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Abstract— In this paper we study the impact of information
in a simple multiagent collaborative task – graph coloring.
Inspired by the experimental study in [4], we study distributed
algorithms for graph coloring where individual nodes are peri-
odically given the opportunity to adjust their color in response
to information regarding the color choice of neighboring nodes.
When granted such an opportunity, each node chooses an
admissible color (if available) that is more prevalent than its
current color in its neighborhood. Focusing on the family of
ring graphs, our findings demonstrate that there is an inherent
trade-off between efficiency and convergence rates for such
an algorithm. While increasing the information to the nodes
improves the efficiency of the emergent coloring profile, it is also
degrades the underlying convergence rates. The degradation
in convergence rates provides one possible explanation for the
findings in [4], which demonstrate that providing additional
information to the nodes, which were controlled by human
participants, can actually lead to losses in the efficiency of the
emergent coloring profile. These losses could be a byproduct of
the human participants not having the desire or time to stay
engaged long enough in the revision process.

I. INTRODUCTION

Information plays a fundamental role in the coordination
of multiagent systems. The information available to the
individual agents, either attained through communication or
sensing, invariably influence their local decisions which in
turn influence the emergent global behavior. These infor-
mational restrictions are often viewed as hard constraints
that the underlying control design must satisfy; however,
by allowing agents to communicate with one another, infor-
mation transitions from being a hard constraint to a design
choice. The focus of this paper is to shed some light on
how information, or the lack thereof, impacts performance
guarantees in multiagent systems.

The field of networked control systems has long sought
to attain a general understanding of how the architecture
associated with distributed decision-making systems impacts
achievable performance guarantees. Here, we use the term
architecture to encompass both the structure of the decision
making rule and the structure of the underlying informational
dependence. Recent studies have focused on characterizing
the implications of architecture on achievable performance
guarantees when viewing the underlying architecture from
the perspective of information structures [7], sparsity patterns
[5], desired structures on the agents’ control policies [6],
[14], among others. Irrespective of the specific problem
setting, the underlying message associated with these results
is clear – architectural constraints can dramatically impact
performance guarantees in multiagent systems.
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Our understanding of the relationship between architecture
and performance is becoming increasingly unclear as the
complexity associated with multiagent systems expands with
the addition of human decision-making entities, adversarial
components, and system uncertainty. For example, consider
the classical sensor-coverage problem where the goal is
to design local agent control policies that ensure desirable
collective behavior irrespective of the state of the mission
space [9]. While this example has been extensively studied
in the literature [1]–[3], [9], it is currently unresolved as to
what are the agent control policies that optimize efficiency
guarantees for a given measure of locality.

A recent result in [8] has sought to shed light on this
issue by identifying how a measure of locality in the agents’
control laws directly translate to a bound on the achievable
efficiency guarantees in spatially distributed multiagent sys-
tems. With regards to the above sensor coverage problem,
the vast majority of the literature interprets local as agents
having access to information pertaining to their local mission
space as defined by their Voronoi partition [1]–[3], [9]. The
result in [8] demonstrate that if agents only have access
to this information, then it is impossible to guarantee that
the emergent collective behavior of a system comprised
of n agents performs any better than a system comprise
of just a single agent. Hence, we inherit the complexity
associated with a multiagent system without any provable
performance gains in comparison to a single agent system.
Nonetheless, [8] demonstrates that providing agents with
additional information can lead to control designs with much
improved performance guarantees.

This prompts the following question: does providing
agents with additional information always lead to improve-
ments in the performance guarantees associated with a mul-
tiagent system? A recent experimental study in [4] explores
this question in the context of humans participating in a
simple collaborative task – graph coloring. The goal of a
graph coloring problem is to associate each node in a graph
with a color such that (i) two neighboring nodes do not
use the same color and (ii) this color profile uses the least
number of colors possible. This experimental study focused
on identifying the quality of the emergent coloring profile
when human participants played the role of nodes in the
network, repeatedly adjusting the color of their nodes in
response to varying degrees of information regarding the
coloring choice of other nodes in the network. Focusing on
three degrees of information (Low, Medium, and High), the
findings showed that the efficiency of the emergent coloring
profile increased significantly as the degree of information
went from Low to Medium. However, the efficiency of
the emergent coloring profile degraded significantly as the
degree of information went form Medium to High. Hence,



providing the agents, i.e., human participants, with too much
information was detrimental from a system-wide perspective.

