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Abstract—We consider the problem of designing the distri-
bution rule used to share “welfare” (cost or revenue) among
individually strategic agents. There are many distribution rules
known to guarantee the existence of a (pure Nash) equilibrium
in this setting, e.g., the Shapley value and its weighted variants;
however a characterization of the space of distribution rules
that yield the existence of a Nash equilibrium is unknown. Our
work provides a step towards such a characterization. We prove
that when the welfare function is strictly submodular, a budget-
balanced distribution rule guarantees equilibrium existence for
all games (i.e., all possible sets of resources, agent action sets,
etc.) if and only if it is a weighted Shapley value.

I. INTRODUCTION

How should the cost incurred (revenue generated) by a
set of self-interested agents be shared among them? This
fundamental question has led to a large literature in economics
over the last decades [24], [20], [28], [21], [19], and more
recently in computer science [8], [2], [5], [6], [16]. A classic
framework within which to study this question is that of cost
sharing games, in which there is a set of “agents” making
strategic choices of which “resources” to utilize. Each resource
generates a “welfare” (cost or revenue) depending on the set of
agents that choose the resource. The focus is on finding budget-
balanced distribution rules that provide “stable” and/or “fair”
allocations, which is traditionally formalized by the concept of
the core – the set of feasible distribution rules that guarantee
a stable grand coalition.

Recently, there is an emerging focus on weaker notions of
“stability” and, in particular, a (pure Nash) equilibrium for
the agents, which is our focus in this work. This focus is
driven by applications such as network-cost sharing [2], [6]
where individually strategic behavior is commonly assumed.
Additionally, the notion of an equilibrium is natural if cost
sharing distribution rules are used to design utilities for dis-
tributed agents in the context of a game-theoretic approach to
distributed control [16], [9].

Existing literature on cost sharing games provides several
distribution rules that guarantee equilibrium existence [24],
[23], [27], [26]. Perhaps, the most famous such distribution rule
is the Shapley value [24], which guarantees the existence of a
Nash equilibrium in any game, and for certain classes of games
such as convex games, is always in the core. A generalization
of the Shapley value which exhibits the same properties is the
weighted Shapley value [23].

Although (weighted) Shapley value distribution rules guar-
antee equilibrium existence, this is only one of many desirable
properties. Perhaps the next most important property is that
these equilibria should be “efficient” in the sense of maximiz-
ing the social welfare. In order to provide the tools necessary
to optimize efficiency (and other properties) while still al-
ways ensuring equilibrium existence, researchers have recently
sought to provide characterizations of the class of distribution
rules that guarantee equilibrium existence. Providing such a
characterization is the goal of this paper.

The first step toward this goal is the work of Chen, Rough-
garden, & Valiant [6], who prove that the only budget-balanced
distribution rules that guarantee equilibrium existence in all
cost sharing games are weighted Shapley value distribution
rules. Following on [6], Marden & Wierman [17] provide
the parallel characterization in the context of revenue sharing
games. Though the characterizations in [6] and [17] seem
general, they actually provide only a worst-case characteriza-
tion. In particular, the proofs in [6], [17] consist of exhibiting
a specific “worst-case” welfare function which requires that
weighted Shapley value distribution rules be used. Thus, the
question of characterizing the space of distribution rules for any
specific welfare function remains open. In practice, it is exactly
this issue that is important: when designing a distribution rule,
one knows the specific welfare function for the situation. In
such a situation, there may be distribution rules other than
weighted Shapley value rules that also guarantee the existence
of an equilibrium. In particular, recent work has shown that
such settings do exist [16].

In this paper, we seek to provide a more detailed character-
ization of the space of distribution rules by understanding, for
specific welfare functions, what rules guarantee the existence
of a (pure Nash) equilibrium. In particular, our focus is on
the class of submodular welfare functions. Submodular welfare
functions are quite common and are found, for example, in
power control and coverage problems in sensor networks [4],
[16], wireless access point assignment and frequency selection
[11], and influence maximization [12].

