maximum. Since

U ′(µ⋆, µ⋆) = 0 (from the symmetric first order condition (9)) and U(µ⋆, µ⋆) ≥ U( λ
N
, µ⋆), µ1 = µ⋆

must be the (global) maximizer, and hence a symmetric equilibrium.

U(µ1, µ
⋆)

µ1

•

•

λ/N

µ† µ⋆

(a) Case (I)

U(µ1, µ
⋆)

µ1

•

•

λ/N

µ† µ⋆

(b) Case (II)

Figure EC.1. The graphic depiction of the proof of Theorem 4.

Note that if U(µ1, µ
⋆) is stationary at µ1 =

λ
N
, it could either start out increasing or decreasing

in the interval ( λ
N
,∞), and one of the two cases discussed above would apply accordingly.

Finally, to conclude the proof, note that (10) is equivalent to the inequality U(µ⋆, µ⋆)≥U( λ
N
, µ⋆),

obtained by plugging in and evaluating the utilities using (7) and (4). This completes the proof.

Proof of Theorem 5. The symmetric first order condition (9) can be rewritten as

ErlC

(

N,
λ

µ

)

= µ2c′(µ)
N2

λ
+
λ

µ
−N

It suffices to show that if λc′
(

λ
N

)

< 1, then the left hand side and the right hand side intersect at
least once in

(

λ
N
,∞
)

. We first observe that the left hand side, the Erlang-C function, is shown to

be convex and increasing in ρ= λ
µ
(pages 8 and 11 of [43]). This means that it is decreasing and

convex in µ. Moreover, ErlC(N,N) = 1 and ErlC(N,0) = 0, which means that the left hand side

decreases from 1 to 0 in a convex fashion as µ runs from λ
N

to ∞. The right hand side is clearly

convex in µ, and is equal to λc′
(

λ
N

)

when µ= λ
N
, and approaches∞ as µ approaches ∞. Therefore,

if λc′
(

λ
N

)

< 1, then the two curves must intersect at least once in
(

λ
N
,∞
)

.
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Next, it is sufficient to show that if 2 λ
N
c′
(

λ
N

)

+
(

λ
N

)2
c′′
(

λ
N

)

≥ 1, then the right hand side is
non-decreasing in µ. In order to do so, it suffices to show that

∂

∂µ

(

µ2c′(µ)
N2

λ
+
λ

µ
−N

)

≥ 0

⇔
(

µ2c′′(µ)+ 2µc′(µ)
) N2

λ
− λ

µ2
≥ 0

⇔
(

µ2c′′(µ)+ 2µc′(µ)
)

(

Nµ

λ

)2

≥ 1

The left hand side is a non-decreasing function of µ, therefore, in the interval
(

λ
N
,∞
)

, we have

(

µ2c′′(µ)+ 2µc′(µ)
)

(

Nµ

λ

)2

≥
(

λ

N

)2

c′′
(

λ

N

)

+2
λ

N
c′
(

λ

N

)

≥ 1.

This completes the proof.

Proof of Theorem 6. The utility at any symmetric point can be evaluated as U(µ,µ) = 1−
λ

Nµ
− c(µ), using (7) and (4). Therefore, it follows that showing U(µ⋆

1, µ
⋆
1)>U(µ⋆

2, µ
⋆
2) is equivalent

to showing that
c(µ⋆

1)− c(µ⋆
2)

µ⋆
1 −µ⋆

2

<
λ

Nµ⋆
1µ

⋆
2

.

The function c is convex by assumption. It follows that

c(µ⋆
1)− c(µ⋆

2)≤ (µ⋆
1 −µ⋆

2)c
′(µ⋆

1). (EC.12)

Therefore, rearranging and substituting for c′(µ⋆
1) from the symmetric first order condition (9),

c(µ⋆
1)− c(µ⋆

2)

µ⋆
1 −µ⋆

2

≤ λ

N2(µ⋆
1)

2

(

N − λ

µ⋆
1

+ErlC

(

N,
λ

µ⋆
1

))

.

It has been shown (page 14 of [43], and [27]) that ErlC
(

N, λ
µ

)

< λ
Nµ

. Using this,

c(µ⋆
1)− c(µ⋆

2)

µ⋆
1 −µ⋆

2

<
λ

N2(µ⋆
1)

2

(

N − λ

µ⋆
1

(

1− 1

N

))

<
λ

N2(µ⋆
1)

2
(N) =

λ

N(µ⋆
1)

2
<

λ

Nµ⋆
1µ

⋆
2

.

This completes the proof.

PROOFS FROM SECTION 4

Proof of Proposition 1. We first observe that if f(λ) = ω(λ), then

C⋆,λ(Nλ)

λ
≥ cS

Nλ

λ
→∞ as λ→∞.

Since Proposition 2 evidences a staffing policy under which C⋆,λ(Nλ)/λ has a finite limit, having
f(λ) = ω(λ) cannot result in an asymptotically optimal staffing policy.
Next, we consider the case f(λ) = o(λ). In this case, λ/Nλ →∞. Since any symmetric equilibrium

must have µ⋆,λ > λ/Nλ from (3), it follows that if there exists a sequence of symmetric equilibria
{µ⋆,λ}, then µ⋆,λ →∞ as λ→∞. We conclude that such a staffing policy cannot be admissible.
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Proof of Theorem 7. We can rewrite (16) as

f(µ) = g(µ)

where

f(µ) =
1

a
and g(µ) =

µ2

a2
c′(µ)+

1

µ
.