The focus of this paper is to understand the conflicting
stories between the two results highlighted above. In par-
ticular, is providing the agents with too much information
detrimental from a system-wide perspective? To shed light
onto this question, we focus on a distributed graph color-
ing problem inspired by [4], [12] where individual nodes
independently select their color using information regarding
the color choice of a set of neighboring nodes. To model
the human participants in [4], we associate each node with
a utility function that is increasing in the frequency of
the node’s color over its observable neighborhood. Here,
we focus on characterizing how the level of information
impacts both the efficiency of the stable coloring profile
(i.e., coloring profile that is a Nash equilibrium) and the
underlying convergence rates. Informally, our results are as
follows:

– In Theorem 3.2, we show that increasing the information
to the agents improves the efficiency of the stable coloring
profiles.

– In Theorem 3.3, we show that increasing the information to
the agents degrades the convergence rates associated with a
distributed adjustment process where agents seek to improve
their utility.

These findings demonstrate that increasing the level of in-
formation to the agents provides improvements according to
certain performance metrics (e.g., efficiency stable coloring
profiles) but losses according to other performance metrics
(e.g., convergence rates). This offers a potential explanation
for the findings in [4] as it is possible that the humans
did not have the desire (or time) to engage long enough to
see improvements in the efficiency of the emergent coloring
profile. Whether this apparent tradeoff between efficiency
and convergence rates is fundamental to multiagent systems
remains an open and interesting question.

II. MODEL AND PERFORMANCE METRICS

Graph coloring problems serve as a simple platform to
formally study the impact of information in multiagent
collaboration. The goal of a graph coloring problem is to
assign each node in a graph G = (V,E) a color ci ∈ C
such that (i) two neighboring nodes do not share the same
color and (ii) the coloring assignment uses the least number
of colors possible. Existing research has focused on both
centralized and distributed mechanisms for attaining near
optimal coloring assignments, e.g., [12], [13]. Here, we focus
on the distributed mechanisms where our goal to is to gain an
understanding of how the information available to the agents
impacts achievable performance guarantees.

To that end, we consider a game theoretic model for
a graph coloring problem where each node i ∈ V =
{1, 2, . . . , n} independently selects its color ci ∈ C using
information pertaining to the color choice of “local” nodes.
The information available to each node (or agent) is modeled
as the color choice of all nodes within k-hops, denoted by
N (k)
i ⊆ V , where k ∈ {1, . . . , n} is referred to as the locality

coefficient. A natural choice for the utility function of node
i ∈ V is

Ui(c1, . . . , cn) =
∑

j∈N (k)
i

I {ci = cj} , (1)

where I{·} is the indicator function and attention is restricted
to proper coloring profiles, i.e., coloring profiles of the form
(c1, . . . , cn) where ci 6= cj for any distinct nodes i, j ∈ V
where (i, j) ∈ E. Such utility functions can serve as a simple
platform to study distributed algorithms for graph coloring
problems where nodes gravitate to admissible colors that
are more prevalent in their observable neighborhoods. For
simplicity, we will denote a graph coloring game of the above
form merely by the tuple {G, k}.1

The goal of this paper is to understand how the informa-
tion available to the agents directly translates to achievable
performance guarantees with regards to the (i) efficiency
of the emergent behavior and (ii) the underlying rates of
convergence. The following game theoretic concepts will be
instrument in the forthcoming arguments.