Our main result (Theorem 2) states that, given any strictly
submodular welfare function, only weighted Shapley value
distribution rules guarantee equilibrium existence in all games.
Thus, we show, perhaps surprisingly, that the result of [6]
holds much more generally. In particular, we show that it is
not the existence of some worst-case welfare function which
limits the design of “desirable” distribution rules to weighted
Shapley values. In fact, even under practical (submodular)
welfare functions, the design of distribution rules is constrained
to the weighted Shapley value. This characterization means that
in many practical settings, it is possible to optimize other de-
sirable properties (such as the “efficiency” of the equilibrium)
within the class of weighted Shapley value distribution rules.

II. MODEL

In this work, we consider a simple, but general, model of
a “welfare” (cost or revenue) sharing game, where there is a
set of self-interested agents/players N = {1, . . . , n} who each
choose from a set R = {r1, . . . , rm}, the resources to which to
allocate themselves. Each agent i ∈ N is capable of selecting
potentially multiple resources in R; therefore, we say that agent
i has action set Ai ⊆ 2R. The resulting action profile, or (joint)
allocation, is a tuple a = (a1, . . . , an) ∈ A where the set of
all possible allocations is denoted by A = A1 × . . .×An. We
occasionally denote an allocation a by (ai, a−i) where a−i

denotes the allocation of all agents except agent i.



Each allocation generates a welfare, W(a), which needs
to be shared completely among the agents, i.e., the allo-
cation is budget-balanced. In this work, we assume W(a)
is (linearly) separable and scalable across resources, i.e.,
W(a) =

∑
r∈R vrW ({a}r) where {a}r = {i ∈ N : r ∈ ai}

is the set of agents that are allocated to resource r in a,
vr ∈ R++ is the local scaling factor of resource r, and
W : 2N → R is the welfare function that is scaled at each
resource. These are standard assumptions, e.g., see [6], [16],
and are quite general. Note that this model incorporates both
revenue and cost sharing games, since we allow for the welfare
function W to be either positive or negative.

The manner in which the welfare is shared among the agents
determines the utility function Ui : A → R that agent i seeks
to maximize. Because the welfare function is assumed to be
separable and scalable, it is natural that the utility functions
should follow suit. The motivation for scalability is self-
evident. To motivate separability, note that this corresponds
to welfare garnered from each resource being distributed
among only the agents allocated to that resource, which is
most often appropriate, e.g., in profit sharing. This results in
Ui(a) =

∑
r∈ai

vrf (i, {a}r), where f : N × 2N → R is
the distribution rule, i.e., f(i, S) is the portion of the welfare
allocated to agent i ∈ S when sharing with S. Recall that
we require f to be budget-balanced, which means that for any
player set S ⊆ N ,

∑
i∈S f(i, S) = W (S).

To summarize, we can specify a welfare sharing game G
using the tuple G =

(
N,R, {Ai}i∈N , {vr}r∈R , f,W

)
, where

the design of f is the focus of this paper.
The primary goals when designing f are to guarantee (i)

equilibrium existence, and (ii) equilibrium efficiency. Our focus
in this work is entirely on (i) and we consider pure Nash
equilibria; however it should be noted that other equilibrium
concepts are also of interest [25], [1], [13]. Recall that a (pure
Nash) equilibrium is an action profile a∗ ∈ A such that for
each player i, Ui(a

∗
i , a

∗
−i) = maxai∈Ai Ui(ai, a

∗
−i).

The Shapley value [24], one of the oldest and most com-
monly studied distribution rule in the cost sharing literature, is
defined as

fSV (i, S) =
∑

T⊆S\{i}

(|T |)!(|S| − |T | − 1)!

|S|! (W (S ∪{i})−W (S)).

The importance of the Shapley value is that it is budget-
balanced and guarantees equilibrium existence in any game,
regardless of its parameters. Further, it has many other desir-
able properties, e.g., it results in the game being a so-called
“potential game” [26]. However, it has one key drawback –
computing it is often intractable since it requires the calculation
of exponentially many marginal contributions [7].

