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Abstract— The framework of resource allocation games is be-
coming an increasingly popular modeling choice for distributed
control and optimization. In recent years, this approach has
evolved into the paradigm of game-theoretic control, which
consists of first modeling the interaction between the distributed
agents as a strategic form game, and then designing local
utility functions for these agents such that the resulting game
possesses a stable outcome (e.g., a pure Nash equilibrium) that
is efficient (e.g., good “price of anarchy” properties). One then
appeals to the large, existing literature on learning in games for
distributed algorithms for agents that guarantee convergence to
such an equilibrium. An important first problem is to obtain
a characterization of stable utility designs, that is, those that
guarantee equilibrium existence for a large class of games.
Recent work has explored this question in the general, multi-
selection context, that is, when agents are allowed to choose
more than one resource at a time, showing that the only stable
utility designs are the so-called “weighted Shapley values”. It
remains an open problem to obtain a similar characterization
in the single-selection context, which several practical problems
such as vehicle target assignment, sensor coverage, etc. fall
into. We survey recent work in the multi-selection scenario,
and show that even though other utility designs become stable
for specific single-selection applications, perhaps surprisingly,
in a broader context, the limitation to “weighted Shapley value”
utility design continues to prevail.

I. INTRODUCTION

Resource allocation is a fundamental problem that is at the
core of several application domains ranging from socioeco-
nomic systems to systems engineering. A persistent example
in the computer science literature is that of routing data
through a shared-link network, where the global objective
is to minimize the average delay [1], [2]. Another example
in multiagent systems is the problem of deploying sensors
in a given mission space where the global objective is to
maximize the area covered and/or the quality of coverage
[3]. The central objective in all these problems is to allocate
resources to optimize some global objective. Increasingly,
these problems need to be solved in a distributed, decentral-
ized manner, especially in large scale engineering systems.

Game-theoretic control has emerged as a promising ap-
proach for distributed resource allocation (see [4] and refer-
ences therein). This approach is motivated by the fact that
the underlying decision making architecture in economic
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systems and distributed engineering systems is identical.
That is, local decisions based on local information result
in emergent global behavior. Game theoretic control consists
of two distinct steps. First, the interactions of autonomous
agents are modeled within the framework of a strategic form
game where the agents are modeled as independent decision
making entities. This involves specifying decision makers
(“players”), their respective choices (“action sets”), and a
local utility function for each agent, so that the resulting
game has an equilibrium (e.g., pure Nash equilibria), which
takes on the role of a stable operating point. The second
step is to specify a local “learning rule” for the agents
according to which they process available information to
make individual decisions that collectively steer the system
towards an equilibrium of the game. The goal is to complete
these two design steps, referred to as utility design and
learning design respectively, in order to ensure that the
emergent global behavior is desirable [4].

Our focus in this paper is on utility design for separable
resource allocation problems, where “separable” means that
the global objective function can be decomposed into local
objective functions for each resource. A key constraint is that
the design must be “local”, meaning that an agent’s utility
can only depend on the resources selected, the objective at
each resource, and other agents that selected the same re-
sources. Therefore, designing local utility functions reduces
to the problem of defining a “distribution rule” that specifies
how the welfare garnered from each resource is distributed
to the players who have chosen that particular resource.

A fundamental research problem in utility design is to
characterize the space of distribution rules that guarantee
equilibrium existence in resource allocation games. Such
a characterization would provide a structured search space
while optimizing for distribution rule(s) whose equilibria
have the best efficiency properties (how well the equilibrium
outcome performs in relation to the globally optimal out-
come) and/or are “easy” to converge to. First, [5], [6] showed
the existence of a special, worst-case, welfare function for
which, any budget-balanced distribution rule (one that com-
pletely distributes the welfare garnered among the agents
without surplus or deficit) that guarantees the existence of
a pure Nash equilibrium in any resource allocation game
must be equivalent to a “weighted Shapley value”.1 Then, [7]
generalized this, showing that the weighted Shapley value
characterization holds for any welfare function, and this
holds true even if the budget-balance constraint is dropped.

1The (weighted) Shapley value, defined later in (4), is a game-theoretic
solution concept of enormous importance in the economics literature.