– Potential games and pure Nash equilibria: The graph
coloring game {G, k} is a potential game, introduced in [10],
if there exists a potential function φ : Cn → R such that for
any coloring profile c ∈ Cn, agent i ∈ V , and alternative
color choice c′i ∈ C, we have

φ(c′i, c−i)− φ(ci, c−i) = Ui(c
′
i, c−i)− Ui(ci, c−i), (2)

where we often denote a coloring profile c as (ci, c−i) where
c−i = (c1, . . . , ci−1, ci+1, . . . , cn) represents the coloring
choice of all agents j 6= i. The existence of a potential game
ensures the existence of a pure Nash equilibrium2, which is
a coloring profile cne ∈ Cn such that

Ui(c
ne
i , c

ne
−i) = max

ci∈C
Ui(ci, c

ne
−i), ∀i ∈ V. (3)

– Better reply paths: A better reply path is a sequence of
coloring profiles c1, c2, . . . , cm ∈ Cn such that for each
successive coloring profiles c`, c`+1 there is exactly one
agent i ∈ V such that c`i 6= c`+1

i , i.e., c`+1 = (c`+1
i , c`−i),

and for that agent Ui(c`+1) > Ui(c
`). In other words, one

node adjusts his color at a time, and each time a node adjusts
his color he increases his own utility. In potential games, a
better reply path is acyclic and terminates at an equilibrium.
Accordingly, the upper and lower bounds regarding the
length of a better reply path serves as a simple proxy for
the convergence rates associated with a better reply process
[15]. Informally, a better reply process is a learning algorithm
that follows a better reply path with high probability.

– Efficiency of pure Nash equilibria: If a distributed
algorithm guarantees convergence to a Nash equilibrium,
then the efficiency guarantees associated with this distributed

1The agents’ utility functions could be naturally extended to all coloring
profiles by assigning a value of−∞ to any coloring profile that is not proper.
Furthermore, the proposed utility functions could be used to model the
behavior of the human subjects in the experimental study on collaborative
graph coloring in [4].

2We will henceforth refer to a pure Nash equilibrium as just an equilib-
rium.



algorithm are aligned with the efficiency of the worst per-
forming Nash equilibrium. To that end, consider a global
objective W : Cn → R, where W (c) represents the number
of colors used in an admissible coloring profile c. We
focus on evaluating the performance associated with the
worst-performing equilibrium. Such a measure is commonly
referred to as the price of anarchy [11], and takes on the
form

PoA(G, k) =
maxcne W (cne)

W (copt)
≥ 1 (4)

where copt represents the proper coloring profile that uses
the least number of colors. Here, the max operator in the
numerator is due to the fact that the equilibria need not be
unique for a given coloring game {G, k}.

III. MAIN CONTRIBUTIONS

In this section we present a formal analysis of the graph
coloring game depicted in Section II. We begin by demon-
strating that the graph coloring game is a potential game
irrespective of the locality coefficient or the structure of the
underlying graph provided that it is undirected. We then
proceed to formally analyze both the price of anarchy and
the length associated with the family of better reply paths
for the class of ring graphs.

A. Potential game structure
The first result in this manuscript demonstrates that the

graph coloring game depicted in Section II is a potential
game irrespective of the locality coefficient provided that
the underlying graph is undirected. The following theorem
makes this claim precise.

Theorem 3.1: Consider any graph coloring game {G, k}
where the graph G is undirected. For any locality coefficient
k ≥ 1, the coloring game is a potential game where the
potential function is given by

φ(c) =
1

2

∑
i∈V

Ui(c). (5)

We omit the proof of Theorem 3.1 for brevity. Theorem 3.1
demonstrates that the system behavior will eventually reach
an equilibrium when individual agents gravitate to commonly
used colors in their neighborhood, i.e., when agents follow
a better reply process. While this result seems natural and
intuitive, it is important to point out that each agent is re-
sponding to a limited view of the network that may be unique
to that particular agent. While these informational limitations
do not change the property that any better reply process
will converge to an equilibrium, they do have quite severe
implications on the efficiency of the emergent behavior and
the underlying convergence rates as we will show in the
ensuing sections.

B. A price of anarchy analysis for ring graphs
The remainder of this paper will focus on characterizing

properties regarding the price of anarchy and the length of
better reply paths when focusing purely on the simple class
of ring graphs. By ring graphs, we mean graphs of the form
G = (V,E) where the vertex set is V = {1, . . . , n} and
the edge set is E = {(1, 2), (2, 3), . . . , (n − 1, n), (n, 1)}.

