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Abstract
With the increase in adoption of Electric Vehicles
(EVs), proper utilization of the charging infrastruc-
ture is an emerging challenge for service providers.
Overstaying of an EV after a charging event is a key
contributor to low utilization. Since overstaying is
easily detectable by monitoring the power drawn
from the charger, managing this problem primarily
involves designing an appropriate “penalty” during
the overstaying period. Higher penalties do dis-
courage overstaying; however, due to uncertainty
in parking duration, less people would find such
penalties acceptable, leading to decreased utiliza-
tion (and revenue). To analyze this central trade-
off, we develop a novel framework that integrates
models for realistic user behavior into queueing dy-
namics to locate the optimal penalty from the points
of view of utilization and revenue, for different val-
ues of the external charging demand. Next, when
the model parameters are unknown, we show how
an online learning algorithm, such as UCB, can
be adapted to learn the optimal penalty. Our ex-
perimental validation, based on charging data from
London, shows that an appropriate penalty can in-
crease both utilization and revenue while signifi-
cantly reducing overstaying.

1 Introduction
As the number of on-road Electric Vehicles (EVs) increases
rapidly, lack of adequate charging infrastructure is an area of
growing concern. For example, a recent New York Times
article reports that in California, scarcity of park-and-charge
spots is a chronic problem: “Electric-vehicle owners are un-
plugging one another’s cars, trading insults, and creating
black markets and side deals to trade spots in corporate park-
ing lots” [Richtel, 2015]. While investing in a wide-spread
deployment of charging stations by both public and private
service providers is needed to address the infrastructure prob-
lem [Gopalakrishnan et al., 2016] in the long-term, effective
use of the existing charging infrastructure can help in signifi-
cantly reducing this problem. In particular, curbing improper
utilization of park-and-charge spots can improve their avail-
ability. Two prominent causes of utilization degradation are

(i) the overstaying problem, where an EV continues to oc-
cupy a park-and-charge spot even after it is fully charged,
and (ii) the “icing” problem, where a gas-powered car (In-
ternal Combustion Engine or ICE vehicle) occupies a park-
and-charge spot.

While icing and overstaying in park-and-charge spots are
illegal in increasingly many jurisdictions, there is little or
no enforcement [Loveday, 2013], as a result of which the
frustrated users resort to ad-hoc measures ranging from mild
(e.g., leaving courtesy notices) [Blink, 2012; 2015] to drastic
(e.g., publicly shaming the violator by posting a picture of the
violation showing the violator’s license plate on blogs and so-
cial media) [Tumblr, 2015; Zapatag, 2015]. Extension cables
that can help charge a vehicle parked a few spots away from
an occupied park-and-charge spot are available in the mar-
ket, but are very expensive [Moloughney, 2015]. A longer
term solution to these problems, however, will require both
enforcement and an appropriate penalty for these events.

While enforcement with heavy penalty may help curb ic-
ing, a gentler approach is prudent to manage overstaying EVs.
Depending on the demand for charging, overstaying EVs po-
tentially block access to other EVs that might need charging,
and so, it is important to discourage such behavior by impos-
ing penalties. But, imposing too high a penalty might turn
away EVs from using the park-and-charge facility altogether
due to increased risk of a steep fine, since EV users may not
exactly know their parking duration beforehand.

Our central contribution in this paper is a novel framework
that combines a realistic user behavior model with traditional
queueing dynamics to capture this trade-off and study the op-
timal penalty from the points of view of both utilization and
revenue. Next, when the model parameters are unknown, we
show how the well known UCB[Auer et al., 2002] learning
algorithm can be adapted to learn the optimal penalty over
a period of time. Our experiments, based on charging data
from London, show that an appropriate penalty results in in-
creased utilization and significantly increased revenue. Also,
perhaps surprisingly, we observe that the utilization achieved
by imposing the revenue-maximizing penalty is very close to
the maximum utilization.