The two cases of interest (i) and (ii) are as shown in Figure EC.2. Our strategy for the proof is to
rewrite (14) in terms of functions fλ and gλ that are in some sense close to f and g. Then, in case
(i), the fact that g(µ) lies below f(µ) for µ ∈ [µ1, µ2] implies that fλ and gλ intersect (at least)
twice. The case (ii) is more delicate, because the sign of o(λ) determines if the functions fλ and
gλ will cross (at least) twice or not at all. (We remark that it will become clear in that part of the
proof where the condition o(λ)<−3 is needed.)

µ

• •

0

1

a

1

a
+ c′(a)

f(µ)

g(µ)

a

µ1 µ2

(a) Case (i)

µ

•

0

1

a

1

a
+ c′(a)

f(µ)

g(µ)

a

µ1

(b) Case (ii)

Figure EC.2. The limiting first order condition (16).

The first step is to rewrite (14) as
fλ(µ) = gλ(µ)

where

fλ(µ) =
1

λ
ErlC

(

Nλ,
λ

µ

)

+
Nλ

λ

gλ(µ) = µ2c′(µ)

(

Nλ

λ

)2

+
1

µ
.

The function gλ converges uniformly on compact sets to g since for any µ> 0, substituting for Nλ

in (13) shows that

sup
µ∈[0,µ]

∣

∣gλ(µ)− g(µ)
∣

∣≤ µ2c′(µ)

(

2

a

∣

∣

∣

∣

o(λ)

λ

∣

∣

∣

∣

+

(

o(λ)

λ

)2
)

→ 0, (EC.13)

as λ→∞. Next, recall ErlC(N,ρ)≤ 1 whenever ρ/N < 1. Since

∣

∣fλ(µ)− f(µ)
∣

∣≤ 1

λ
ErlC

(

1

a
λ+ o(λ),

λ

µ

)

+

∣

∣

∣

∣

o(λ)

λ

∣

∣

∣

∣

(EC.14)
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and ErlC(λ/a + o(λ), λ/µ) ≤ 1 for all µ > a for all large enough λ, the function fλ converges
uniformly to f on any compact set [a+ ǫ,µ] with µ> a+ ǫ and ǫ arbitrarily small. The reason we
need only consider compact sets having lower bound a+ ǫ is that it is straightforward to see any
solution to (16) has µ> a. It is also helpful to note that gλ is convex in µ because

d2

dµ2
gλ(µ) =

(

2c′(µ)+ 4µc′′(µ)+µ2c′′′(µ)
)

+2
1

µ3
> 0 for µ∈ (0,∞),

and fλ is convex decreasing in µ because ErlC(N,ρ) is convex increasing in ρ (pages 8 and 11
of [43]).
We prove (i) and then (ii).

Proof of (i): There exists µm ∈ (µ1, µ2) for which f(µm)> g(µm). Then, it follows from (EC.13)
and (EC.14) that fλ(µm)>g

λ(µm) for all large enough λ. Also,

lim
µ→∞

fλ(µ) =
1

a
< lim

µ→∞
gλ(µ) =∞.

and

lim
µ↓λ/Nλ

fλ(µ) =
1

λ
+
Nλ

λ
< gλ

(

λ

Nλ

)

= c′
(

λ

Nλ

)

+
Nλ

λ

for all large enough λ, where the inequality follows because c is strictly increasing. Since fλ is
convex decreasing and gλ is convex, we conclude that there exist two solutions to (14).
Proof of (ii): We prove part (a) and then part (b). Recall that µ1 is the only µ > 0 for which
f(µ1) = g(µ1).
Proof of (ii)(a): For part (a), it is enough to show that for all large enough λ,

fλ(µ1)− gλ(µ1)> 0. (EC.15)

The remainder of the argument follows as in the proof of part (i).
From the definition of fλ and gλ in the second paragraph of this proof, and substituting for Nλ,

fλ(µ1)− gλ(µ1)

=
1

a
− 1

µ1

−
(µ1

a

)2

c′(µ1)+
1

λ
ErlC

(

1

a
λ+ o(λ),

λ

µ1

)

+
o(λ)

λ

(

1− 2

a
(µ1)

2 c′(µ1)

)

− (µ1)
2 c′(µ1)

(

o(λ)

λ

)2

.

It follows from f(µ1) = g(µ1) that 1/a − 1/µ1 − (µ1/a)
2c′(µ1) = 0, and so, also noting that

ErlC(λ/a+ o(λ), λ/µ1)> 0,

fλ(µ1)− gλ(µ1)>
o(λ)

λ

(

1− 2

a
(µ1)

2
c′(µ1)

)

− (µ1)
2
c′(µ1)

(

o(λ)

λ

)2

. (EC.16)

Again using the fact that f(µ1) = g(µ1),

1− 2

a
(µ1)

2
c′(µ1) = 1− 2a

(

1

a
− 1

µ1

)

=−1+2
a

µ1

.

Then, the term multiplying o(λ)/λ in (EC.16) is positive if

− 1+2
a

µ1

> 0, (EC.17)

which implies (EC.15) holds for all large enough λ.
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To see (EC.17), and so complete the proof of part (ii)(a), note that since µ1 solves (16), and the
left-hand side of (16) is convex increasing while the right-hand side is concave increasing, µ1 also
solves the result of differentiating (16), which is

1

µ2
1

=
1

a2
(

µ2
1c

′′(µ1)+ 2µ1c
′(µ1)

)

.

Algebra shows that
1

µ1

− 2

(

µ2
1

a2
c′(µ1)

)

=
µ3
1

a2
c′′(µ1).