Accordingly, we will now represent the above graph coloring
game on a ring graph merely by the tuple {n, k}. Ring graphs
provide a simple structural framework that can be exploited
to attain a clear characterization of how number of agents
n and the locality coefficient k impacts the performance
metrics of interest.

We begin with the following theorem which identifies how
the price of anarchy in (4) depends on the number of nodes
n and the locality coefficient k.

Theorem 3.2: Consider a graph coloring game {n, k} over
a ring graph. If n/k is sufficiently large, then the price of
anarchy satisfies

γ1 ·
(
n√
k

)
≥ PoA(n, k) ≥ γ2 ·

(
n

k

)
(6)

where γ1, γ2 > 0 are constants that do not depend on n or
k.3

Theorem 3.2 demonstrates an intuitive property regarding
the relationship between information and efficiency of equi-
librium in graph coloring problems. In particular, the upper
bound in (6) demonstrates that increasing the information to
the nodes, i.e., increasing the locality coefficient k, improves
the efficiency of the resulting equilibrium coloring profiles.

Proof: The following analysis will use addition and
subtraction over the vertices with the understanding that all
operations are modulo n.

We begin by establishing the lower bound in (6). In order
to do so, we will explicitly construct an equilibrium coloring
profile that satisfies the given bound. To that end, consider
a ring graph with n > 6 vertices and a locality coefficient
k < n/2. Define

α =

{
k + 2 if k is even,
k + 1 if k is odd.

Partition the ring graph into z =
⌊
n
α

⌋
different sec-

tions S1, . . . , Sz of contiguous vertices where the sections
S1, . . . , Sz−1 each consist of α vertices and the remaining
section Sz consists of n−(z−1)α ≥ α vertices. See Figure 1
for an illustration.

For each i ≤ z − 1, denote the vertices in each section
Si by a local index {1, . . . , α} where fi(m) ∈ {1, . . . n}
captures the global index of each node m ∈ {1, . . . , α}
in section Si. Likewise, denote the vertices in section Sz
by the local index {1, . . . , n − (z − 1)α} and define fz(·)
in a similar fashion. For each section Si, i ≤ z, consider
the alternating coloring assignment (c1, c2, . . . , cα−1, cα) =
(xi, yi, . . . , xi, yi) where the colors xi, yi ∈ C are unique to
section Si. The section Sz could end in either a xi or yi
depending upon whether the the number of nodes n is odd
or even. Note that the proposed coloring profile, which we
denote by cne, is indeed a proper coloring profile which uses
2z different colors.

We will now show that cne is in fact an equilibrium. For
simplicity, we will focus solely on the case where k is even
as similar arguments can be constructed for the odd case.
First, note that Ui(cne) ≥ k/2 + 1 for all vertices i ∈ N . In

3The term n/k is sufficiently large for any n and k satisfying k ≥ 4 and
n ≥ k3/2.
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Fig. 1: Example of an equilibrium coloring when n = 24 and
k = 6. There are three sections of 8 contiguous vertices. Each
section uses two colors.

fact, for any q ∈ Si, i ≤ z − 1, we actually have

Ufi(q)(c
ne) =

k

2
+ 1,

as any node can observe all nodes choosing its same color.
Since we are restricting our attention to proper colorings, this
means that any agent can only deviate to alternative coloring
choices not in its section. Since the locality coefficient is k,
each node i ∈ Sj , j ∈ {1, . . . , z}, is able to observe the
colors of at most k nodes in either set Sj−1 or Sj+1. Because
of the alternating colors in each section, we have that for any
color c′i ∈ C

Ui(c
′
i, c

ne
−i) ≤

k

2
+ 1.

Hence, cne is in fact an equilibrium as no agent has an
incentive to deviate from the color cne

i . Figure 1 provides
an illustration of one such coloring profile.