1.1 Related Work
Dynamic pricing of parking has been an area of active study
in the transportation literature. In [Zoeter et al., 2014;
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Rowe and Fiorucci, 2011], the authors present dynamic pric-
ing schemes for regular parking based on estimated demand
to reduce both congestion and underuse. On the other hand,
significant work has also been done on dynamic pricing of
electric vehicle charging. In [Tushar et al., 2012], the authors
model the problem as a Stackelberg game between the smart
grid as the leader setting the price, and the vehicle owner as
the follower deciding their charging strategies. In [Anglin et

al., 2013; Gadh et al., 2012; Hafner et al., 2009], dynamic
pricing of electricity for charging EVs is proposed based on
the usage data in a given location and time. None of the above
work, however, consider the problem of overstaying EVs. To
the best of our knowledge, this is the first paper to investi-
gate designing penalty schemes for park-and-charge facilities
to combat overstaying EVs.

To address the situation where the probability distributions
required for modelling user behaviour remain unavailable
to the system until the users are actually observed, and the
user behaviour needs to be learned over time, we model our
problem as a Multi-Armed Bandit (MAB) problem, which
has been well studied [Bubeck and Cesa-Bianchi, 2012;
Auer et al., 2002; Cesa-Bianchi, 2006; Agrawal, 1995] and
applied to a wide variety of domains such as crowdsourcing,
online advertising, dynamic pricing, and smart grids. How-
ever, we are not aware of any application of MABs to the
park-and-charge scenario.

2 Park-and-Charge System Model
We adopt a simple three-part model for a parking area:
(a) Section 2.1 introduces the pricing function (during charg-
ing) and penalty function (during overstaying) for an EV,
(b) Section 2.2 models how EV users respond to the posted
penalty scheme, i.e., whether they agree to its terms and enter
the parking area, and if so, how long they stay, and (c) Sec-
tion 2.3 models the flow of EV users in and out of the parking
area using queueing dynamics. We end the section by defin-
ing some performance measures of interest in Section 2.4.

2.1 Pricing and Penalty Functions
Let the price function while actively charging be p

c

(t) and the
penalty function for overstaying at a park-and-charge spot af-
ter charging is complete be p

o

(t), where p
c

(0) = p
o

(0) = 0,
and p

c

(t) and p
o

(t) are continuous, nondecreasing functions.
In addition, we assume that p

o

(t) is a strictly increasing func-
tion, since we will need its inverse function, p�1

o

, to be well
defined.1 To be realistically implementable (easily under-
standable by an average user), these functions should not
be more complicated than simple piecewise linear functions;
however, our framework is general and can accommodate ar-
bitrary functions. These functions are illustrated in Figure 1.

2.2 EV User Behavior
We define the following parameters, for each EV user:

• T
c

, the duration of time it would take to fully charge their
electric vehicle from the initial state,

1The framework can be extended to the case where p
o

(t) is not strictly increasing,
by defining p

�1

o

(x) = sup{t : p

o

(t) = x}. This could accommodate, for example,
an initial “grace period” (no penalty) after charging is complete.

Figure 1: Pricing and penalty functions for an example sce-
nario.

• T
a

, the length of their appointment, i.e., the EV user’s
preferred parking duration, and

• C
max

, the penalty threshold, i.e., the maximum penalty
due to overstaying that they would bear for the conve-
nience of an uninterrupted appointment.

Let T
c

, T
a

, C
max

be independent, nonnegative random vari-
ables with cumulative distribution functions F

c

, F
a

, F
max

.

Penalty Acceptance Probability: When a user arrives at the
parking area and inspects the posted penalty scheme, they
know their T

c

and C
max

, but they may not know exactly how
long their appointment will last; hence T

a

is not yet realized.
However, the user can still estimate the likelihood that their
penalty would not exceed C

max

, as follows:

q = Pr (p

o

(T

a

� T

c

)  C

max

) = F

a

(T

c

+ p

�1

o

(C

max

)). (1)

Thus, we assume that an arriving user will enter the parking
lot with probability q. Let q denote its mean, given by:

q =

Z Z

F

a

⇣

T

c

+ p

�1

o

(C

max

)

⌘

dF

c

dF

max

. (2)