We next use (16) to substitute for µ2
1

a2
c′(µ1) to find

3

µ1

− 2

a
=
µ3
1

a2
c′′(µ1).

Since c is convex,
3

µ1

− 2

a
≥ 0,

and so 1.5a≥ µ1, from which (EC.17) follows.
Proof of (ii)(b): Let µλ∈ (0,∞) be the minimizer of the function gλ. The minimizer exists because
gλ is convex and

d

dµ
gλ(µ) =

(

µc′(µ)+µ2c′′(µ)
)

(

Nλ

λ

)2

− 1

µ2
,

which is negative for all small enough µ, and positive for all large enough µ. It is sufficient to show
that for all large enough λ

gλ(µ)− fλ(µ)> 0 for all µ∈ [a,µλ]. (EC.18)

This is because for all µ>µλ, gλ is increasing and fλ is decreasing.
Suppose we can establish that for all large enough λ

1

µ
≥ 2

3a
− ǫλ

2a
, for all µ∈ [a,µλ], (EC.19)

where ǫλ satisfies ǫλ → 0 as λ→∞. Since g(µ)≥ f(µ) for all µ, it follows that

gλ(µ) = µ2c′(µ)

(

Nλ

λ

)2

+
1

µ
≥
(

a− a2

µ

)(

Nλ

λ

)2

+
1

µ
.

Substituting for Nλ and algebra shows that

(

a− a2

µ

)(

Nλ

λ

)2

+
1

µ
=

1

a
+

(

o(λ)

λ

)

2

(

1− a

µ

)

+ a

(

1− a

µ

)(

o(λ)

λ

)2

.

Then, from the definition of fλ and the above lower bound on gλ, also using the fact that the
assumption Nλ −λ/a< 0 implies the term o(λ) is negative,

gλ(µ)− fλ(µ) ≥
∣

∣

∣

∣

o(λ)

λ

∣

∣

∣

∣

(

2a

µ
− 1

)

− 1

λ
ErlC

(

Nλ,
λ

µ

)

+ a

(

1− a

µ

)(

o(λ)

λ

)2

.

Since −ErlC(Nλ, λ/µ)>−1 and 1/a− 1/µ> 0 from (16) implies 1− a/µ> 0,

gλ(µ)− fλ(µ)≥ 1

λ

(

|o(λ)|
(

2a

µ
− 1

)

− 1

)

.
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Next, from (EC.19),
2a

µ
≥ 4

3
− ǫλ,

and so

gλ(µ)− fλ(µ)≥ 1

λ

(

|o(λ)|
(

1

3
− ǫλ

)

− 1

)

.

The fact that |o(λ)|> 3 and ǫλ → 0 then implies that for all large enough λ, (EC.18) is satisfied.
Finally, to complete the proof, we show that (EC.19) holds. First note that µλ as the minimizer

of gλ satisfies
(

2µc′(µ)+µ2c′′(µ)
)

(

Nλ

λ

)2

− 1

µ2
= 0,

and that solution is unique and continuous in λ. Hence µλ → µ1 as λ→∞. Then,

gλ(µλ)→ g(µ1) =
1

a
as λ→∞.

Furthermore, gλ(µλ) approaches g(µ1) from above; i.e.,

gλ(µλ) ↓ 1

a
as λ→∞,

because, recalling that the term o(λ) is negative,

gλ(µ) = µ2c′(µ)

(

1

a
− o(λ)

λ

)2

+
1

µ
> g(µ) for all µ> 0.

Therefore, there exists ǫλ → 0 such that

gλ(µλ) =
1

a
− 3

4

ǫλ

a
,

where the 3/(4a) multiplier of ǫλ is chosen for convenience when obtaining the bound in the previous
paragraph. Finally,

1

µ
≥ 1

µλ

means that (EC.19) follows if
1

µλ
≥ 2

3
gλ(µλ) =

2

3

1

a
− 1

2

ǫλ

a
.

To see the above display is valid, note that µλ solves

(

gλ(µ)
)′
=0,

which from algebra is equivalent to

2gλ(µλ)− 3

µλ
+
(

µλ
)3
c′′(µλ)

(

Nλ

λ

)2

=0.

Hence

2gλ(µλ)− 3

µλ
≤ 0,

as required.
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Proof of Lemma 1. It is enough to show the inequality (10) of Theorem 4 holds. The function
c is convex by assumption. It follows that

c(µλ)− c

(

λ

Nλ

)

≤
(

µλ− λ

Nλ

)

c′(µλ). (EC.20)

Plugging in for c′(µλ) from the symmetric first order condition (14) yields (after algebra)
(

µλ − λ

Nλ

)

c′(µλ) =
λ

µλNλ

(

1− λ

µλNλ

)(

1− λ

µλNλ
+
ErlC (Nλ, λ/µλ)

Nλ

)

.

Hence, in order to show the inequality (10) is true, also substituting for ρλ = λ/µλ, it is enough to
verify that

λ

µλNλ

(

1−
λ

µλNλ

)

(

1−
λ

µλNλ
+

ErlC
(

Nλ, λ/µλ
)

Nλ

)

≤

(

1−
λ

µλNλ

)

(

1+

(

1−
λ

µλNλ
+

ErlC(Nλ, λ/µλ)

N − 1

)−1
)−1

⇐⇒ 1+
1

1− λ
µλNλ + ErlC(Nλ,λ/µλ)

Nλ−1

≤
1

(

λ
µλNλ

)(

1− λ
µλNλ + ErlC(Nλ,λ/µλ)

Nλ

) .