The above work does not, however, investigate char-
acterizations of stable distribution rules when agents are
restricted to choosing only a single resource. In such single-
selection settings, distribution rules other than weighted
Shapley values may also guarantee equilibrium existence.
In fact, recent work suggests that the landscape of single-
selection resource allocation games could be vastly different.
In particular, [8] shows that for coverage games such as
vehicle target assignment, a much simpler distribution rule
called “proportional share” guarantees equilibrium existence.
This compels the question: Is the emergence of such alternate
stable distribution rules simply for a few “isolated” welfare
functions related to coverage-type problems, or is it a broader
phenomenon to be expected for all welfare functions?

Our goal in this paper is to explore this question by investi-
gating characterizations of the space of distribution rules that
guarantee equilibrium existence in single-selection resource
allocation games for all welfare functions. Since single-
selection games are just a special subclass of multi-selection
games, weighted Shapley values continue to guarantee equi-
librium existence. However, other feasible distribution rules
may also guarantee equilibrium existence, and characterizing
such rules is important, since (i) weighted Shapley values
cannot be computed in polynomial time; therefore, simpler
distribution rules such as proportional share are practically
appealing, and (ii) recent work [2] has shown that there are
settings where distribution rules other than weighted Shapley
values result in more efficient equilibria.

Outline and Contributions: We present our formal model
in Section II. For concreteness, we describe the vehicle target
assignment problem as an illustrative example in Section
III, where we compare and contrast two common budget-
balanced distribution rules, namely, weighted Shapley value
and proportional share distribution rules. Doing so exposes a
stark contrast between a general result limiting utility design
to weighted Shapley values in the multi-selection scenario
and a special result that identifies other stable utility designs
in specific single-selection scenarios.

Motivated by this observation, and the lack of any gen-
eral characterization results for single-selection games, we
investigate whether the extra “flexibility” in utility design
obtained by restricting the structure of the action sets to
single-selection, for the specific setting of coverage games,
is a phenomenon that holds more generally. Our results,
presented in Section IV, provide the first complete characteri-
zations for budget-balanced2 distribution rules that guarantee
equilibrium existence for single-selection resource allocation
games. In particular, we show that:

1) The only linear budget-balanced distribution rules that
guarantee equilibrium existence in all single-selection
games, for all welfare functions, are weighted Shapley
values (Theorem 1).

2Unlike economic systems where monetary incentives are involved, there
is no obvious motivation for requiring budget-balance in designing utilities
for distributed agents in engineering systems. However, a bevy of recent
work (e.g., [9], [10], [11]) has shown that imposing budget constrains on
utility design leads to good equilibrium efficiency guarantees.

2) Given any linear welfare function with no dummy play-
ers,3 the only budget-balanced distribution rules that guar-
antee equilibrium existence in all single-selection games
are weighted Shapley values (Theorem 2).

3) Given any welfare function, the only budget-balanced
distribution rules that guarantee equilibrium existence
in all two-player single-selection games are weighted
Shapley values (Theorem 3).

Thus, perhaps surprisingly, we show that the limitation to
weighted Shapley value utility design (and the accompanying
limitation to (weighted) potential games) persists in a broader
sense, even when restricted to single-selection action sets.

II. MODEL

We consider a simple, but general, model of a resource
allocation game, where there is a set of self-interested
agents/players N = {1, . . . , n} (n > 1) that each select
a collection of resources from a set R = {r1, . . . , rm}
(m > 1). That is, each agent i ∈ N is capable of selecting
potentially multiple resources in R (multi-selection scenario);
therefore, we say that agent i has an action set Ai ⊆ 2R.
If, on the other hand, agents are restricted to selecting only
a single resource, resulting in their action sets consisting of
only singleton actions, then we are in the single-selection
scenario. The resulting action profile, or (joint) allocation, is
a tuple a = (a1, . . . , an) ∈ A where the set of all possible
allocations is denoted by A = A1×. . .×An. We occasionally
denote an action profile a by (ai, a−i) where a−i ∈ A−i

denotes the actions of all agents except agent i.
Each allocation generates a “welfare”, W(a), which cor-

responds to the global objective function of the optimization
problem that a system manager would seek to maximize. We
assume W(a) is (linearly) separable across resources, i.e.,
W(a) =

∑

r∈R Wr ({a}r), where {a}r = {i ∈ N : r ∈ ai}
is the set of agents that are allocated to resource r in a, and
Wr : 2N → R is the local welfare function at resource r.
This is a standard assumption [12], [13], [5], [8], and is quite
general. Without loss of generality, we assume Wr(∅) = 0
for all r ∈ R. Let the space of all such welfare functions be
denoted by W = {W : 2N → R | W (∅) = 0}.