There are generalizations of the Shapley value that maintain
its properties. In particular, the weighted Shapley value [23],
which is defined as (ω is the vector of the player-specific
weights)

fWSV (i, S;ω) =
∑

T⊆S:i∈T

ωi∑
j∈T ωj

∑
R⊆T

(−1)|T |−|R|W (R)

 ,

also guarantees equilibrium existence in any game.

III. RESULTS AND DISCUSSION

In the previous section, we discussed examples of budget-
balanced distribution rules that guarantee equilibrium existence
in “welfare” (cost or revenue) sharing games. The goal of this
paper is to characterize the space of all such distribution rules.

Towards this end, this paper builds on the recent work
of Chen, Roughgarden, & Valiant [6] and Marden & Wier-
man [17], which takes the first steps toward providing such
a characterization. The following result combines the main
contributions of [6] and [17] into one statement. Let G(N, f)
denote the class of all games with a fixed player set N and
budget-balanced distribution rule f . Note that this is a very
general class; in particular, it includes games with arbitrary
action sets and an arbitrary welfare function.

Theorem 1 [6], [17] All games in G(N, f) possess a pure
Nash equilibrium if and only if f is a weighted Shapley value.

Less formally, Theorem 1 states that if one wants to use
a distribution rule that guarantees equilibrium existence for
all possible welfare functions and for all possible action sets,
then one is limited to the class of weighted Shapley value
distribution rules. Though this result seems quite general, it is
shown by exhibiting a specific “worst-case” welfare function
for which this limitation holds. In reality, when designing a
distribution rule, one knows the specific welfare function for
the situation, and Theorem 1 claims nothing in this case. In
particular, there may be other distribution rules that guarantee
equilibrium existence for all games, and recent work has shown
that there are settings where this is the case [16].

Our main result shows that even for a fixed strictly sub-
modular welfare function, the conclusion of Theorem 1 is still
valid, i.e., weighted Shapley distribution rules are the only ones
which guarantee equilibrium existence.

More specifically, let G(N, f,W ) denote the class of all
games with a fixed player set N , budget-balanced base distribu-
tion rule f , and welfare function W . Note that G(N, f,W ) (
G(N, f) because we have fixed the welfare function W (though
arbitrary action sets are still allowed). We focus on welfare
functions W that are strictly submodular, i.e., for player sets
X,Y ⊆ N , W (X)+W (Y ) > W (X∪Y )+W (X∩Y ). A vari-
ety of problems such as power control and coverage problems
in sensor networks [4], [16], wireless access point assignment
and frequency selection [11], and influence maximization [12]
all have submodular welfare functions.

We can now state our main result.

Theorem 2 Let W be a strictly submodular welfare function.
All games in G(N, f,W ) possess a pure Nash equilibrium if
and only if f is a weighted Shapley value.

Though Theorem 2 and Theorem 1 are superficially very
similar, Theorem 2 is much stronger. The key contrast between
Theorems 1 and 2 is that Theorem 1 states that there exists
a welfare function for which the distribution rule is required
to be a weighted Shapley value in order to guarantee equilib-
rium existence, while Theorem 2 states that, for any strictly
submodular welfare function, the distribution rule must be a
weighted Shapley value to guarantee equilibrium existence. To
highlight this, consider that the proof of Theorem 1 exhibits
a welfare function, and shows the result for that specific case,
while the proof of Theorem 2 allows working with an arbitrary
strictly submodular welfare function.

One subtle implication of Theorem 2 is that if one hopes
to use a distribution rule that always guarantees equilibrium
existence in games with a strictly submodular welfare function,
then one is limited to working within the class of “potential
games”, since weighted Shapley value distribution rules result



in potential games [26]. This is, perhaps, surprising since
a priori potential games are often thought to be a small,
special case of games. However, this is useful since there
are many well understood learning dynamics which guarantee
convergence to equilibria in potential games [3], [14], [15].