Since Nλ − 1<Nλ, it is enough to show that

1+
1

1− λ
µλNλ + ErlC(Nλ,λ/µλ)

Nλ

≤ 1
(

λ
µλNλ

)(

1− λ
µλNλ + ErlC(Nλ,λ/µλ)

Nλ

)

⇐⇒ 1≤

(

1− λ
µλNλ

)

λ
µλNλ

(

1− λ
µλNλ + ErlC(Nλ,λ/µλ)

Nλ

)

⇐⇒ λ

µλNλ

(

1− λ

µλNλ

)

+
λ

µλNλ

ErlC(Nλ, λ/µλ)

Nλ
≤
(

1− λ

µλNλ

)

⇐⇒ ErlC(Nλ, λ/µλ)

λ/µλ
≤
(

Nλµλ

λ
− 1

)2

.

Since Nλµλ/λ→ d > 1 by assumption, the limit of the right-hand side of the above expression is
positive, and, since and ErlC(Nλ, λ/µλ)≤ 1, the limit of the left-hand side of the above expression
is 0. We conclude that for all large enough λ, the above inequality is valid.

Proof of Proposition 2. Let

µ⋆ = argmin{µ> 0 : (16) holds }.

Next, recalling that µ⋆ > a, also let

µ= µ⋆ − 1

2

(

µ⋆ − a
)

> a,

so that the system is stable if all servers were to work at rate µ (λ < µNλ for all large enough
λ). It follows from Theorem 7 that, for all large enough λ, any µλ that satisfies the first order
condition (14) also satisfies µλ >µ. Hence any symmetric equilibrium µ⋆,λ must also satisfy µ⋆,λ >µ
for all large enough λ, and so

W
⋆,λ
<W

λ

µ.

Therefore, also using the fact that W
⋆,λ
> 0, it follows that

cS
Nλ

λ
<
C⋆,λ(Nλ)

λ
= cS

Nλ

λ
+wW

⋆,λ
< cS

Nλ

λ
+wW

λ

µ.
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Then, since Nλ/λ→ 1/a as λ→∞ from (13), it is sufficient to show

W
λ

µ → 0 as λ→∞.

This follows from substituting the staffing Nλ = λ/a+o(λ) in (13) into the well-known formula for
the steady state mean waiting time in a M/M/Nλ queue with arrival rate λ and service rate µ as
follows

W
λ

µ =
1

λ

λ/µ

Nλ −λ/µ
ErlC

(

Nλ,
λ

µ

)

=
1/µ

(

1/a− 1/µ
)

λ+ o(λ)
ErlC

(

Nλ,
λ

µ

)

→ 0, as λ→∞,

since ErlC(Nλ, λ/µ) ∈ [0,1] for all λ.

Proof of Lemma 2. It follows from the equation

a(µ− a) = µ3c′(µ)

that

a=
µ

2

(

1
+
−
√

1− 4µc′(µ)

)

.

The condition 4µc′(µ)≤ 1 is required to ensure that there is a real-valued solution for a. Hence

A=

{

µ

2

(

1
+
−
√

1− 4µc′(µ)

)

: 0≤ 4µc′(µ)≤ 1

}

.

Since c′(µ) is well-behaved, this implies that A is compact, and, in particular, closed. We conclude
that a⋆ = supA∈A, which implies that a⋆ is finite.

Proof of Theorem 8. It follows from Proposition 1 that

0≤ lim inf
λ→∞

Nopt,λ

λ
≤ limsup

λ→∞

Nopt,λ

λ
<∞,

because any staffing policy that is not asymptotically optimal also is not optimal for each λ. Con-
sider any subsequence λ′ on which either lim infλ→∞Nopt,λ/λ or limsupλ→∞Nopt,λ/λ is attained,
and suppose that

Nopt,λ′

λ′ → 1

a
as λ′ →∞, where a∈ [0,∞). (EC.21)

The definition of asymptotic optimality requires that for each λ′, there exists a symmetric equi-
librium service rate µ⋆,λ′

. As in the proof of Lemma 1, it is enough to consider sequences {µλ}
that satisfy the first order condition (14). Then, by the last sentence of Theorem 7, any sequence
of solutions {µλ′} to (14) must be such that |µλ′ − µ| is arbitrarily small, for λ′ large enough, for
some µ that solves (16), given a in (EC.21). In summary, the choice of a in (EC.21) is constrained
by the requirement that a symmetric equilibrium service rate must exist.
Given that there exists at least one symmetric equilibrium service rate for all large enough λ′,

it follows in a manner very similar to the proof of Proposition 2 that

W
⋆,λ′

→ 0 as λ′ →∞,
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even though when there are multiple equilibria we may not be able to guarantee which symmetric
equilibrium µ⋆,λ′

the servers choose for each λ′. We conclude that

C⋆,λ′
(Nopt,λ′

)

λ′ = cS
Nopt,λ′

λ′ +wW
⋆,λ′

→ cS
1

a
, as λ′ →∞. (EC.22)

We argue by contradiction that a in (EC.22) must equal a⋆. Suppose not. Then, since

C⋆,λ(Nao,λ)

λ
→ cS

1

a⋆
as λ→∞

by Proposition 2 (and so the above limit is true on any subsequence), and a⋆ > a by its definition,
it follows that

C⋆,λ′
(Nao,λ′

)<C⋆,λ′
(Nopt,λ′

) for all large enough λ′.

The above inequality contradicts the definition of Nopt,λ′
.

