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ABSTRACT
Game-theoretic control is a promising new approach for dis-
tributed resource allocation. In this paper, we describe how
game-theoretic control can be viewed as having an intrinsic
layered architecture, which provides a modularization that
simplifies the control design. We illustrate this architectural
view by presenting details about one particular instantiation
using potential games as an interface. This example serves
to highlight the strengths and limitations of the proposed
architecture while also illustrating the relationship between
game-theoretic control and other existing approaches to dis-
tributed resource allocation.

1. INTRODUCTION
Resource allocation is a fundamental problem that arises

in nearly all computer systems, and increasingly it is a prob-
lem that needs to be solved in a distributed, decentralized
manner, e.g., power control and frequency selection prob-
lems in wireless networks and coverage problems in sensor
networks. Resultantly, there is a large and growing litera-
ture that focuses on developing distributed resource alloca-
tion protocols. This is an extremely diverse literature where
protocols are designed using a wide variety of tools, e.g., dis-
tributed optimization [28, 44], distributed control [21, 32],
physics-inspired control (e.g. Gibbs-sampler-based control)
[17, 27], and game-theoretic control [2, 4, 42].

In this paper, we focus on game-theoretic control, which
is a promising new approach for distributed resource allo-
cation. The game-theoretic approach involves modeling the
interactions of agents within a noncooperative game where
the agents are ‘self-interested’. This is motivated by the
fact that the underlying decision making architecture in eco-
nomic systems is identical to the desired decision making
architecture in distributed engineering systems, i.e., local
decisions based on local information where the global be-
havior emerges from a compilation of these local decisions.
This parallel makes it possible to utilize the broad set of
economic/game-theoretic tools in distributed control. How-
ever, a key distinction between game theory for economic
systems and game theory for engineering systems is that
decision makers are inherited in economic systems while de-
cisions makers are designed in engineering systems. This
difference means that using game-theoretic tools for dis-
tributed control requires a new perspective on the economic
literature.

Applying game-theoretic control requires specifying deci-
sion makers, their respective choices, their objective/utility
functions, and the learning rules for the agents. In this pa-

per, we focus on two of these components: (i) the design of
the agents’ utility functions, i.e., utility design, and (ii) the
design of the distributed learning rules for the agents, i.e.,
learning design. The goal is to design the utility functions
and the learning rules so that the emergent global behavior is
desirable. There are wide-ranging advantages to the game-
theoretic approach including robustness to failures and en-
vironmental disturbances, minimal communication require-
ments, and improved scalability.

Game-theoretic resource allocation designs are increas-
ingly popular in a variety of wireless and sensor network
applications, e.g., channel access control in wireless networks
[5, 17], coverage problems in sensor networks [8], and power
control in both [3, 7, 14]. A comprehensive survey of ap-
plications can be found in [4]. However, nearly all of these
designs are highly application-specific, with both the utility
and learning designs crafted carefully for the specific setting.
There have been only a few papers that focus on general de-
signs and even these papers tend to focus on only one aspect
of the design – either the utility design, e.g., [25, 26], or the
learning design, e.g., [22, 23, 37].

Our contribution in this paper is to present an ‘architec-
tural’ view of game-theoretic control as a whole. We de-
scribe, at a high-level, our proposed architecture for game-
theoretic control in Section 2. Then, to make the ideas more
concrete, in Section 3 we present details about one particular
instantiation of the architecture, based on potential games,
which aligns with a number of current approaches. Addi-
tionally, we provide some new results highlighting how two
other existing approaches for distributed system design (dis-
tributed constraint optimization and Gibbs-sampler-based
control) can be viewed as instances of designs in this ar-
chitecture. Finally, in Section 4 we a discuss a number of
important research directions outside of the potential games
framework that are suggested by our architectural view of
game-theoretic control.

2. A LAYERED ARCHITECTURE
Game-theoretic control has two key design tasks: utility

design and learning design. Each of these tasks is com-
plex and subject to application-specific constraints. Fur-
ther, these two designs must be done in conjunction with one
another in order to ensure desirable global behavior. Resul-
tantly, many designers have carefully performed application-
specific co-design of the utility function and the learning
rule, e.g., [4, 33, 34, 36], which is typically a difficult task.