The goal is to design the utility functions Ui : A → R that
the agents seek to maximize, often without exact knowledge
of what the {Wr} are, so that the design is applicable more
generally. Because the welfare is assumed to be separable,
it is natural that the utility functions should follow suit, i.e.,

Ui(a) =
∑

r∈ai

f (Wr) (i, {a}r) , (1)

where f(Wr) : W × N × 2N → R is the local distribution
rule, i.e., f(Wr)(i, S) is the portion of the local welfare Wr

that is allocated to agent i ∈ S when sharing with S. We
refer to the operator f simply as the distribution rule. It
maps a given welfare function W to the corresponding W -
specific distribution rule f(W ). For completeness, we define
f(W )(i, S) := 0 whenever i /∈ S.

3Note that such welfare functions, which we define precisely in Section
IV, constitute a large class.



The requirement (1) on the functional form of an agent’s
utility function embodies the feature of locality that is often
a critical constraint in distributed systems, i.e., each agent’s
utility function only depends on its selected resources and
the agents that select the same resources.

In order to simplify the statement and discussion of our
results, we impose a scalability constraint by assuming that
there is just one base welfare function W , that is scaled at
each resource r by a strictly positive coefficient, vr ∈ R++.
That is, Wr = vrW , for all r ∈ R. Correspondingly, the
distribution rule f should also be scalable, i.e., for any W ∈
W and any c ∈ R, we have f(cW ) = cf(W ). However, our
results hold more generally.

A stricter requirement than scalability is linearity: A
distribution rule f is said to be linear if, for any (W1,W2) ∈
W2 and any (c1, c2) ∈ R2, we have f(c1W1 + c2W2) =
c1f(W1) + c2f(W2).

A distribution rule f is said to be budget-balanced if, for
any welfare function W ∈ W and any player set S ⊆ N ,
∑

i∈S f(W )(i, S) = W (S).
We represent a (separable and scalable) resource allocation

game as:
G =

(

N,R, {Ai}i∈N
, {vr}r∈R

,W, f
)

, (2)

and the design of f is the focus of this paper.
The primary goals when designing the distribution rules

are to guarantee (i) equilibrium existence, and (ii) equilib-
rium efficiency. Our focus in this work is entirely on (i) and
we consider pure Nash equilibria; however, other equilibrium
concepts are also of interest [14], [15], [16]. Recall that a
(pure Nash) equilibrium is an outcome a∗ ∈ A such that

(∀ i ∈ N) Ui(a
∗
i , a

∗
−i) = max

ai∈Ai

Ui(ai, a
∗
−i).

III. AN ILLUSTRATIVE EXAMPLE: VEHICLE
TARGET ASSIGNMENT

The vehicle target assignment problem [17] consists of a
finite set of targets (resources) denoted by R and each target
r ∈ R has a relative worth vr > 0. There are a finite number
of vehicles (agents) denoted by N = {1, 2, . . . , n}. The set
of possible assignments for vehicle i is Ai ⊆ 2R, and A =
∏

i∈N Ai represents the set of joint assignments. In general,
the structure of A is not available to a system designer a
priori. Lastly, each vehicle i ∈ N is parameterized with an
invariant success probability 0 ≤ pi ≤ 1 that indicates the
probability vehicle i will successfully eliminate a target r
given that r ∈ ai. The benefit of a subset of agents S ⊆ N ,
S 6= ∅, being assigned to a target r is Wr(S) = vrW (S),
where

W (S) =



1−
∏

i∈S

(1− pi)



 (3)

represents the joint probability of successfully eliminating
target r. Accordingly, the target assignment problem is to
find a joint assignment a ∈ A that maximizes the global
objective W(a) =

∑

r∈RWr ({a}r), where {a}r = {i ∈
N : r ∈ ai}.