The previous argument did not depend on if λ′ was the subsequence on which lim infλ→∞Nopt,λ/λ
or limsupλ→∞Nopt,λ/λ was attained. Hence

lim
λ→∞

Nopt,λ

λ
=

1

a⋆
,

and, furthermore,

lim
λ→∞

C⋆,λ(Nopt,λ)

λ
= cS

1

a⋆
.

Since also

lim
λ→∞

C⋆,λ(Nao,λ)

λ
= cS

1

a⋆
,

the proof is complete.

Proof of Lemma 3. We first observe that (16) is equivalently written as:

0 = cEpµ
p+2 − aµ+ a2.

The function
f(µ) = cEpµ

p+2 − aµ+ a2

attains its minimum value in (0,∞) at

µ=

(

a

cEp(p+2)

)1/(p+1)

.

The function f is convex in (0,∞) because f ′′(µ) > 0 for all µ ∈ (0,∞) and so µ is the unique
minimum. It follows that

if f(µ)







<
>
=







0, then







there are 2 non-negative solutions to (16)
there is no non-negative solution to (16)
there is exactly one solution to (16)

.

Since
f(µ) = a

p+2
p+1

(

a2−
p+2
p+1 −△

)

for

△ :=

(

1

cEp(p+1)

)
1

p+1

(

1−
(

1

cEp

)p+1(
1

p+2

)p+2
)

> 0,
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it follows that

if a
p

p+1 −△







<
>
=







0, then







there are 2 non-negative solutions to (16)
there is no non-negative solution to (16)
there is exactly one solution to (16)

.

The expression for △ can be simplified so that

△=
(p+1)

(p+2)

(

1

cEp(p+2)

)
1

p+1

.

Then, a⋆ follows by noting that a⋆ = △(p+1)/p and µ⋆ follows by noting that µ⋆ = µ and then
substituting for a⋆.
To complete the proof, we must show that a⋆ and µ⋆ are both increasing in p. This is because we

have already observed that any solution to (16) has a< µ, and the fact that µ< 1 follows directly
from the expression for µ. We first show a⋆ is increasing in p, and then argue that this implies µ⋆

is increasing in p.
To see that a⋆ is increasing in p, we take the derivative of loga⋆(p) and show that this is positive.

Since

loga⋆(p) = log(p+1)− log(p+2)+
1

p
log(p+1)

−1

p
log cE − 1

p
log p− 2

p
log(2+ p),

it follows that

(loga⋆(p))
′
=

1

p+1
− 1

p+2
+

(

p/(p+1)− log(p+1)

p2

)

+
1

p2
log cE

−
p
p
− log(p)

p2
− 2

(

p
p+2

− log(p+2)

p2

)

.

After much simplification, we have

(loga⋆(p))
′
=

1

p2
log cE +

1

p2

(

log

(

p(p+2)2

p+1

)

− p2 + p+4

(p+1)(p+2)

)

.

Hence it is enough to show that

△(p) = log

(

p(p+2)2

p+1

)

− p2 + p+4

(p+1)(p+2)
≥ 0, for p≥ 1.

This follows because the first term is increasing in p, and has a value that exceeds 1 when p= 1;
on the other hand, the second term has a value that is strictly below 1 for all p≥ 1.
Finally, it remains to argue that µ⋆ is increasing in p. At the value µ= µ⋆

g(µ) = µ3c′(µ)− aµ+ a2 = 0.

At the unique point where the minimum is attained, it is also true that

g′(µ) = µ3c′′(µ)+ 3µ2c′(µ)− a= 0.

Since µ3c′′(µ)+ 3µ2c′(µ) is an increasing function of µ, it follows that if a increases, then µ must
increase.
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PROOFS FROM SECTION 5

Proof of Theorem 9. It is sufficient to verify the detailed balance equations. For reference,
it is helpful to refer to Figure EC.3, which depicts the relevant portion of the Markov chain. We
require the following additional notation. For all I ⊆ {1,2, . . . ,N}, all states s = (s1, s2, . . . , s|I|),
all servers s′ ∈ {1,2, . . . ,N}\I, and integers j ∈ {1,2, . . . , |I|+1}, we define the state s[s′, j] by

s[s′, j]≡ (s1, s2, . . . , sj−1, s
′, sj, . . . , s|I|).

We first observe that:

Rate into state s due to an arrival = λ
∑

s′ 6∈I

|I|+1
∑

j=1

πs[s′,j]p
I∪{s′}(j)

= λ
∑

s′ 6∈I

|I|
∑

j=0

µs′πB

λ

∏

s∈I

(µs

λ

)

pI∪{s′}(j)

=
∑

s′ 6∈I
µs′πB

∏

s∈I

µs

λ
=
∑

s′ 6∈I
µs′πs

=Rate out of state s due to a departure.

Then, to complete the proof, we next observe that for each s′ 6∈ I:

Rate into state s due to a departure= µs|I|
π(s1,s2,...,s|I|−1)

= µs|I|
πB

∏

s∈I\{s|I|}

µs

λ

s[s′,1] s− s1

s[s′,2] s− s2

s+ s′ s− s|I|

s

...
...