Actual Parking Duration: If a user decides to enter the park-
ing area, they park their EV at a park-and-charge spot and
leave for their appointment. T

a

is then realized, and if it ex-
ceeds T

c

+ p�1
o

(C
max

), we assume that the user reluctantly
interrupts their appointment to avoid paying more than C

max

penalty. Thus, the actual parking duration is given by:2

T

pc

= min

n

T

c

+ p

�1

o

(C

max

), T

a

o

, (3)

and hence, the duration of time the EV overstays is given by:

T

o

= (T

pc

� T

c

)

+

= max{T
pc

� T

c

, 0}. (4)

Revenue Collected: The revenue from an EV’s time at the
park-and-charge spot (the cost to the EV user) is given by:

R = p

c

(T

pc

� T

o

) + p

o

(T

o

). (5)

2.3 Queueing Model
Since there is a finite number of park-and-charge spots in the
parking area, the impact of overstaying depends on the arrival
process to the parking lot, e.g., if the inter-arrival times are

2If the realized value of T
a

is less than T

c

, we assume that the user leaves imme-
diately after T

a

time units, without waiting for their EV to finish charging.
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uniformly distributed with a low arrival rate, a limited amount
of overstaying may be harmless, as opposed to a high arrival
rate during weekends at a mall. We capture such phenom-
ena using an M /G/N /N queueing model [Kleinrock, 1975],
where the EVs that accept the posted penalty scheme and en-
ter the parking lot are the “jobs”, and the N park-and-charge
spots are the “servers”. The parameters and assumptions are:

• EVs arrive at the parking area according to a Poisson
process with rate �. However, only those EVs whose
users accept the posted penalty scheme (with probabil-
ity q), and enter the parking area are counted for fur-
ther analysis. Using the total probability theorem and
the well known “Poisson splitting” property, it can be
shown [Biswas et al., 2016] that this “filtered” arrival
process is still Poisson, with rate � q.

• An arriving EV that finds all N park-and-charge spots
occupied leaves the system (there is no waiting). Other-
wise, the EV stays at a park-and-charge spot for a dura-
tion of T

pc

; thus, the service times are i.i.d. according to
the cumulative distribution function of T

pc

.3

If N
pc

is the random variable denoting the number of EVs
in the parking area, then its steady state distribution is:

Prob (N

pc

= i) =

⇢

i

/i!

P

N

j=0

⇢

j

/j!

, 0  i  N, (6)

where ⇢ = � q E[T
pc

] is the “offered load”. Thus, in steady
state, the mean number of EVs in the parking area is:

E[N
pc

] = ⇢

 

1�
⇢

N

/N !

P

N

j=0

⇢

j

/j!

!

. (7)

2.4 Performance Measures
We define the following performance measures of interest.
Throughout, T > 0 denotes an arbitrary duration of time.
(a) Throughput: The throughput of the park-and-charge

system, denoted by ⌧ , is the average rate at which EV
users leave the park-and-charge area, given by:

⌧ =

E[N
pc

]

E[T
pc

]

. (8)

(b) Overstay: The fraction of time spent overstaying at park-
and-charge spots, denoted by �

o

, is given by:

�

o

=

Overstaying Time
Total Time

=

⌧ T E[T
o

]

N T

=

E[N
pc

]

N

E[T
o

]

E[T
pc

]

. (9)

(c) Utilization: The utilization, denoted by �
u

, is defined as
the fraction of time the park-and-charge spots were used
for charging, and is given by:

�

u

=

Charging Time
Total Time

=

⌧ T E[T
pc

� T

o

]

N T

=

E[N
pc

]

N

✓

1�
E[T

o

]

E[T
pc

]

◆

.

(10)

(d) Revenue Rate: The revenue rate R is defined as the av-
erage rate at which revenue is accrued from the park-and-
charge spots, and is given by:

R =

Total Revenue
Total Time

=

⌧ T E[R]

T

=

E[N
pc

] E[R]

E[T
pc

]

. (11)

3This could be a general distribution; however, in an M /G/N /N system, the sta-
tionary distribution of its Markov chain (that tracks the number of EVs) depends on the
service time distribution only through its mean.