Note that this is a scalable and separable resource al-
location problem that fits our model. Thinking of Wr as

the local “welfare” garnered at resource r, designing local
agent utilities of the form (1) for this problem reduces
to designing the distribution rule f . Next, we discuss two
common budget-balanced distribution rules for this problem,
both parameterized by ω ∈ R

|N |
++, a vector of strictly positive

player weights.
The weighted Shapley value distribution rule [18], [19],

denoted by fWSV [ω], is defined as:4

fWSV [ω](W )(i, S) =
∑

T⊆S:i∈T

ωi
∑

j∈T ωj





∑

R⊆T

(−1)|T |−|R|W (R)



 .

(4)
The importance of this distribution rule is that it is universal
— it guarantees equilibrium existence in any resource alloca-
tion game.5 Moreover, Gopalakrishnan et al. [7] recently es-
tablished that when action sets are not restricted to be single-
selection, the converse is true: given any welfare function
W ∈ W, any W -specific distribution rule (not necessarily
budget-balanced) that guarantees equilibrium existence in all
games must be a W ′-specific weighted Shapley distribution
rule, fWSV [ω](W ′), for some W ′ ∈ W and some weight-
vector ω. However, the key drawback is that computing
fWSV [ω](W ) is often intractable, since it requires exponen-
tially many calls to W .

The proportional share distribution rule, denoted by
fPR[ω], is defined as:

fPR[ω](W )(i, S) =
ωi

∑

j∈S ωj

W (S). (5)

In other words, the welfare is simply divided among the
players in proportion to their weights. Note that this is
very easy to compute, requiring just a single call to W .
It also guarantees equilibrium existence for single-selection
instances of the vehicle target assignment problem, when
the player weights ωi correspond to the vehicle success
probabilities pi [8].6 However, it does not generally guar-
antee equilibrium existence in other settings, e.g., a welfare
function that is different from the one in (3).

When the players are restricted to selecting only a single
resource, the lack of a tight characterization (such as the one
in [7] for the multi-selection scenario) leaves many questions
unanswered: What other distribution rules guarantee a Nash
equilibrium for the single-selection vehicle target assignment
problem? How about distribution rules for welfare functions
other than (3)? Are there universal distribution rules other
than the weighted Shapley value that can guarantee a Nash
equilibrium for all single-selection games?

4One way to interpret this distribution rule is as follows. For any given
subset of players S, imagine these players arriving one at a time to the
resource, according to some order π. Each player i can be thought of as
contributing W (Pπ

i ∪ {i}) − W (Pπ
i ) to the welfare W (S), where Pπ

i
denotes the set of players in S that arrived before i in π. This is the
“marginal contribution” of player i to the welfare, according to the order
π. Then, the weighted Shapley value is the expected marginal contribution,
where the expectation is over all |S|! orders, according to a probability
distribution determined by the weights ω.

5This is a consequence of the resulting games being so-called (weighted)
“potential games”, a special class of games for which there are many well
understood learning dynamics that guarantee equilibrium convergence.

6This result is a special case of the following more general (partial)
characterization of Marden and Wierman [8]: given any welfare function
W , they outline three sufficient conditions for a W -specific distribution
rule to guarantee equilibrium existence for all single-selection games.



IV. MAIN CONTRIBUTIONS

In this section, we attempt to bridge the characterization
gap between the single-selection and multi-selection settings,
by looking for complete characterizations of distribution
rules that guarantee equilibrium existence for all single-
selection games. Our first result provides just such a charac-
terization – we show that the only such distribution rules that
are linear and budget-balanced are weighted Shapley values.

Let Gs(N, f,W ) denote the set of all single-selection
resource allocation games G (see (2)) with player set N ,
welfare function W , and distribution rule f .

Theorem 1: For all base welfare functions W ∈ W, all
games in Gs(N, f,W ) possess a pure Nash equilibrium for
a linear budget-balanced f if and only if there exists a
weight-vector ω such that f is the weighted Shapley value
distribution rule, fWSV [ω].

Proof: Note that we only need to prove one direction,
since it is known that for any W ∈ W, any weight-vector
ω, all games in Gs(N, fWSV [ω],W ) have a pure Nash
equilibrium [20]. Thus, we present the bulk of the proof –
the other direction – proving that any linear budget-balanced
distribution rule f that guarantees a pure Nash equilibrium
for all games in Gs(N, f,W ) for all W ∈ W, must be a
weighted Shapley value distribution rule fWSV [ω] for some
weight-vector ω.