Theorem 2 also has some negative implications. First, the
limitation to weighted Shapley value distribution rules means
that one is forced to use distribution rules which are often
intractable [7], as discussed earlier. Second, Marden & Wier-
man [17] show that there are efficiency limits that hold for
any weighted Shapley value distribution rule. In particular,
under any weighted Shapley value distribution rule there exists
a game where the best equilibrium has welfare that is a
multiplicative factor of two worse than the optimal welfare.

We do not have space to provide the complete proof of
Theorem 2, so we sketch an outline, highlighting the proof
technique and the key steps involved, in the following. A
complete proof is provided in the appendix.

Proof Sketch of Theorem 2:

First, note that we only need to prove one direction since
it is well known that a weighted Shapley value distribution
rule is budget-balanced and guarantees equilibrium existence
in any resource allocation game [22], [10], [18]. Thus, in the
remainder of this section, we discuss the proof technique for
the other direction – for budget-balanced distribution rules that
are not weighted Shapley values, there exists a game for which
no equilibrium exists.

The general outline of the proof is as follows. We establish
several necessary conditions for a budget-balanced distribution
rule f that guarantees the existence of an equilibrium for all
games in G(N, f,W ). Effectively, these necessary conditions
eliminate any budget-balanced distribution rule that is not a
weighted Shapley value and hence give us our desired result.
We establish these conditions by a series of counterexamples
which amount to choosing a resource set R, the respective
values {vr}r∈R, and the associated action sets {Ai}i∈N .

A key technique of the proof is that instead of working with
W directly, we define a basis of simple welfare functions, and
represent W using this basis, i.e., any W is equivalent to a
linear combination of the basis welfare functions. The basis
we use is the following class of T -welfare functions. For every
player subset T ⊆ N , a T -welfare function is defined as:

WT (S) =

{
1, T ⊆ S;

0, otherwise.
(1)

It can be shown that the set of all T -welfare functions forms a
basis for the set of all welfare functions, i.e., given any welfare
function W , there exists a set T ⊆ 2N , and a sequence Q =
{qT }T∈T of non-zero weights indexed by T , such that:

W =
∑
T∈T

qTW
T

From here on, we denote a welfare function by (T , Q),
so the class of games defined in the theorem is denoted
as G(N, f, T , Q). It is useful to think of the sets in T as
being “coalitions” of players that contribute to the welfare
function, and the corresponding coefficients in Q as being their
respective contributions. Also, for simplicity, we assume that
W (∅) = 0 and therefore, ∅ /∈ T .

Warmup, a single T-welfare function: To build some in-
tuition, we first present the proof outline for an isolated T -
welfare function, i.e., for a W where |T | = 1 above. This step
consists of establishing the following necessary conditions for
a budget-balanced f for any subset S ⊆ N of players:
(a) If the coalition T is not formed in S (T * S), then f does

not allocate any utility to the players in S.
(b) If the coalition T is formed in S (T ⊆ S), then f dis-

tributes the resulting welfare only among the contributing
players (players in T ). Therefore, players in S−T , if any,
get nothing.

(c) If the coalition T is formed in S (T ⊆ S), then f
distributes the welfare among players in T as if all other
players (players in S − T ) were absent.

It is easy to see that any budget-balanced f that satisfies the
above conditions is completely specified by |T | − 1 values,
namely the values of f(i, T ) for any |T | − 1 players in T .
Further, it can be shown that f(i, T )f(j, T ) ≥ 0 for all i, j ∈
T . The proof is complete by observing that such an f is indeed
a weighted Shapley value distribution rule, where the weight
of player i ∈ T is given by ωi =

f(i,T )
qT

, and the weights of
the other players are arbitrary.