λp I∪{s ′
}
(1) λp

I (1)

λpI∪{s′}(2) λpI(2)

λp
I∪

{s
′ } (|I|

+1) λp I
(|I|)

µs′ µs|I|

For each s′ 6∈ I

Figure EC.3. Snippet of the Markov chain showing the rates into and out of state s = (s1, . . . , s|I|). For conve-
nience, we use s− sj to denote the state (s1, s2, . . . , sj−1, sj+1, . . . , s|I|) and s+ s′ to denote the state s[s′, |I|+1] =
(s1, s2, . . . , s|I|, s

′).
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0

1 (1)

1 (2)

2 3 · · ·

λp

λ(1− p)

λ

λ

λ

µ1 +µ2

λ

µ1 +µ2

µ1

µ2

µ2

µ1

Figure EC.4. The M/M/2 Markov chain with probabilistic routing

= λπB

∏

s∈I

µs

λ
= λπs

=Rate out of state s due to an arrival.

Proof of Proposition 3. In order to derive the steady state probability that a server is idle,
we first solve for the steady state probabilities of the M/M/2 system (with arrival rate λ and
service rates µ1 and µ2 respectively) under an arbitrary probabilistic routing policy where a job
that arrives to find an empty system is routed to server 1 with probability p and server 2 with
probability 1− p. Then, for an r-routing policy, we simply substitute p= µr

1
µr
1+µr

2
.

It should be noted that this analysis (and more) for 2 servers has been carried out by [34]. Prior
to that, [39] carried out a partial analysis (by analyzing an r-routing policy with r= 1). However,
we rederive the expressions using our notation for clarity.
The dynamics of this system can be represented by a continuous time Markov chain shown in

Figure EC.4 whose state space is simply given by the number of jobs in the system, except when
there is just a single job in the system, in which case the state variable also includes information
about which of the two servers is serving that job. This system is stable when µ1 +µ2 >λ and we
denote the steady state probabilities as follows:

• π0 is the steady state probability that the system is empty.
• π

(j)
1 is the steady state probability that there is one job in the system, served by server j.

• For all k≥ 2, πk is the steady state probability that there are k jobs in the system.
We can write down the balance equations of the Markov chain as follows:

λπ0 = µ1π
(1)
1 +µ2π

(2)
1

(λ+µ1)π
(1)
1 = λpπ0 +µ2π2

(λ+µ2)π
(2)
1 = λ(1− p)π0+µ1π2

(λ+µ1 +µ2)π2 = λπ
(1)
1 +λπ

(2)
1 +(µ1 +µ2)π3

∀k≥ 3: (λ+µ1 +µ2)πk = λπk−1 +(µ1 +µ2)πk+1,

yielding the following solution to the steady state probabilities:

π0 =
µ1µ2(µ1 +µ2 −λ)(µ1 +µ2 +2λ)

µ1µ2(µ1 +µ2)2 +λ(µ1 +µ2)(µ
2
2 +2µ1µ2 +(1− p)(µ2

1 −µ2
2))+λ2(µ2

1 +µ2
2)

(EC.23)
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π
(1)
1 =

λ(λ+ p(µ1 +µ2))π0

µ1(µ1 +µ2 +2λ)

π
(2)
1 =

λ(λ+(1− p)(µ1 +µ2))π0

µ2(µ1 +µ2 +2λ)
.

Consequently, the steady state probability that server 1 is idle is given by

I1(µ1, µ2;p) = π0 +π
(2)
1 =

(

1+
λ(λ+(1− p)(µ1 +µ2))

µ2(µ1 +µ2 +2λ)

)

π0.

Substituting for π0, we obtain

I1(µ1, µ2;p) =
µ1(µ1 +µ2 −λ) [(λ+µ2)

2 +µ1µ2 +(1− p)λ(µ1 +µ2)]

µ1µ2(µ1 +µ2)2 +λ(µ1 +µ2) [µ
2
2 +2µ1µ2 +(1− p)(µ2

1 −µ2
2)]+λ2(µ2

1 +µ2
2)
. (EC.24)

Finally, for an r-routing policy, we let p= µr
1

µr
1+µr

2
to obtain:

Ir1 (µ1, µ2) = I1(µ1, µ2;p=
µr
1

µr
1 +µr

2

)

=
µ1(µ1 +µ2 −λ)

[

(λ+µ2)
2 +µ1µ2 +

µr
2

µr
1+µr

2
λ(µ1 +µ2)

]

µ1µ2(µ1 +µ2)2 +λ(µ1 +µ2)
[

µ2
2 +2µ1µ2 +

µr
2

µr
1+µr

2
(µ2

1 −µ2
2)
]

+λ2(µ2
1 +µ2

2)
.

By symmetry of the r-routing policy, it can be verified that Ir2 (µ1, µ2) = Ir1 (µ2, µ1), completing the
proof.

Proof of Theorem 10. We first highlight that when all servers operate at the same rate
µ ∈

(

λ
N
,∞
)

, both FSF and SSF are equivalent to Random routing. Henceforth, we refer to such
a configuration as a symmetric operating point µ. In order to prove that there does not exist a
symmetric equilibrium under either FSF or SSF, we show that at any symmetric operating point
µ, any one server can attain a strictly higher utility by unilaterally setting her service rate to be
slightly lower (in the case of FSF) or slightly higher (in the case of SSF) than µ.
We borrow some notation from the proof of Proposition 3 where we derived the expressions

for the steady state probability that a server is idle when there are only 2 servers under any
probabilistic policy, parameterized by a number p∈ [0,1] which denotes the probability that a job
arriving to an empty system is routed to server 1. Recall that I1(µ1, µ2;p) denotes the steady state
probability that server 1 is idle under such a probabilistic policy, and the corresponding utility
function for server 1 is U1(µ1, µ2;p) = I1(µ1, µ2;p)− c(µ1). Then, by definition, the utility function
for server 1 under FSF is given by:

UFSF
1 (µ1, µ2) =











U1(µ1, µ2;p= 0) , µ1 <µ2

U1

(

µ1, µ2;p=
1
2

)

, µ1 = µ2

U1(µ1, µ2;p= 1) , µ1 >µ2.