The central question that this paper explores is how to
achieve a modularization/decoupling of utility design and



learning design. Such a decoupling would allow for the de-
velopment of a rich set of utility designs and learning designs
from which a specific utility design and a specific learning
design can be chosen ‘off the shelf’ according to the require-
ments of the resource allocation problem being considered.

It turns out that game theoretic control can naturally be
viewed within an ‘hourglass’ architecture, which provides
the desired modularity. An hourglass architecture is a type
of layered architecture where within the highest and lowest
layers there is a large diversity of available designs, but near
the middle, or waist, the design is highly constrained. The
most famous example of such an ‘hourglass’ architecture is
the IP network stack [20, 30, 45]; however, this architecture
is quite common in computer systems and has also been
observed in wide-ranging areas such as biology [12].

In the context of game-theoretic control, this architecture
allows for a diverse set of possible utility and learning de-
signs; but simplifies the design process by enforcing a par-
ticular structure on the games that can result from a utility
design and on the games for which a learning design will en-
sure desirable global behavior. This enforced structure then
serves as the interface between utility design and learning
design; thus providing the desired modularity.

In Section 3, we discuss a concrete example of this con-
strained interface, the class of potential games. (See Figure
1 for an illustration.) This interface requires utility designs
to guarantee that the resulting game is a potential game
and requires learning rules to guarantee to provide desirable
behavior when applied to potential games. Thus, requir-
ing the structure of potential games enforces additional con-
straints on utility and learning design, but also deconstrains
at a higher level by allowing modularization. Though this
layered architecture was not explicitly used in prior work,
the modularization provided by potential games underlies
many successful examples of game-theoretic control [7, 16,
19, 25]. The change in perspective provided by this archi-
tectural view is not simply superficial; it highlights that the
utility and learning designs in these papers can be ‘mixed
and matched’ while still obtaining the same performance.

Though we focus on potential games in much of this paper,
it is important to remember that they are not the only choice
for the interface – we discuss moving beyond potential games
in Section 4.

3. LAYERING VIA POTENTIAL GAMES
We now illustrate how using potential games as an inter-

face provides modularization of utility and learning design.
We focus on potential games because many recent appli-
cations of game-theoretic control have relied on potential
games, e.g., [7, 16, 19, 25]. A key reason that potential
games are a powerful choice for the interface is that they
are a highly studied class of games in the economics litera-
ture, e.g., [13, 29, 35, 43, 47] and so there is a large literature
of results that can be used in the context of game-theoretic
control for both utility and learning design.

In this section, we highlight the variety of utility and
learning designs that have been adapted from the economics
literature and can be used interchangeably ‘off the shelf’,
greatly simplifying the design process. However, we also
illustrate that layering via potential games has some limita-
tions, which highlights the need to consider other interfaces
as well. Finally, we illustrate the relationship between layer-
ing with potential games and two other existing distributed

Figure 1: An illustration of the ‘hourglass’ architec-
ture using potential games as the interface.

design approaches. In order to illustrate these issues for-
mally, we first define a simple resource allocation model.

3.1 Preliminaries

3.1.1 A model for resource allocation
Consider a set of distributed agents N = {1, . . . , n} and a

set of resources R = {r1, . . . , rm} that are to be shared by
the agents. Each agent i ∈ N is capable of selecting poten-
tially multiple resources in R; therefore, we say that agent i
has action set Ai ⊆ 2R. An allocation, or an action profile,
is represented by a tuple a = (a1, a2, . . . , an) ∈ A where the
set of possible allocations is denoted by A = A1 × . . .×An.
We will frequently denote an allocation a as (ai, a−i) where
a−i ∈ A−i =

Q
j �=i Aj denotes the allocation of all agents

except agent i.
The social welfare function W (a) captures the global val-

uation of the agent allocation. In general, a resource allo-
cation design seeks to find an allocation that optimizes the
global welfare. In this work, we assume W (a) is linearly sep-
arable across resources, i.e., W (a) =

P
r∈R Wr ({a}r) where

{a}r = {i ∈ N : r ∈ ai} is the set of agents that are al-
located to resource r in a and Wr : 2N → R+ is the local
welfare function for resource r. Hence, the welfare generated
at a particular resource depends only on which agents are
allocated to that resource. Further, we restrict our atten-
tion to submodular welfare functions, i.e., for each resource
r ∈ R and any player sets X ⊆ Y ⊆ N ,

Wr(X) + Wr(Y ) ≥ Wr(X ∪ Y ) + Wr(X ∩ Y ).