The proof is carried out by induction on the size of the
player set, in four steps: (i) We derive a necessary condition
for f to guarantee a Nash equilibrium, regardless of the
welfare function. (ii) We show that in games with only two
players {1, 2}, f is completely characterized by a single
parameter γ, and is equivalent to fWSV [(ω1, ω2)] where γ
is the weight-ratio ω1/ω2. (iii) We show that when there are
more than two players, the pairwise weight-ratios obtained
in the previous step are all “consistent”. (iv) We show that
for any set S ⊆ N , if f(W )(·, R) for all proper subsets
R ( S is equivalent to fWSV [ω](·, R) for all W ∈ W,
then f(W )(·, S) is uniquely determined. However, since
fWSV [ω](·, S) is a feasible solution for f(W )(·, S), it must
be that unique solution, concluding the proof.

For convenience, we assume that for all S ⊆ N ,
f(W )(i, S) must vary with W (S), but the proof can be
generalized to cases where this does not hold.

Recall that W is a 2n−1 dimensional vector space, where
n = |N |. Let {S1, S2, . . . , S2n−1} be an ordering of the
non-empty subsets of N , chosen such that |Sj | ≤ |Sk|
∀j < k. We can represent a welfare function W ∈ W as
a vector

−→
W = [W (S1) W (S2) . . . W (S2n−1)]

T , and the
related player shares f(W )(i, ·) as the vector

−→
f (W )(i, ·) =

[f(W )(i, S1) f(W )(i, S2) . . . f(W )(i, S2n−1)]
T .

Any linear distribution rule may now be interpreted as a
set of n matrices F = {F 1, F 2, . . . , Fn}, with F i−→W =
−→
f (W )(i, ·) ∀i ∈ N .

Let {eS} be the standard basis for W. We define F i
S =

(eS)
TF i as the row of F i associated with the set S and

F i
S,R = (eS)

TF ieR is element in the row associated with S
and the column associated with R.

In the vector notation, the budget-balance condition be-
comes

∑

i∈N

F i = I, (6)

where I is the identity matrix.
Next, we take a moment to reformulate the weighted

Shapley Value distribution rule fWSV [ω] defined in (4) in
terms of our vector notation. It can be shown that the term
in the F i matrix corresponding to the row for subset S and
the column for subset R is

F i
S,R = ωi(−1)|R|

∑

R⊆T⊆S

(−1)|T |

∑

j∈T ωj

. (7)

A. A Necessary Condition

Lemma 1: If f is a distribution rule that guarantees equi-
librium existence for all games G ∈ Gs(N, f,W ) for all
W ∈ W, then, for all S ⊆ N , for all i, j ∈ S, F i

S−F i
S\{j} =

ci
cj
(F j

S − F j

S\{i}), where ci = F i
S,S and cj = F j

S,S .
Proof: Consider the game in Figure 1a, with resource

set R = {r0, r1, r2} and local resource coefficients vr1 = v1,
vr2 = v2, and vr0 = 1, and base welfare function W . Player
i can choose between the resources r1 and r0, and player j
can choose between the resources r2 and r0. All other players
in S have a fixed action – they choose resource r0. This is
essentially a game between i and j with payoff matrix in
Figure 1b.

(a) The game

{ , }

: 1
fixed players:

:

:

(b) The payoff matrix

, \ , 

( ), 

, , ( , )

( ), , \

Fig. 1: Example

A counterclockwise best-response cycle results, when the
following set of inequalities hold:

v2W ({j}) > f(W )(j, S), v1W ({i}) > f(W )(i, S\{j})

f(W )(j, S\{i}) > v2W ({j}), f(W )(i, S) > v1W ({i}).

Since W , v1 and v2 may be chosen arbitrarily, these reduce
to

f(W )(j, S\{i}) > f(W )(j, S), f(W )(i, S) > f(W )(i, S\{j}).



Thus, a necessary condition for the existence of an equi-
librium for all such games is that, for all S ⊆ N , for all
i, j ∈ S,

f(W )(i, S) < f(W )(i, S\{j}) ⇒ f(W )(j, S) ≤ f(W )(j, S\{i}).