When T
c

, T
a

, C
max

are generally distributed, and the
price/penalty functions p

c

(t), p
o

(t) are general, the above
quantities do not admit closed form expressions, and we de-
fer their mathematical derivations to the full version [Biswas
et al., 2016]. However, in Section 3, we investigate a sim-
ple special case where the price/penalty functions are linear,
T
c

and T
a

are Exponentially distributed, and C
max

is a con-
stant, and derive closed form expressions for these perfor-
mance measures.
Benchmarking Performance: In order to measure the ef-
fectiveness of our penalty scheme, we benchmark it against
a system with ideal human behavior, one in which the EV
users, on their own, do not overstay, i.e., T

pc

= min{T
c

, T
a

}.
Here, q = 1, and the revenue from (5) is simply p

c

(T
pc

).

3 Example Scenario: Linear Functions,
Exponential Distributions

In this section, we consider a simplified scenario for which
we derive closed form expressions for the performance mea-
sures, which allows better analysis of the effectiveness of im-
posing simple, linear penalties for overstaying. In particular,
we assume:

• Linearity: Let p
c

(t) = ↵
c

t and p
o

(t) = ↵
o

t, where
↵
c

> 0 and ↵
o

� 0 are the parameters.
• T

c

and T
a

are Exponentially distributed with parameters
µ
c

and µ
a

respectively.
• C

max

is not a random variable, but a constant.
Due to limited space, we defer the often nontrivial inter-
mediate steps in evaluating the expressions to the full ver-
sion [Biswas et al., 2016].

Under the above assumptions, the acceptance probability q
from (1) and its mean q from (2) can be evaluated to obtain
q = 1� �e�µa

T

c and q = 1� �µ

c

µ

a

+µ

c

respectively, where

� = e

�µ

a

C

max

↵

o

. (12)

Conditional Distribution of T
c

: While T
c

is Exponentially
distributed by assumption, given that (with probability q,) an
EV accepts the posted penalty and enters the parking lot (call
this event E), the conditional random variable T

c

|E need not
be Exponential. (T

a

remains unchanged, since E does not
depend on it.) Thus, we first compute the conditional proba-
bility density function, f

c|E , using Bayes’s rule, to obtain:

f

c|E(T

c

) =

q f

c

(T

c

)

q

=

1

q

µ

c

e

�µ

c

T

c

⇣

1� �e

�µ

a

T

c

⌘

.

3.1 Distribution and Mean of T
pc

The complementary cumulative distribution function of T
pc

,
defined as F

pc

(t) = Prob(T
pc

> t), can be evaluated as:

F

pc

(t) =

8

<

:

e

�µ

a

t

, t  C

max

↵

o

e

�µ

a

t

q

e

�µ

c

⇣

t�C

max

↵

o

⌘

⇣

1� µ

c

µ

a

+µ

c

e

�µ

a

t

⌘

, t >

C

max

↵

o

Thus, the mean, given by
R1
0

F
pc

(t)dt, can be evaluated as:

E[T
pc

] =

1

µ

a

�
�

2µ

a

+ µ

c

✓

µ

a

+ µ

c

µ

a

�
µ

a

µ

a

+ (1� �)µ

c

◆

. (13)
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3.2 Distribution and Mean of T
o

The complementary cumulative distribution function of T
o

,
defined as F

o

(t) = Prob(T
o

> t), can be evaluated as:

F

o

(t) =

(

e

�µ

a

t

q

⇣

µ

c

µ

a

+µ

c

� �µ

c

2µ

a

+µ

c

⌘

, t <

C

max

↵

o

0, t � C

max

↵

o

Thus, the mean, given by
R1
0

F
o

(t)dt, can be evaluated as:

E[T
o

] =

1� �

2µ

a

+ µ

c

✓

µ

a

+ µ

c

µ

a

�
µ

a

µ

a

+ (1� �)µ

c

◆

. (14)

3.3 Mean Revenue
When the pricing/penalty functions are linear, the revenue de-
fined in (5) is given by R = ↵

c

(T
pc

� T
o

) + ↵
o

T
o

, and by
linearity of expectations, its mean can be evaluated to obtain:

E[R] =

↵

c

2µ

a

+ µ

c

✓

1 +

µ

a

µ

a

+ (1� �)µ

c

◆

+ ↵

o

E[T
o

]. (15)

3.4 Performance Measures
By inspecting the expressions, it can be seen that � is increas-
ing in ↵

o

. Hence, with increasing penalty, E[T
pc

] increases
and E[T

o

] decreases. The other quantities, including perfor-
mance measures (8)-(11), are more complicated and their be-
havior is not obvious from inspection. We omit a detailed
analysis with plots due to space constraints. As an example,
when we set N = 10 slots, � = 8 EVs per hour, µ

c

=

60

45

per hour, µ
a

=

60

105

per hour, C
max

= $4, ↵
c

= $2 per hour,
we find that setting the penalty rate ↵

o

= $2.37 per hour pro-
vides the maximum value of utilization (30%), whereas the
utilization with no penalty is about 26%. (The ideal utiliza-
tion when there is no overstaying is 42%.) From the point of
view of revenue, setting the penalty rate ↵

o

= $3.07 per hour
provides the maximum revenue rate of $15.36 per hour, but
the decreased utilization at this penalty rate is only slightly
less, at 29.5%. (The ideal revenue when there is no overstay-
ing is merely $8.34 per hour.) Thus, the revenue maximizing
penalty rate provides increased utilization (by 4%), as well as
significantly increased revenue (by 85%).

4 Dynamic Environment
In this section, we consider a real world setting where no prior
information about the distributions F

c

, F
a

, F
max

is known,
and thus, the expressions for the performance measures are
also unknown to the framework. We assume that these distri-
butions are unknown, but fixed for the day; hence, the utiliza-
tion and revenue for the day depend only on ↵

o

.
In our model, on each day, a penalty rate ↵

o

is declared at
the entrance to the parking area. Arriving customers behave
according to their T

c

, T
a

, C
max

values (which are unknown
to the system, but known to the customers), and the posted
penalty rate ↵

o

; their behavior is as described in Section 2.2.
The system observes the customer behavior only after they
enter the parking area. Thus, the performance measures (such
as revenue rate, utilization, etc.) corresponding to penalty rate
↵
o

are only observed at the end of the day. The task is to find

an optimal penalty rate ↵⇤
o

for each day, such that the total
revenue over all days is maximized.4

This problem is an example of sequential decision making
in an unknown and dynamic environment, where the system
seeks to optimize the average revenue over all days, while
continuously gathering more information about the revenue
obtained by using different penalty rates ↵

o

. This leads to
a trade-off between exploration (imposing each penalty rate
↵
o

sufficiently often to obtain better estimates of the corre-
sponding revenue accumulated) and exploitation (frequently
imposing the optimal penalty for which the observed revenue
is maximized). Such problems naturally fall into the category
of stochastic multi-armed bandit (MAB) problems [Bubeck
and Cesa-Bianchi, 2012]. Each penalty rate ↵

o

is considered
as an arm, and the daily revenue obtained by imposing that
penalty rate is analogous to the reward obtained by pulling
the corresponding arm. The goal in the MAB setting is to de-
termine the arm to be pulled each time in order to maximize
the total reward obtained.

4.1 Learning Algorithm UCB-PC
Let A denote a finite, ordered set of penalty rates, and let R

i

denote the expected daily revenue corresponding to penalty
rate A[i], which is unknown. The (unknown) optimal penalty
rate is thus given by A[i⇤], where i⇤ = argmax

i

R
i

. In or-
der to estimate {R

i

}, on each day, we impose a penalty rate
and observe the daily revenue, which is the sum of the pay-
ments made by the customers who choose to enter the park-
ing area that day.5 In doing so, we keep track of the observed
average daily revenues { ˆR

i

}, which are then used to gradu-
ally learn the optimal penalty rate A[i⇤] for the parking area.
Algorithm 1 is based on the techniques used in the UCB1 al-
gorithm [Auer et al., 2002], which is a well known tool for
solving stochastic multi-armed bandit problems. However,
UCB1 assumes that the system is allowed to run only for a fi-
nite number of trials T (“finite horizon multi-armed bandit”),
whereas we operate under the assumption that the system runs
for infinite time, and must therefore tackle the challenges in-
volved in adapting UCB1 to the infinite horizon setting.6