A variety of resource allocation problems such as power con-
trol and coverage problems in sensor networks [7, 25], wire-
less access point assignment and frequency selection [17],
and influence maximization [18] all have linearly separable,
submodular welfare functions.

3.1.2 Resource allocation games
Our goal is to utilize game theory to obtain distributed

solutions to such resource allocation problems. This goal
requires modeling the interactions of the agents in a nonco-
operative game theoretic environment where the agents act
in a self-interested fashion. While we inherit the players N ,
the welfare function W , and the action sets {Ai}i∈N , we are
left to design a utility function for each player of the form



Ui : A → R. A resource allocation game G is then defined
by the tuple G = (N, {Ai}, {Ui}, W ).

In general, a system designer has free reign in the design
of utility functions; however, layering via potential games
requires that the utility functions lead to a potential game.
Formally, a game is called a potential game, if there exists a
potential function Φ : A → R such that ∀ i, ∀ a−i ∈ A−i,
and ∀ ai, a

′
i ∈ Ai:

Φ(ai, a−i) − Φ(a′
i, a−i) = Ui(ai, a−i) − Ui(a

′
i, a−i).

Potential games possess several nice properties that can be
utilized in distributed control. One such property is the
guaranteed existence of a pure Nash equilibrium. A (pure
Nash) equilibrium is an action profile a∗ ∈ A such that for
each player i, Ui(a

∗
i , a

∗
−i) = maxai∈Ai Ui(ai, a

∗
−i). In a

distributed system, a pure Nash equilibrium takes on the
role of a stable operating point.

To discuss the efficiency of games we use the notions of
Price of Anarchy (PoA) and Price of Stability (PoS) [31],
which compare the welfare of the set of equilibria to the
globally optimal welfare. Let G denote a set of games and
S(G) denote the set of equilibria for a game G. Then

PoA(G) = inf
G∈G

„
min

a∗∈S(G)

W (a∗)
max
a∈AW (a)

«

PoS(G) = inf
G∈G

„
max

a∗∈S(G)
W (a∗)

max
a∈AW (a)

«

So, the PoA measures the worst-case efficiency of any equi-
librium while the PoS measures the worst-case efficiency of
the best equilibrium across all games.

3.2 Utility Design
There are several desirable properties that a global plan-

ner must consider when designing utility functions. These
properties include the following conditions on utility func-
tions: (i) computable using only local information, (ii) guar-
antee the existence of an equilibrium, (iii) computable in
polynomial time, (iv) guarantee PoS=1, (v) guarantee a
PoA close to 1, and (vi) guarantee that utilities are budget-
balanced, i.e., the sum of the utilities of all the players is
equal to the social welfare for every action profile. In the
context of the considered resource allocation games, we want
to design utility functions that are linearly separable, i.e.,
that satisfy

Ui(ai, a−i) =
X
r∈ai

fr(i, {a}r),

where fr : N × 2N → R, i.e., a player’s utility is only de-
pendent on the resources the players choose and the other
players that choose the same resources.

Recent work [25] has observed that the task of utility de-
sign is strongly related to the cost sharing literature in eco-
nomics. Here, we present two promising utility designs that
have tus emerged, though it is important to point out that
there are a variety of other possible choices, e.g., [10, 25].

(i) Wonderful life utility design (WLU) [46]: This de-
sign defines the utility of each player i as their marginal
contribution to the social welfare,

Ui(ai, a−i) = W (ai, a−i) − W (∅, a−i)

=
X
r∈ai

Wr({a}r) − Wr({a}r \ i).