To provide an idea of the proof technique we use to establish
the above necessary conditions, in the following we prove (a).
Proof of (a): Formally, we need to prove that any budget-
balanced f that guarantees equilibrium existence in any game
G ∈ G(N, f, {T}, {qT }) satisfies f(i, S) = 0 for all i ∈ S
when T * S ⊆ N . We do so by induction on |S|. The base
case, where |S| = 1 is trivially true, because from budget
balance, we get that for any player i ∈ N ,

f (i, {i}) =
{
qT , T = {i}
0 , otherwise

For the induction hypothesis, let us assume that (∀ S) (∀ i ∈
S) f(i, S) = 0, where T * S ⊆ N and |S| = z, for some
integer z satisfying 0 < z < |N |. Now, for |S| = z + 1,
assume the contrary, that f(i, S) ̸= 0 for some i ∈ S, where
T * S ⊆ N and |S| = z+1. Since f is budget-balanced, there
has to be at least one other player j ∈ S that also satisfies
this condition, such that f(i, S)f(j, S) < 0, that is, f(i, S)
and f(j, S) have opposite signs. Without loss of generality,
assume that f(i, S) < 0 and f(j, S) > 0. From the induction
hypothesis, we know that f(i, S − {j}) = f(j, S − {i}) = 0.

Fig. 1. Counter-example for (a)

Now consider the game illustrated in Fig. 1 with resource set
R = {r1, r2} and local resource coefficients vr1 = vr2 > 0.
Players i and j have the same action sets – they can each
choose either r1 or r2. All other players in S have a fixed
action – they choose both resources. This is essentially a game
between players i and j. It is easy to see that none of the
four possible action profiles is a Nash equilibrium, which is a
contradiction. For example, (r1, r1) is not a Nash equilibrium
since f(i, S−{j}) > f(i, S), and so player i has an incentive
to deviate to r2. This completes the inductive argument. �



General welfare functions: We are now ready to outline
the sequence of necessary conditions that make up the core
of the proof for a general welfare function, (T , Q). Before
continuing, we need to introduce some more notation. For any
subset S ⊆ N , we denote by T (S) the set of all sets in T
that are contained in S. That is, T (S) = {T ∈ T | T ⊆ S}.
In other words, T (S) is the set of contributing coalitions in S.
Also, let I(S) denote the set of players within T (S), that is,
I(S) =

∪
T (S). In other words, I(S) is the set of contributing

players in S.
The first three conditions mirror those stated above for an

isolated T -welfare function – for any subset S ⊆ N of players,
(a) If no coalition is formed in S (T (S) = ∅), then f does

not allocate any utility to the players in S.
(b) If any coalition is formed in S (T (S) ̸= ∅), then f

distributes the welfare only among players in I(S).
(c) If any coalition is formed in S (T (S) ̸= ∅), f distributes

the resulting welfare among players in I(S) as if all other
players (players in S − I(S)) were absent.

It turns out that in the general case, these three conditions
are not enough to complete the proof.

We next show that the conditions above imply that f can
now be represented as a linear combination of basis weighted
Shapley value distribution rules – for every player subset
T ⊆ N , define a basis T -distribution rule

(
parameterized by a

positive vector ωT =
(
ωT
i

)
i∈T

)
as follows:

fT (i, S;ωT ) =

{
ωT

i∑
k∈T ωT

k

, i ∈ T and T ⊆ S

0 , otherwise
(2)

It is easy to see that (2) is the weighted Shapley distribution
rule for its corresponding T -welfare function defined in (1),
where the player weights are given by ωT . Formally, we show
that for any budget-balanced distribution rule f that guarantees
equilibrium existence in any game G ∈ G(N, f, T , Q), there
exists a sequence of weight-vectors Ω =

{
ωT
}
T∈T such that

f =
∑
T∈T

qT f
T (3)

where each fT is a weighted Shapley value distribution rule for
its corresponding T -welfare function, with weight vector ωT .
Therefore, f is completely specified by a sequence of weight
vectors Ω.

Note that this is not yet enough to guarantee equivalence
to a weighted Shapley value distribution rule, since a pair of
players can have “inconsistent” weights in different coalitions.
Thus, our final steps focus on deriving necessary consistency
conditions for the weight vector Ω.