Algorithm 1 UCB-PC
1: Input: A finite set A of penalty rates
2: TR

i

stores the total observed revenue for A[i]

3: K

i

stores the number of days A[i] is imposed
4: for t 1 to |A| do
5: Choose penalty rate A[t] on t

th day; Observe revenue earned r;
6: Set TR

t

 r; Set K
t

 1;
7: Find i

⇤
= argmax

i

⇣

TR
i

+

p

2 ln |A|
⌘

;
8: for t |A| + 1, |A| + 2, . . . do
9: Choose penalty rate A[i

⇤
] on t

th day; Observe revenue earned r;
10: Update TR

i

⇤  TR
i

⇤ + r; Update K

i

⇤  K

i

⇤ + 1;
11: Update ˆR

i

⇤  TR
i

⇤
K

i

⇤

12: Find i

⇤
= argmax

i

⇣

ˆR
i

+

q

2 ln t

K

i

⌘

for (t + 1)

th day;

4Variants of the technique presented here can be used for other performance mea-
sures such as utilization or overstay.

5We observe, for each customer, whether they choose to enter the parking area or
not, and if they do, their charging and overstaying times, as well as their final payment.

6While UCB1 was our choice to illustrate the technique, we believe that our frame-
work can also accommodate modified versions of other stochastic multi-armed bandit
algorithms (such as EXP3).
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4.2 Performance Analysis
In this section, we compare the performance of our learning
algorithm with an optimal algorithm that knows the expected
revenues {R

i

} beforehand, and can therefore choose the opti-
mal penalty A[i⇤] every day. The loss incurred by the learning
algorithm over K days is termed as the regret L

K

, and can be
written as

L
K

= K ·R
i

⇤ �

0

@

|A|
X

i=1

E[K
i

(K)]R
i

1

A

=

|A|
X

i=1

E[K
i

(K)](R
i

⇤ �R
i

) (16)

where E[K
i

(K)] denotes the expected number of days
(out of K) that penalty rate A[i] is chosen by our learning
algorithm. In the literature, the performance of multi-armed
bandit algorithms is measured by obtaining an upper bound
on this regret. In [Auer et al., 2002], the authors show that
the upper bound on the regret using UCB1 is sublinear within
a finite, fixed horizon T ; in particular, they show that the
regret is bounded above by a term that is ˜O(log T ). Next,
in Theorem 1, we show that the regret for UCB-PC is upper
bounded by ˜O(logK) after the algorithm runs for K days,
for all K.

Theorem 1. The expected regret of UCB-

PC, after the algorithm runs for K days, is

|A|X

i=1

i 6=i

⇤

✓⇠
8 lnK

(R
i

⇤ �R
i

)

2

⇡
+ 1 +

⇡2

3

◆
(R

i

⇤ �R
i

).

Proof Sketch: The proof follows from [Auer et al., 2002],
where the upper bound for regret is obtained by bounding the
expected number of times an arm is pulled. In our case, the
upper bound on E[K

i

(K)] for each i 6= i⇤ is given by:

E[K
i

(K)]  ⌧ +

K�1

X

t=⌧

P (A[i] is imposed on day (t + 1) ^ K

i

(t) � ⌧) (17)

for any finite positive integer ⌧ . Next, in Lemma 1, we
show that, for any suboptimal penalty index i 6= i⇤, the
term P (A[i] is imposed on day (t+ 1) ^ K

i

(t) � ⌧) is de-
creasing in t after sufficient exploration.
Lemma 1. For any i 6= i⇤, if penalty rate A[i] is chosen

for at least

l
8 ln t

(R
i

⇤�R
i

)

2

m
days among the first t days, then,

P (A[i] is imposed on day (t+ 1) ^ K
i

(t) � ⌧)  2

t

2

.

Proof. We begin by writing,

P (A[i] is imposed on day (t+ 1) ^ K
i

(t) � ⌧)

=

tX

s

0
=1

tX

s=⌧+1

P (A[i] is imposed on day (t+ 1)

^ K
i

(t) = s ^ K
i

⇤
(t) = s0) .