Since the optimal coloring profile uses either 2 or 3 colors,
depending on whether n is even or odd, a lower bound on
the price of anarchy is

PoA(n, k) ≥ 2

3

⌊
n

k + 2

⌋
≥ n

6k
,

where the last inequality holds whenever k ≥ 2 and n ≥ 2k.
We now move on to a proof of the upper bound for the

number of colors used in any equilibrium cne. To do this, we
focus on two different classes of colors used in cne, which
we refer to as global and local colors respectively. These
color types are defined as follows:
• A global color cg ∈ C in a coloring profile c ∈ Cn is any

color that populates the entire ring graph. In particular,
given any contiguous k nodes {i+ 1, i+ 2, . . . , i+ k},
there exists at least one node j ∈ {i+1, i+2, . . . , i+k}
such that cj = cg .

• A local color is any color that is not a global color.
Accordingly, given any coloring profile c ∈ Cn, each
local color c` ∈ C has both a starting index and ending
index, denoted by ` and ¯̀ respectively, where c` = c¯̀ =
c` and cj 6= c` for any j ∈ {` − k, . . . , ` − 1} ∪ {¯̀+
1, . . . , ¯̀+ k}.

The number of colors use in an equilibrium coloring profile
is

|cne| = |cne|g + |cne|`, (7)

where | · |g and | · |` capture the number of local and global

colors in the coloring profile cne. Trivially, we have that
|cne|g ≤ k. The remaining part of this proof will focus on
establishing an upper bound on the number of local colors,
|cne|`.

To construct an upper bound on |cne|`, we focus on
identifying how many local colors can have a starting index
in a segment of contiguous vertices of length k, which for
simplicity we represent by the indices {1, 2, . . . , k − 1, k}.
Suppose m local colors, expressed by Cm = {c1, . . . , cm},
are introduced in this segment with starting indices satisfying
1 ≤ `1 < · · · < `m < k. Given that the locality coefficient is
k, for any two agents i, i′ ∈ {`1, . . . , `m} with i < i′ < i+k,
we have the property that

Ui(c
ne) =

i+k∑
j=i−k

I{cj = cne
i },

=

i+k∑
j=i

I{cj = cne
i },

≤
i′+k∑
j=i′−k

I{cj = cne
i }.

Hence, if agent i′ was able to switch to color cne
i , i.e.,

cne
i /∈ {cne

i′−1, c
ne
i′ }, then the utility of agent i′ must satisfy

Ui′(c
ne) > Ui(c

ne) or else cne would not be an equilibrium
coloring profile. We will use this fact to prove an upper
bound on the number of local colors used in a equilibrium
coloring profile.

To that end, for each node `i ∈ {`1, . . . , `m}, define the
following specific set of available coloring choices as

C(i) = {c1, . . . , ci−1} \ {cne
i−1, c

ne
i+1}. (8)

Accordingly C(i) defines a partial set of colors, i.e., all
colors started before node i in this segment, that node i
could potentially switch to. If cne represents an equilibrium
coloring profile, then we know that for each node i ∈
{`1, . . . , `m} and any coloring choice cj ∈ C(i) with starting
index `j < i,

Ui(c
ne) ≥ U`j (cne) + 1.

Hence, for any `j ∈ {`1, . . . , `m}, (j > 2), there exist a
subset of nodes Sj ⊂ {`1, . . . , `j−1} satisfying |Sj | ≥ j−2,
such that

U`j (cne) ≥ Us(cne) + 1,∀s ∈ Sj .

Following this logic, we can bound the sum of the agents
utilities as

m∑
i=1

U`i(c
ne) ≥

bm3 c∑
i=1

i

=

(
bm3 c

) (
bm3 c+ 1

)
2

>

(
m
6

) (
m
3

)
2

=
m2

36
. (9)

Since 1 ≤ `1 < · · · < `m < k, we know that the agents’
utilities rely solely on the colors of the nodes in the section



{1, 2, . . . , 2k − 1, 2k}. Furthermore, since c`i 6= c`j for any
distinct `i 6= `j ∈ {`1, . . . , `m}, we have that

m∑
i=1

U`i(c
ne) ≤ 2k. (10)

Combining (9) with (10) gives us that

m < 8
√
k. (11)

The inequality given in (11) implies an upper bound on
the number of local colors that can be introduced in any
contiguous segment of k nodes in a given equilibrium
coloring profile. Accordingly, we have

|cne|` ≤
⌈n
k

⌉(
8
√
k
)
≤ 2n

k

(
8
√
k
)

= 16
n√
k
.