To guarantee consistency of the weights, we first show that
if there is a pair of players common to two coalitions, then
their weights in those two coalitions must be “consistent”, i.e.,
they should be linearly dependent. More formally, we show
that for every pair of subsets T1, T2 ∈ T , every pair of players
(i, j) such that {i, j} ⊆ T1 ∩ T2,

ωT1
i

ωT2
i

=
ωT1
j

ωT2
j

Finally, we show that all weight vectors in Ω must be con-
sistent, i.e., there exists a global weight vector ω = (ωk)k∈N ,
such that, for every T ∈ T , ωT and ω restricted to T are

linearly dependent. Note that we use the fact that the welfare
function is strictly submodular only for proving this final step.

From the form (3) for the distribution rule f , and the form
(2) for the basis T -distribution rule, it is clear that scaling
the local weight vectors by a constant does not affect the
distribution rule. Therefore, it follows from our final result
that any budget-balanced distribution rule f that guarantees
the existence of an equilibrium in any game G ∈ G(N, f,W ),
where W is strictly submodular, is completely specified by a
global weight vector ω. The proof is complete by observing
that, at this stage, f , in the form (3), is exactly the weighted
Shapley value distribution rule for the welfare function (T , Q),
with weight vector ω. �
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APPENDIX

Proof of Theorem 2: First, note that we only need to prove one
direction since it is well known that a weighted Shapley value
distribution rule is budget-balanced and guarantees equilibrium
existence in any resource allocation game [22], [10], [18].
Thus, in the remainder of this section, we present the proof
for the other direction – for budget-balanced distribution rules
that are not weighted Shapley values, there exists a game for
which no equilibrium exists.

The general outline of the proof is as follows. We establish
several necessary conditions for a budget-balanced distribution
rule f that guarantees the existence of an equilibrium for all
games in G(N, f,W ). Effectively, these necessary conditions
eliminate any budget-balanced distribution rule that is not a
weighted Shapley value and hence give us our desired result.
We establish these conditions by a series of counterexamples
which amount to choosing a resource set R, the respective
values {vr}r∈R, and the associated action sets {Ai}i∈N .

A key technique of the proof is that instead of working with
W directly, we define a basis of simple welfare functions, and
represent W using this basis, i.e., any W is equivalent to a
linear combination of the basis welfare functions. The basis
we use is the following class of T -welfare functions. For every
player subset T ⊆ N , a T -welfare function is defined as:

WT (S) =

{
1, T ⊆ S;

0, otherwise.
(4)

It can be shown1 that the set of all T -welfare functions forms a
basis for the set of all welfare functions, i.e., given any welfare
function W , there exists a set T ⊆ 2N , and a sequence Q =
{qT }T∈T of non-zero weights indexed by T , such that:

W =
∑
T∈T

qTW
T

From here on, we denote a welfare function by (T , Q),
so the class of games defined in the theorem is denoted
as G(N, f, T , Q). It is useful to think of the sets in T as
being “coalitions” of players that contribute to the welfare
function, and the corresponding coefficients in Q as being their
respective contributions. Also, for simplicity2, we assume that
W (∅) = 0 and therefore, ∅ /∈ T .

Before continuing, we need to introduce some more no-
tation. For any subset S ⊆ N , we denote by T (S) the set
of all sets in T that are contained in S. That is, T (S) =
{T ∈ T | T ⊆ S}. In other words, T (S) is the set of contribut-
ing coalitions in S. Also, let I(S) denote the set of players
within T (S), that is, I(S) =

∪
T (S). In other words, I(S)

is the set of contributing players in S. We also define T min

and T max, to be the subsets of T containing all the minimal
and maximal sets3 respectively in T . We adopt analogous
definitions for T min(S) and T max(S). We also use the notation
C(T ) to denote the minimal cover ∪T∈T T of a collection of
sets T .

Our first lemma formalizes the following intuitive necessary
condition – for any subset S ⊆ N of players, if no contributing
coalition is formed in S, then f does not allocate any utility
to the players in S.

1Shapley [23] showed this, he calls these basis functions “inclusion func-
tions”, and the set T the “spectrum” of W .

2This is merely a normalization and therefore, no generality is lost.
3A set is minimal (respectively, maximal) in a collection if there is no other

set that is a strict subset (respectively, superset) of itself.