Similarly, under SSF, we have:

USSF
1 (µ1, µ2) =











U1(µ1, µ2;p=1) , µ1 <µ2

U1

(

µ1, µ2;p=
1
2

)

, µ1 = µ2

U1(µ1, µ2;p=0) , µ1 >µ2.

Note that while the utility function under any probabilistic routing policy is continuous every-
where, the utility function under FSF or SSF is discontinuous at symmetric operating points. This
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discontinuity turns out to be the crucial tool in the proof. Let the two servers be operating at a
symmetric operating point µ. Then, it is sufficient to show that there exists 0< δ < µ− λ

2
such that

UFSF
1 (µ− δ,µ)−UFSF

1 (µ,µ)> 0, (EC.25)

and
USSF

1 (µ+ δ,µ)−UFSF
1 (µ,µ)> 0. (EC.26)

We show (EC.25), and (EC.26) follows from a similar argument. Note that

UFSF
1 (µ− δ,µ)−UFSF

1 (µ,µ) =U1(µ− δ,µ;p= 0)−U1

(

µ,µ;p=
1

2

)

=
(

U1(µ− δ,µ;p= 0)−U1(µ,µ;p= 0)
)

+

(

U1(µ,µ;p= 0)−U1

(

µ,µ;p=
1

2

))

Since the first difference, U1(µ− δ,µ;p=0)−U1(µ,µ;p= 0), is zero when δ = 0, and is continuous
in δ, it is sufficient to show that the second difference, U1(µ,µ;p= 0)−U1(µ,µ;p=

1
2
), is strictly

positive:

U1(µ,µ;p= 0)−U1

(

µ,µ;p=
1

2

)

= I1(µ,µ;p= 0)− I1

(

µ,µ;p=
1

2

)

=
λ(2µ−λ)

(µ+λ)(2µ+λ)
> 0

(

using (EC.24)
)

.

This completes the proof.

Proof of Theorem 11. The proof of this theorem consists of two parts. First, we show
that under any r-routing policy, any symmetric equilibrium µ⋆ ∈ (λ

2
,∞) must satisfy the equation

ϕ(µ⋆) = r. This is a direct consequence of the necessary first order condition for the utility function
of server 1 to attain an interior maximum at µ⋆. The second part of the proof involves using the
condition c′(λ

2
)< 1

λ
to show that ϕ is a strictly decreasing bijection onto R, which would lead to

the following implications:
• ϕ is invertible; therefore, if an r-routing policy admits a symmetric equilibrium, it is unique,

and is given by µ⋆ = ϕ−1(r).
• ϕ−1(r) is strictly decreasing in r; therefore, so is the unique symmetric equilibrium (if it exists).

Since the mean response time E[T ] is inversely related to the service rate, this establishes that
E[T ] at symmetric equilibrium (across r-routing policies that admit one) is increasing in r.

We begin with the first order condition for an interior maximum. The utility function of server
1 under an r-routing policy, from (2), is given by

U r
1 (µ1, µ2) = Ir1 (µ1, µ2)− c(µ1)

For µ⋆ ∈ (λ/2,∞) to be a symmetric equilibrium, the function U r
1 (µ1, µ

⋆) must attain a global
maximum at µ1 = µ⋆. The corresponding first order condition is then given by:

∂Ir1
∂µ1

(µ1, µ
⋆)

∣

∣

∣

∣

µ1=µ⋆

= c′(µ⋆), (EC.27)

where Ir1 is given by Proposition 3. The partial derivative of the idle time can be computed and
the left hand side of the above equation evaluates to

∂Ir1
∂µ1

(µ1, µ
⋆)

∣

∣

∣

∣

µ1=µ⋆

=
λ(4λ+4µ⋆ +λr− 2µ⋆r)

4µ⋆(λ+µ⋆)(λ+2µ⋆)
. (EC.28)
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Substituting in (EC.27) and rearranging the terms, we obtain:

4(λ+µ⋆)

λ(λ− 2µ⋆)
(µ⋆(λ+2µ⋆)c′(µ⋆)−λ) = r.

The left hand side is equal to ϕ(µ⋆), thus yielding the necessary condition ϕ(µ⋆) = r.
Next, we proceed to show that if c′(λ

2
)< 1

λ
, then ϕ is a strictly decreasing bijection onto R. Note

that the function

ϕ(µ) =
4(λ+µ)

λ(λ− 2µ)
(µ(λ+2µ)c′(µ)−λ)

is clearly a continuous function in (λ
2
,∞). In addition, it is a surjection onto R, as evidenced by

the facts that ϕ(µ)→−∞ as µ→∞ and ϕ(µ)→∞ as µ→ λ
2
+ (using c′(λ

2
)< 1

λ
).

To complete the proof, it is sufficient to show that ϕ′(µ)< 0 for all µ ∈ (λ
2
,∞). First, observe

that

ϕ′(µ) =
4ψ(µ)

λ(λ− 2µ)2
,

where
ψ(µ) = µ(λ+µ)(λ2 − 4µ2)c′′(µ)+ (λ3+6λ2µ− 8µ3)c′(µ)− 3λ2.