Note that this utility design is linearly separable. Addition-
ally, it has been shown in [25] that WLU leads to a potential
game with Φ = W [46] and that PoS = 1 and PoA = 1/2
for submodular resource allocation games. However, WLU
is not budget-balanced.

(ii) Shapley value utility design (SVU) [40]: This design
defines the utility of each player i as their Shapley value to
the social welfare,

Ui(ai, a−i) =
X
r∈ai

Shi({a}r; Wr)

where Shi({a}r; Wr), the Shapley value of player i at re-
source r, is

X
S⊆{a}r:i∈S

(|{a}r | − 2)!(|S| − 1)!

|{a}r|! (Wr(S) − Wr(S\{i})).

Notice that this utility design is also linearly separable. Fur-
thermore, SVU leads to a potential game [43], is budget-
balanced, and guarantees that PoA = PoS = 1/2 for sub-
modular resource allocation games [25]. However, in gen-
eral, SVU is not polynomial-time computable [11]. Note
that there is also a ‘weighted’ SVU [39] that has the same
properties.

3.3 Learning design
As with utility design, there are several desirable proper-

ties that a global planner must consider when designing dis-
tributed learning rules. These properties include (i) asymp-
totic global behavior, (ii) equilibrium selection, (iii) infor-
mational dependencies and (iv) convergence rates.

A learning design takes on the form of a one-shot repeated
game where at each time t ∈ {0, 1, 2, . . .}, each player i ∈ N
simultaneously chooses an action ai(t) ∈ Ai according to
probability distribution pi(t) and receives a utility Ui(a(t))
where a(t) = (a1(t), . . . , an(t)). We refer to pi(t) as the
strategy of player i at time t and denote the probability that
player i will play action ai at time t by pai

i (t). A player’s
strategy at time t > 0 can rely only on actions (and their
corresponding utilities) from times {0, 1, 2, . . . , t − 1}.

Here, we present two promising learning designs that have
emerged, though it is important to point out that there are
a variety of other possible choices, e.g., [15, 37, 38, 47].

(i) Joint Strategy Fictitious Play (JSFP) [23]: In JSFP,
each agent i starts with an initial strategy pi(0), and then
at every time step t > 0, maintains a hypothetical payoff for
each action ai of the form

V ai
i (t) =

t−1X
τ=0

1

t
Ui(ai, a−i(τ )).

Note that this hypothetical payoff can be computed recur-
sively and that a player only needs access to the payoff for
alternative actions at each time step. Using this hypothet-
ical payoff, the strategy of player i at time t > 0 is of the
form

p
ai(t−1)
i (t) = ε, p

a∗
i

i (t) = 1 − ε

where a∗
i ∈ arg maxai∈Ai V ai

i (t) and ε > 0 is referred to as
‘inertia’. For any potential game, if all players adhere to
this strategy, then the global behavior will converge almost
surely to a pure Nash equilibrium [23].



(ii) Log-linear learning [6, 24]: In many settings, it is de-
sirable converge to a specific Nash equilibrium, rather than
just any equilibrium. This is termed ‘equilibrium selection’
and is not provided by JSFP. Log-linear learning provides
equilibrium selection, but it also requires more structure on
the learning environment. Under log-linear learning, each
agent i starts with an initial strategy pi(0), and then at ev-
ery time step t > 0, one agent i ∈ N is randomly selected
to update its action while all other agents are required keep
their actions fixed, i.e., a−i(t) = a−i(t − 1). Player i plays
a strategy at time step t > 0 of the form

pai
i (t) =

e
1
T

Ui(ai,a−i(t−1))P
a′

i∈Ai
e

1
T

Ui(a
′
i,a−i(t−1))

where T ≥ 0 is a temperature coefficient. For any potential
game, if all players adhere to this mechanism, then the global
behavior obeys an ergodic Markov chain with a unique sta-
tionary distribution given by:

μa =
e

1
T

Φ(a)P
a′∈A e

1
T

Φ(a′)
.