(18)

After running UCB-PC for t days, a suboptimal penalty in-
dex i 6= i⇤ is chosen only when ˆR

i

⇤ +

q

2 ln t

s

0  ˆR
i

+

q

2 ln t

s

. Let this event be denoted by W . Also, let U de-
note the event

⇣

ˆR
i

⇤  R
i

⇤ �
q

2 ln t

s

0

⌘

, and V denote the event

✓

ˆR
i

� R
i

+

q

2 ln t

s

◆

. Now, the probability of choosing penalty

rate A[i] on the (t+ 1)

th day can be written as:
P (W )  P(W |U)P(U) + P(W |V )P(V ) + P(W | ¯U ^ ¯

V )P( ¯U ^ ¯

V ). (19)

Using the Chernoff-Hoeffding’s inequality, it can be shown

that P(U) = P
⇣

ˆR
i

⇤  R
i

⇤ �
q

2 ln t

s

0

⌘

 e

�2

✓r

2 ln t

s

0

◆

2

s

0
=

1

t

4

,
and P(V ) = P

✓

ˆR
i

� R
i

+

q

2 ln t

s

◆

 1

t

4

. Next, we show that
P(W | ¯U ^ ¯

V ) = 0 if s � 8 ln t

(R
i

⇤�R
i

)

2

.
First, we observe that the events ¯U and ¯V can be equivalently
written as:

¯

U , ˆR
i

⇤ > R
i

⇤ �
r

2 ln t

s

0 , R
i

⇤ <

ˆR
i

⇤ +

r

2 ln t

s

0

¯

V , ˆR
i

< R
i

+

r

2 ln t

s

, ˆR
i

+

r

2 ln t

s

< R
i

+ 2

r

2 ln t

s

(20)

Then, we show that if (20) holds and s � 8 ln t

(R
i

⇤�R
i

)

2

, then
the event W is a contradiction:

W , ˆR
i

⇤ +

r

2 ln t

s

0  ˆR
i

+

r

2 ln t

s

) R
i

⇤ < R
i

+ 2

r

2 ln t

s

)R
i

⇤ < R
i

+

q

(R
i

⇤ �R
i

)

2 ) R
i

⇤ < R
i

⇤ ,

which is a contradiction. Finally, substituting the results of
the above evaluations in (19), we get P(W )  2

t

4

, which in
turn, can be substituted in (18) to obtain

P(A[i] imposed on (t+ 1)thday) 
tX

s0=1

tX

s=⌧+1

2
t4

 2
t2
.

This completes the proof.

Using Lemma 1 and substituting ⌧ =

l
8 lnK

(R
i

⇤�R
i

)

2

m
in (17),

we obtain the required upper bound on regret that is specified
by Theorem 1. It can be shown that L

K

=

˜O(lnK) for a
fixed set of penalty rates. Thus, the average daily regret, given
by L

K

K

, vanishes as K ! 1.

5 Experimental Results
For simulating the behavior of electric vehicles we
study real-world data for the city of London, obtained
from [www.gov.uk, 2013], which consists of 9961 charging
events, including usage data of charge points and the duration
of stay for EVs. We find it difficult to fit a single parametric
model to these data without any restrictions.7 Therefore, we
only look at data entries that correspond to the “standard”
charging point type and a specific duration of parking time
(between 30 minutes and 180 minutes), in order to fit them
in a single parametric model. We assume that the charging
duration data corresponds to T

c

and the parking duration data
corresponds to T

a

, the duration for which customers would
park their car in the absence of any penalties. The histogram
for the restricted parking duration data and charging duration
data are shown in Figures 2 and 3.

7Mixture models can be effective, since they reveal the hidden heterogeneity that
arises from a latent categorical variable such as charging point type, parking duration
(very short, standard, long), time of arrival (peak hours and non-peak hours), etc.