Therefore, we have that

|cne| = |cne|g + |cne|` ≤ k + 16
n√
k
≤ 17

n√
k

where the last inequality holds for the case when n ≥ k3/2.
Hence, the price of anarchy satisfies

PoA(n, k) ≤ 17

2

(
n√
k

)
,

which completes the proof.

C. Length of better reply paths for ring graphs

We now turn our attention to characterizing the length
of the better reply paths for graph coloring games over
ring graphs. To that end, let β(n, k) denote the family of
better reply paths associated with the graph coloring game
{n, k}. Here, different better reply paths can be a result
of different initial conditions or different agent deviations.
Given a specific better reply path β ∈ β(n, k), we denote
the length of the better reply bath by |β|. The following
theorem provides both upper bounds and lower bounds on
the length of the better reply paths in the set β(n, k).

Theorem 3.3: Consider a graph coloring game {n, k} over
a ring graph. If n/k is sufficiently large, then the length of
the better reply paths in β(n, k) can be bounded as

γ3 · (nk) ≥ max
β∈β(n,k)

|β| ≥ γ4 ·
(
n
√
k
)

(12)

where γ3, γ4 > 0 are constants that do not depend on n or
k.4

Theorem 3.2 demonstrates that increasing the locality
coefficient improves the efficiency of the resulting equilib-
rium coloring profiles. Accordingly, it would appear that a
reasonable approach for improving system behavior would be
to provide the nodes with additional information regarding
the color choice of other nodes. Theorem 3.3 shows that
there is a consequence associated with this approach to
improving the efficiency of the resulting equilibrium color-
ings – a degradation in the underlying convergence rates. In
particular, the lower bound in (12) shows that increasing the
level of information to the nodes degrades the length of the

4The term n/k is sufficiently large for any n and k satisfying k ≥ 10
and n ≥ 2k.

worst-case better reply path. Here, the length of the worst-
case better reply path is a reasonable proxy for understanding
the convergence rates of a better reply process [15].

Proof: Before beginning with the proof, recall that a
better reply path is a sequence of coloring profiles c1, c2,
. . . , cm where for each y ∈ {1, . . . ,m − 1} there exists a
node i with a color ci ∈ C such that cy+1 = (ci, c

y
−i) and

Ui(c
y+1) > Ui(c

y). Furthermore, due to the nature of the
proposed coloring game, this strict inequality also implies
Ui(c

y+1)− Ui(cy) ≥ 1.

The proof of Theorem 3.3 relies heavily on the fact that the
proposed coloring game is a potential game with the potential
function given in (5). The existence of this potential function
implies that the potential associated with any two successive
coloring profiles in a better reply process satisfies

φ(cy+1)− φ(cy) = Ui(c
y+1)− Ui(cy) ≥ 1.

Accordingly, if a better reply path β can be constructed
that goes from a coloring profile c to c′, i.e., β =
{c, c0, c1, . . . , cm, c′}, then the length of this better reply path
satisfies

|β| ≤ φ(c′)− φ(c).

The length of this path will be precisely equal to φ(c′)−φ(c)
if the path consisted solely of deviations where the payoff
difference associated with the deviating player was 1. Both of
these properties will be used extensively in the forthcoming
proof.

We begin with the upper bound. Using the arguments
constructed above, an upper bound can be derived by

max
β∈β(n,k)

|β| ≤ max
c+,c−∈Cn

(
φ(c+)− φ(c−)

)
= max

c+
φ(c+)−min

c−
φ(c−)

≤ n(k + 1)− n = nk.