As the process cools (anneals), i.e., T → 0+, all the weight
of the stationary distribution falls on the action profiles that
maximize the potential function, thus providing equilibrium
selection [24]. Often, e.g., for WLU where Φ = W , this
guarantees that the global performance achieves the bound
set by the PoS, highlighting the importance of PoS as a
measure for efficiency.

3.4 Limitations
To this point we have highlighted that using potential

games as an interface provides modularization and diverse
options for utility and learning design. However, recent re-
search [26] has identified that there are also fundamental
limitations of layering via potential games. In particular,
it is not possible for a utility design to achieve all of the
properties one might desire.

For example, there are conflicts between maintaining a
PoS = 1 and being budget-balanced. Specifically, a limi-
tation of layering via potential games is that any linearly
separable, budget-balanced utility design that guarantees the
existence of an equilibrium for all resource allocation games
has PoS ≤ 1/2 [26]. WLU and SVU provide an illustration
of this limitation: SVU is linearly separable and budget-
balanced but has PoS = 1/2 while WLU is linearly separa-
ble and has PoS = 1 but is not budget-balanced.

Notice that this limitation focuses on budget-balanced
utility design. While being local and having a PoS close to
one are nearly always desirable, not all applications require
that the utility design be budget-balanced. Thus, in many
cases, this limitation may not be relevant. However, limita-
tions of potential games have only begun to be studied, and
there are likely more severe ones yet to be discovered.

3.5 Relationships to other approaches
In this section, we highlight some interesting connections

between layering via potential games and other distributed
system design tools. We show formally that two other tools
(distributed constraint optimization and Gibbs-sampler-based
control) can be viewed as instances of layering via potential

games (though they do not fall into our simple illustrative
model of resource allocation games). This relationship high-
lights that in retrospect, one could have used the layered
architecture presented in this paper to design these tech-
niques modularly via ‘off the shelf’ utility and learning de-
signs. Further, it highlights that other utility and learning
designs can easily be swapped into these designs.

3.5.1 Gibbs-sampler-based control
Gibbs-sampler-based control [17, 27] is a popular physics-

inspired approach for wireless protocol design. To introduce
this technique, we adapt the description of [17]. We repre-
sent a distributed system by an undirected graph G(N, E)
with |N | = n. Each node stores a state variable from a finite
state space S. The state of the graph is s = (s1, . . . , sn). An
energy function E : Sn → R represents the global cost of the
system as a function of its state. The objective is to find
a state of minimum energy. The Gibbs sampler approach
provides an efficient solution for this problem, if E(s) is of
the form

E(s) =
X

k

X
M∈Ck

V (M)

where Ck is the set of all cliques of order k, and V : 2N → R+

is such that V (M) depends only on the states of nodes in
M , and is zero if M is not a clique. We then define the local
energy of a node i ∈ N to be the sum of those terms in E(s)
that involve si,

Ei(si, (sj)j �=i) =
X

k

X
M∈Ck:i∈M

V (M)

The Gibbs measure associated with an energy function E
and temperature T > 0 is defined as the following probabil-
ity distribution on the states of the graph,

π(s) = e−
E(s)

T /

 X
s′∈Sn

e−
E(s′)

T

!
(1)

The Gibbs sampler is an iterative procedure where during
each step, each node i, given the states of all other nodes,
samples its new state from the following distribution on S,

μ(si) = e−
Ei(si,(sj)j �=i)

T /

0
@X

s′i∈S

e−
Ei(s

′
i,(sj)j �=i)

T

1
A , si ∈ S

When T is fixed, the Gibbs sampler converges to a steady
state that is distributed according to (1). Finally, for conver-
gence to the global minimum of the energy function, we use
the ‘annealed’ Gibbs sampler, which adds a small decrease
of T to this algorithm at every step. When this decrease
with time t > 0 is proportional to 1/log(1+t), the system
converges to a set of states of minimal global energy.