In terms of our vector notation, this condition is

〈F i
S − F

i
S\{j},

−→
W 〉 < 0 ⇒ 〈F j

S − F
j

S\{i},
−→
W 〉 ≤ 0,

where 〈·, ·〉 is the inner product. Since the choice of
−→
W is

arbitrary, this condition is satisfied if and only if the vectors
F i
S − F i

S\{j} and F j
S − F j

S\{i} point in the same direction,
that is,

F i
S − F i

S\{j} = c(F j
S − F j

S\{i}),

for some c ∈ R. Since F i
S\{j},S = F j

S\{i},S = 0, we must

have c = F i
S,S/F

j
S,S .

B. Pairwise Shares Must be Weighted Shapley Values

Lemma 2: If f is a linear budget-balanced distribution
rule that guarantees equilibrium existence for all games
G ∈ Gs({1, 2}, f,W ) for all W ∈ W, then there exist
weights ω1, ω2, such that f is the weighted Shapley value
distribution rule, fWSV [(ω1, ω2)].

Proof: Let the ordering on the non-empty subsets
of {1, 2} be {{1}, {2}, {1, 2}}. Any linear budget-balanced
distribution rule matrices F = {F 1, F 2} can be written as

F 1 =





1 0 0
0 0 0
α −β γ

1+γ



 , F 2 =





0 0 0
0 1 0
−α β 1

1+γ





From Lemma 1 with S = {1, 2}, we have
(

α− 1 −β γ
1+γ

)

= γ
(

−α β − 1 1

1+γ

)

.

If we let γ be a free parameter, we may solve for α = 1

1+γ

and β = γ
1+γ

, which is equivalent to the weighted Shapley

value with weight-ratio
w1

w2

= γ.

C. Consistency of Pairwise Shares

Lemma 3: If γij denotes the weight-ratio for the pairwise
shares in the game with players i and j, then, ∀i, j, k ∈ N ,
γijγjk = γik.

Proof: Let S = {i, j, k}. Applying lemma 1 with the
three possible pairs of players, we get

F i
S − F i

S\{j} = cij(F
j
S − F j

S\{i}) (8a)

F j
S − F j

S\{k} = cjk(F
k
S − F k

S\{j}) (8b)

F i
S − F i

S\{k} = cik(F
k
S − F k

S\{i}) (8c)

Substituting equation (8b) and (8c) into equation (8a),

F
i
S\{k} + cik(F

k
S − F

k
S\{i})− F

i
S\{j}

= cij(F
j

S\{k} + cjk(F
k
S − F

k
S\{j})− F

j

S\{i})

⇒ cik(F
k
S − F

k
S\{i})− F

i
S\{j} + F

i
S\{k}

= cijcjk(F
k
S − F

k
S\{j})− cij(F

j

S\{i} − F
j

S\{k}).

Now in the elements corresponding to subset S, the only
non-zero terms are in F k

S and thus cijcjk = cik, and with
this we may cancel out the F k

S terms on either side, yielding

F
i
S\{j}−F

i
S\{k} = cik(F

k
S\{j}−F

k
S\{i})+ cij(F

j

S\{i}−F
j

S\{k})

This system of equations (obtained by element-wise com-
parison) may be solved to get cik = γik and cij = γij .
Furthermore, by combining the equations (8a-8c) differently,
we get cjk = γjk. This completes the proof.

D. The Inductive Step

Lemma 4: If f is a distribution rule that guarantees equi-
librium existence for all games G ∈ Gs(N, f,W ) for all
W ∈ W, and if f(W )(·, R) = fWSV [ω](W )(·, R) for all
W ∈ W and all R ( S for some S ⊆ N (with |S| > 2),
then the set of vectors {F i

S : i ∈ S} is uniquely determined
by the set of vectors {F i

S\{j} : i, j ∈ S}.
Proof: First, for all subsets S ⊆ N , and all i ∈ S, we

decompose the vectors F i
S as F i

S = civi, where the scalar
coefficient ci = F i

S,S . We determine {ci} first, and then show
how to construct {vi}. Consider an arbitrary ordering of the
players in S. For any pair of players (i, i+1), we have, from
Lemma 1,

vi − vi+1 =
F i+1

S\{i}

ci+1

−
F i
S\{i+1}

ci
, ∀i ∈ S,

where player |S| + 1 is the same as player 1. Adding up
these equations, we get

0 =
∑

i∈S

1

ci

(

F i
S\{i+1} − F i

S\{i−1}

)

This is an over-constrained system of equations (obtained by
element-wise comparison) for {ci}, with 2|S| − 2 equations
for |S| variables. Along with the budget-balance condition
∑

i∈S

ci = 1 (obtained from (6)), it can be shown that this

system has the unique solution, ci = ωi∑
k∈S

ωk
. Though we

are only looking to prove the uniqueness of the coefficients
{ci}, we note that expression found matches that of the
weighted Shapley value from (7).