2469



Figure 2: Histogram of
parking duration data

Figure 3: Histogram of
charging duration data

The distributions that best fit these histograms (using Math-
ematica) correspond to a uniform distribution between 30

minutes and 180 minutes for T
a

, and a generalized Gamma
distribution with parameters µ = �1.35188, scale parameter
33.7831, and shape parameters 1.44212 and 1.19403, for T

c

.
We assume that the penalty threshold C

max

is a discrete
random variable that takes values $4, $8, $10, $20 with
probabilities 0.4, 0.3, 0.2, 0.1 respectively. We also assume
a linear pricing function during charging, with rate ↵

c

= $2

per hour. We simulate vehicles arriving to a parking area
with 10 charging slots for a 6 hour time period, assuming
that the arrivals follow a Poisson distribution with rate 10 per
hour. We also assume that when all the slots of a parking lot
are occupied, arriving users do not wait for a slot to be free
and immediately leave the parking area. We perform two sets
of experiments, discussed next.

Experiment 1: We simulate the parking area for a 6

hour time period per day for 100 days. Then, we observe
the utilization and revenue obtained for each day by em-
ploying a linear penalty function p

o

(t) = ↵
o

⇤ t with
↵
o

2 {0, 1, 2, 3, 4, 5, 6}. Note that ↵
o

= 0 corresponds to
the “no-penalty” scenario. We compare these results against
an ideal benchmark where EV users do not overstay at all.
Figure 4 shows the results averaged over the 100 days.

Figure 4: Comparing the utilization and total revenue ob-
tained by imposing penalty, no penalty and when no customer
overstays

Utilization: The utilization of the parking area increases (dark
blue line) after imposing a small penalty as compared to when
no penalty (red dotted line) is charged. However, when a high
penalty is imposed, most of the EV users decide not to enter
the parking area, resulting in a steep drop in utilization. With
a penalty rate $4 per hour, the utilization is maximum, and
also very close to the ideal utilization when there is no over-
staying by the EV users (green line). Thus, imposing just a
small penalty helps improve the utilization of charging spots
in the parking area significantly.

Revenue: The daily revenue from the parking area quickly
increases even after imposing a small penalty for overstay-
ing. The daily revenue obtained in the ideal situation of
no overstaying is more than when no penalty is imposed
(albeit only slightly so), since more customers are served
in the former situation than the latter. As the penalty rate
increases, the daily revenue follows the same pattern as the
utilization, and for the same reasons. It should be noted that
the penalty rate $4 per hour also maximizes the daily revenue.

Experiment 2: We simulate the parking area for two differ-
ent settings: (a) the optimal penalty rate ↵⇤

o

is chosen on all
days, where ↵⇤

o

is calculated by approximately) maximizing
the total expected revenue with complete knowledge of
all the underlying distributions that are used, and (b) our
learning algorithm UCB-PC determines the best ↵

o

for each
day, based on the observed parameters for all previous days.
We compare the convergence of the average revenue obtained
by our learning method to the average revenue obtained by
the (approximately) optimal method. Figure 5 shows the
results.

Figure 5: Comparing the performance of UCB-PC with respect
to the optimal algorithm

We observe that the penalty rates chosen by our learning
algorithm UCB-PC are almost equivalent to that of the optimal
algorithm after 15 days in terms of the daily revenue obtained.
We also show the difference between the total revenue by the
optimal algorithm and UCB-PC averaged over the number of
days, along with the theoretical upper bound given in Theo-
rem 1. As expected, it can be seen that the average difference,
that is, L

k

k

, decreases with increase in the number of days af-
ter sufficient exploration (15 days).

6 Concluding Remarks
In this paper, we undertake a formal study, for the first time,
of the problem of overstaying EVs in park-and-charge spots.
We establish a novel framework in which we bring together
an interdisciplinary mix of models and techniques: proba-
bilistic user behaviour, queueing dynamics, online learning.
This framework can be extended to accommodate different
user behaviour models, queueing dynamics, and other learn-
ing techniques. One can imagine “instantiating” it for mul-
tiple parking areas in a city with a model for the population
of EV users and study the interaction at a higher level, e.g.,
competition between parking lots. When viewed as a com-
prehensive model for park-and-charge, our framework could
serve as a useful tool for future research.
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