The above description of Gibbs-sampler-based control al-
ready highlights the connection with potential games – it
is equivalent to using WLU in combination with log-linear
learning. It is immediate to see that the Gibbs sampler is
the same as the log-linear learning algorithm described in
Section 3.3. To show that the utility design is equivalent
to WLU, we construct a game as follows. Consider N to
be the set of players, the common state space to be their
action sets, and the negative of the global energy function
to be the social welfare function. Denote by Ck(H), the set



of cliques of order k in graph H . The WLU design is:

Ui(s) = W (s) − W (∅, s−i)

= −E(s) + E(∅, s−i)

= −
X

k

X
M∈Ck(G)

V (M) +
X

k

X
M∈Ck(G−{i})

V (M)

Since M ∈ Ck(G − {i}) ⇐⇒ M ∈ Ck(G) and i /∈ M , all
these terms cancel out, leaving only the terms in −E(s) for
which i ∈ M . Hence,

Ui(s) = −
X

k

X
M∈Ck:i∈M

V (M) = −Ei(s)

3.5.2 Distributed constraint optimization
A constraint optimization problem is specified by a set

of variables N = {1, . . . , n}, each of which takes a value
si from a finite state space S, a set of constraints C =
{c1, c2, . . . , cm}, and a global objective function W : Sn →
R, that encodes the relative desirability of each possible state
s ∈ Sn of the system. A constraint c = 〈Nc, Rc〉 is speci-
fied by the set of variables Nc ⊆ N over which it is defined,
and a relation Rc ⊂ S|Nc| between those variables. A func-
tion Uc (sc) specifies the reward for satisfying constraint c,
where sc is the configuration of the states of the variables
in Nc. The global objective function is typically written as
W (s) =

P
c∈C Uc(sc). The problem is to find a global maxi-

mizer of W . Given this, a ‘distributed’ constraint optimiza-
tion problem (DCOP) is produced when a set of autonomous
agents each independently control the state of a variable.

In [9], the authors show that DCOPs can be viewed in the
context of potential games, thus allowing any of the learning
designs described earlier to be applied. Here, we highlight
that this ‘DCOP game’ corresponds specifically to choosing
WLU as the utility design. Consider the autonomous agents
of the DCOP to be the players, the common state space to
be their action sets, and the global objective function to
be the social welfare function. Denote by C(M) the set of
constraints involving any of the variables in the set M ⊆ N .
The WLU design is:

Ui(s) = W (s) − W (∅, s−i)

=
X

c∈C(N)

Uc(sc) −
X

c∈C(N\{i})
Uc(sc)

=
X

c∈C({i})
Uc(sc)

which is exactly the utility function suggested for the DCOP
game in [9]. The last step follows by observing that when
variable i is not part of the DCOP, all constraints not con-
taining i in the original DCOP are not affected.

4. MOVING BEYOND POTENTIAL GAMES
To this point, we have discussed a concrete example of the

game-theoretic control architecture – using potential games
as an interface between utility and learning design. However,
potential games are only one, very restrictive class of games,
and research has begun to uncover limitations of layering via
potential games (see Section 3.4).

Thus, as we move forward, it is important to consider
other options for the interface. Recent research is begin-
ning to consider a variety of other classes of games as the
basis for game-theoretic control. For example, [26] suggests
‘state-based potential games’, which are a limited form of
Markov games, as a way to overcome the limitation of po-
tential games described in Section 3.4. Other examples in-
clude [41], which proposes using conjectural equilibria in the
context of multi-user power control, and [1] which proposes
using oblivious equilibria in the context of large stochas-
tic games. However, as yet, there is little understanding
of the strengths and limitations of designs using these new
classes of games. For example, which classes of games pro-
vide modularity when used as an interface? What is gained
by broadening the interface from potential games to other
classes? Is there a penalty for broadening the interface, e.g.
slower convergence rates for learning?

Our hope is that the identification of an architectural view
of game-theoretic control in this paper can help formalize
and motivate these important directions for the field. We
propose that a better understanding of the strengths and
weaknesses of differing interfaces will provide useful insight
into how to choose the appropriate interface for a given class
of applications. For example, for some applications, the lim-
itation described in Section 3.4 may not be important, while
for others, the limitation may cause design outside of poten-
tial games to be preferable.
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