Since c′(λ
2
)< 1

λ
, as µ→ λ

2
+, ψ(µ)< 0. Moreover, since c′′′(µ)> 0, for all µ> λ

2
, we have

ψ′(µ) =−4µ(λ+µ)

(

µ2 −
(

λ

2

)2
)

c′′′(µ)− 4

(

µ− λ

2

)

(λ2 +6λµ+6µ2)c′′(µ)− 24

(

µ2 −
(

λ

2

)2
)

c′(µ)< 0.

It follows that ψ(µ) < 0 for all µ > λ
2
. Since ϕ′(µ) has the same sign as ψ(µ), we conclude that

ϕ′(µ)< 0, as desired.

Proof of Theorem 12. From Theorem 11, we know that if a symmetric equilibrium exists,
then it is unique, and is given by µ⋆ = ϕ−1(r), where ϕ establishes a one-to-one correspondence
between r and µ⋆ (µ⋆ is strictly decreasing in r and vice versa). Therefore, it is enough to show
that there exists a finite upper bound µ > λ

2
such that no service rate µ > µ can be a symmetric

equilibrium under any r-routing policy. It would then automatically follow that for r = ϕ(µ), no
r-routing policy with r ≤ r admits a symmetric equilibrium. We prove this by exhibiting a µ
and showing that if µ≥ µ, then the utility function of server 1, U r

1 (µ1, µ), cannot attain a global
maximum at µ1 = µ for any r ∈R.
We begin by establishing a lower bound for the maximum utility U r

1 (µ1, µ) that server 1 can
obtain under any r-routing policy:

max
µ1>

λ
2

U r
1 (µ1, µ)≥U r

1

(

λ

2
, µ

)

= Ir1

(

λ

2
, µ

)

− c

(

λ

2

)

≥−c
(

λ

2

)

=U r
1

(

λ

2
,
λ

2

)

. (EC.29)

By definition, if µ⋆ is a symmetric equilibrium under any r-routing policy, then the utility function
of server 1, U r

1 (µ1, µ
⋆), is maximized at µ1 = µ⋆, and hence, using (EC.29), we have

U r
1 (µ

⋆, µ⋆)≥U r
1 (
λ

2
,
λ

2
). (EC.30)

Next, we establish some properties on U r
1 (µ,µ) that help us translate this necessary condition for a

symmetric equilibrium into an upper bound on any symmetric equilibrium service rate. We have,

U r
1 (µ,µ) = 1− λ

2µ
− c(µ),

which has the following properties:
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• Since c′(λ
2
)< 1

λ
, U r

1 (µ,µ), as a function of µ, is strictly increasing at µ= λ
2
.

• U r
1 (µ,µ) is a concave function of µ.

This means that U r
1 (µ,µ) is strictly increasing at µ= λ

2
, attains a maximum at the unique µ† >

λ
2

that solves the first order condition µ2
†c

′(µ†) =
λ
2
, and then decreases forever. This shape of the

curve U r
1 (µ,µ) implies that there must exist a unique µ> µ†, such that U r

1 (µ,µ) =U r
1 (

λ
2
, λ
2
).

Since U r
1 (µ,µ) is a strictly decreasing function for µ > µ†, it follows that if µ⋆ > µ, then,

U r
1 (µ

⋆, µ⋆)< U r
1 (µ,µ) = U r

1 (
λ
2
, λ
2
), contradicting the necessary condition (EC.30). This establishes

the required upper bound µ on any symmetric equilibrium service rate, completing the proof.

Proof of Theorem 13. A useful tool for proving this theorem is Theorem 3 from [13], whose
statement we have adapted to our model:

Theorem EC.1. A symmetric game with a nonempty, convex, and compact strategy space, and
utility functions that are continuous and quasiconcave has a symmetric (pure-strategy) equilibrium.

We begin by verifying that our 2-server game meets the qualifying conditions of Theorem EC.1:
• Symmetry: First, all servers have the same strategy space of service rates, namely, (λ

2
,∞).

Moreover, since an r-routing policy is symmetric and all servers have the same cost function,
their utility functions are symmetric as well. Hence, our 2-server game is indeed symmetric.

• Strategy space: The strategy space (λ
2
,∞) is nonempty and convex, but not compact, as

required by Theorem EC.1. Hence, for the time being, we modify the strategy space to be
[λ
2
, µ+ 1] so that it is compact, where µ is the upper bound on any symmetric equilibrium,

established in Theorem 12, and deal with the implications of this modification later.
• Utility function: U r

1 (µ1, µ2) is clearly continuous. FromMathematica, it can be verified that the
idle time function Ir1 (µ1, µ2) is concave in µ1 for r ∈ {−2,−1,0,1}, and since the cost function
is convex, this means the utility functions are also concave. (Unfortunately, we could not get
Mathematica to verify concavity for non-integral values of r, though we strongly suspect that
it is so for the entire interval [−2,1].)

Therefore, we can apply Theorem EC.1 to infer that an r-routing policy with r ∈ {−2,−1,0,1}
admits a symmetric equilibrium in [λ

2
, µ+1]. We now show that the boundaries cannot be symmetric

equilibria. We already know from Theorem 12 that µ+1 cannot be a symmetric equilibrium. (We
could have chosen to close the interval at any µ > µ. The choice µ+1 was arbitrary.) To see that
λ
2
cannot be a symmetric equilibrium, observe that c′(λ

2
)< 1

λ
implies that U r

1 (µ1,
λ
2
) is increasing

at µ1 =
λ
2
(using the derivative of the idle time computed in (EC.28)), and hence server 1 would

have an incentive to deviate. Therefore, any symmetric equilibrium must be an interior point, and
from Theorem 11, such an equilibrium must be unique. This completes the proof.
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