We now move on to the lower bound which involves
specifying a particular better reply path that has the desired
number of steps. Throughout, we focus on the case where k
is even for simplicity as similar arguments can be constructed
for the odd case. Consider a contiguous sequence of k
nodes, denoted by {1, . . . , k} where each node i begins
with a unique colors ci, i.e., ci 6= cj for any i, j ≤ k,
i 6= j. To avoid dealing with the constraints associated with
neighboring colors, we will focus on deriving a better reply
path over just the k/2 odd numbered nodes {1, 3, . . . , k−1}
which, with an abuse of notation, we will renumber as
{1, 2, . . . , k/2} for simplicity. Lastly, let |c| be defined as
the sorted number of each color used in the coloring profile
c for the nodes {1, 2, . . . , k/2}. That is, |c| = (x1, . . . , xk/2)
where each xi ∈ {0, 1, . . . , k/2} denotes the number of
nodes in {1, 2, . . . , k/2} choosing the i-th most common
color, the tuple is sorted in the sense that xi ≥ xi+1 for
all i, and lastly x1 + · · · + xk/2 = k/2. Note that for the
initial coloring profile, say c0, we have |c0| = (1, 1, . . . , 1, 1).
Alternatively, if all agents chose the same color in the color
profile c, then |c| = (k/2, 0, . . . , 0, 0). Lastly, let |c|j denote
the j-th term of the tuple.



Consider a better reply path β = {c0, c1, . . . } constructed
according to the following process. Let cm be the current
coloring profile. Suppose |cm|i = |cm|j for some i 6= j.
This means that there exists two nodes, say i and j, such that
Ui(c

m) = Uj(c
m) and cmi 6= cmj . Consider a new coloring

profile of the form cm+1 = (ci = cmj , c
m
−i) where node i

deviated to node j’s color. Note that such a move is possible
since there are no neighboring constraints as we are only
dealing with odd number vertices. Given this move, we have

Ui(c
m+1)− Ui(cm) = 1.

Continue repeating this process until no such moves exist
and denote this final coloring profile as cz . Note that this
process must eventual stop since potential game prohibit
cyclic behavior in any better reply path.

We now focus on analyzing properties of this coloring
profile cz . First, note that for distinct i, j, |cz|i = |cz|j only
for the case when |cz|i = |cz|j = 0. Focusing on the nodes’
utilities, we have

k/2∑
i=1

Ui(c
z) =

k/2∑
i=1

(|cz|i)2 ≥

⌊√
k/2

⌋∑
i=1

i2, (13)

where (13) follows from⌊√
k/2

⌋∑
i=1

i =

⌊√
k/2
⌋(⌊√

k/2
⌋

+ 1
)

2
,

≤

√
k/2

(√
k/2 + 1

)
2

,

≤ k

2
.

Define α = b
√
k/2c. Since each unilateral deviation involves

a payoff improvement of 1 for the deviating player, the length
of this better reply path for α ≥ 4, which is equivalent to
k ≥ 10, is bounded by

φ(cz)− φ(c) ≥ 1

2

k/2∑
i=1

Ui(c
z)−

k/2∑
i=1

Ui(c
0)

 ,

≥ 1

2

(
α∑
i=1

i2 − k

2

)
,

≥ 1

2

(
α∑
i=1

i2 − (α+ 1)2

)
,

≥ 1

2

α−2∑
i=1

i2 =
1

2

qα∑
i=1

i2,

where q = 1− 2/α ≥ 1/2. Continuing this derivation gives
us

φ(cz)− φ(c) ≥ (qα+ 1)(2qα+ 1)qα

6
≥ (qα)3

3
≥ k3/2

96
.

Note that this path was purely constructed over the odd
numbered nodes of a single contiguous segment of k nodes.
Building on this construction, one can establish a better reply
path merely by stringing together such move sequences for

both the odd and even nodes of each segment of length k,
as each sub-segment is operating on a distinct set of colors.
The length of this better reply process must satisfy

|β| ≥ 2
⌊n
k

⌋ k3/2

96
≥ n
√
k

96
,

which completes the proof.

IV. CONCLUSION

In this paper we studied the impact of information on
a simple distributed graph coloring problem. The findings
demonstrated that while increasing the information available
to the nodes led to improvements in the efficiency of the
resulting equilibrium coloring profiles, these improvements
came at the expense of the underlying convergence rates.
Hence, there is an apparent tradeoff between efficiency and
convergence rates with information serving as the tradeoff
mechanism. Whether this apparent tradeoff between effi-
ciency and convergence rates is fundamental to multiagent
coordination remains an open and interesting question and a
focus of future work.
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