We next determine the set of vectors {vi}. To do this we
return to Lemma 1, this time picking a fixed player i ∈ S
and finding all other {vj} in terms of vi.

cjvj = cjvi + F j

S\{i} − F i
S\{j}

cj
ci

∀i, j ∈ S.

From budget-balance (6), we have

eS =
∑

j∈S

cjvj = vi +
∑

j∈S

(

F j

S\{i} − F i
S\{j}

cj
ci

)

,

Which allows us to solve for vi as

vi = eS −
∑

j∈S

(

F j

S\{i} − F i
S\{j}

cj
ci

)

Once this is done for all players i ∈ S, we have uniquely
extended the distribution rule.



TABLE I: Distribution Rules that Guarantee Equilibrium Existence

CLASS OF
GAMES

FOR ALL WELFARE
FUNCTIONS,

BUDGET-BALANCED

FOR A GIVEN WELFARE
FUNCTION

Multi-selection
ONLY weighted Shapley

values (see [7])
ONLY weighted Shapley values

(see [7])

Single-selection ONLY Weighted Shapley
values (Theorem 1)

Those satisfying three sufficient
conditions (see [8])

Proportional shares for coverage
games (see [8])

ONLY weighted shapley values
for linear welfare functions with
no dummy players (Theorem 2)

ONLY weighted shapley values
for any welfare function for

two-player games (Theorem 3)

The importance of Theorem 1 is its implication that the
restriction of budget-balanced distribution rules to weighted
Shapley values persists broadly, even if the structure of the
action sets is vastly simplified to be single-selection.

Next, we present a finer complete characterization, i.e.,
a complete characterization of W -specific distribution rules
given a specific W .7 Before proceeding, we quickly define
W∗

ℓ , the class of all linear welfare functions with no dummy
players. This is the set of all welfare functions W ∈ W

which satisfy the following two properties:

1) Linearity: (∀S ⊆ N) W (S) =
∑

i∈S W ({i}).
2) No Dummy Player: (∀i ∈ N) W ({i}) 6= 0.

Theorem 2: Given any base welfare function W ∈ W∗
ℓ ,

all games in Gs(N, f,W ) possess a pure Nash equilibrium
for a budget-balanced f if and only if there exists a weight-
vector ω such that f(W ) is the W -specific weighted Shapley
value distribution rule, fWSV [ω](W ).

Our third result provides another finer complete charac-
terization of budget-balanced distribution rules for any base
welfare function, but just for the class of two-player single-
selection games:

Theorem 3: For any base welfare function W ∈ W, all
games in Gs({1, 2}, f,W ) possess a pure Nash equilibrium
for a budget-balanced f if and only if there exists a weight-
vector ω = (ω1, ω2) such that f(W ) is the W -specific
weighted Shapley value distribution rule, fWSV [ω](W ).

Due to space constraints, we defer the proofs of Theorems
2 and 3 to an Appendix of the full version of this paper [21].

V. CONCLUSION AND FUTURE WORK

The limitation to weighted Shapley values for stable,
budget-balanced utility design was first exposed by Chen
et al. [5]. Theorems 1-3 shed new light on how robust
this limitation is to restrictions on the structure of action
sets (single/multi-selection). In particular, this limitation
continues to hold even if the action sets are restricted to
be single-selection, for a large class of welfare functions
(Theorem 2). When further restricted to two-player games,
the limitation holds for any welfare function (Theorem 3).

7The characterization of Marden and Wierman [8] is finer and W -specific,
but is only a partial characterization.

Table I summarizes our results (in boldface) against previous
results.

It might be of interest to explore deeper to find complete
characterizations of equilibrium guaranteeing distribution
rules for an arbitrary, nonlinear welfare function with single-
selection action sets and three or more players (these are
classes of games not covered by two finer characterization
theorems). However, we expect this to be a severely chal-
lenging ordeal, because the parallel characterization in the
multi-selection scenario is complex enough to begin with
[7], starting from which one has to add more distribution
rules depending on the specific welfare function at hand.
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