Lemma 1 Let f be a budget-balanced distribution rule that
guarantees the existence of an equilibrium in all games G ∈
G(N, f,W ). Let S ⊆ N be a nonempty set with T (S) = ∅.
Then, for any player i ∈ S, f(i, S) = 0.

Proof: The proof is by induction on |S|. The base case,
where |S| = 1 is trivially true, because from budget-balance,
we have that for any player i ∈ N ,

f(i, {i}) =
{
q{i} , {i} ∈ T
0 , otherwise

Our induction hypothesis is the following statement. Any
budget-balanced distribution rule f that guarantees the exis-
tence of an equilibrium in all games G ∈ G(N, f,W ) satisfies
f(i, S) = 0 for all i ∈ S, where S ⊆ N , T (S) = ∅ and
|S| = z, for some integer z satisfying 0 < z < |N |.

Now, we prove that if the induction hypothesis is true,
then it is still true when z is replaced by z + 1. Assume the
contrary, that there is a budget-balanced distribution rule f that
guarantees the existence of an equilibrium in all games G ∈
G(N, f,W ), but satisfies f(i, S) ̸= 0 for some i ∈ S, where
S ⊆ N , T (S) = ∅ and |S| = z+1. Since f is budget-balanced,
there has to be at least one other player j ∈ S that also satisfies
this condition, such that f(i, S)f(j, S) < 0, that is, f(i, S)
and f(j, S) have opposite signs. Without loss of generality,
assume that f(i, S) < 0 and f(j, S) > 0. From the induction
hypothesis, we know that f(i, S − {j}) = f(j, S − {i}) = 0.

Fig. 2. Counter-example for Lemma 1

Now consider the following game illustrated in Figure 2,
with resource set R = {r1, r2} and local resource coefficients
vr1 = vr2 > 0. Players i and j have the same action sets – they
can each choose either r1 or r2. All other players in S have a
fixed action – they choose both resources. This is essentially a
game between players i and j. It is easy to see that none of the
four possible action profiles is a Nash equilibrium, which is a
contradiction. For example, (r1, r1) is not a Nash equilibrium
since f(i, S−{j}) > f(i, S), and so player i has an incentive
to deviate to r2. Similarly, (r2, r1) is not a Nash equilibrium
since f(j, S) > f(j, S−{i}), and so player j has an incentive
to deviate to r2. This completes the inductive argument. �

The next lemma formalizes the intuitive necessary condition
that for any subset S ⊆ N of players, f distributes welfare only
among the contributing players, i.e., the players in I(S).

Lemma 2 Let f be a budget-balanced distribution rule that
guarantees the existence of an equilibrium in all games G ∈
G(N, f,W ). Let S ⊆ N be a nonempty set. Then, f(i, S) = 0
for all players i /∈ I(S).

Proof: Since this is vacuously true for I(S) = N , let
us assume that I(S) ( N . The proof is by induction on
|T (S)|. The base case, where |T (S)| = 0 is vacuously true
(this case reduces to Lemma 1). Our induction hypothesis is
be the following statement. Any budget-balanced distribution



rule f that guarantees the existence of an equilibrium in all
games G ∈ G(N, f,W ) satisfies f(i, S) = 0 for all i /∈ I(S),
where S ⊆ N and |T (S)| ≤ z, for some integer z satisfying
0 ≤ z < |T |.

Now, we prove that if the induction hypothesis is true, then
it is still true when z is replaced by z + 1. Our argument
for this is again inductive, this time, the induction is on |S −
I(S)|. The base case, where S = I(S), is vacuously true. Our
induction hypothesis is the following statement. Any budget-
balanced distribution rule f that guarantees the existence of an
equilibrium in all games G ∈ G(N, f,W ) satisfies f(i, S) = 0
for all i ∈ S − I(S), where S ⊆ N , |T (S)| = z + 1, and
|S − I(S)| = y, for some integer y satisfying 0 ≤ y < |N | −
|I(S)|.

Now, we prove that if both the outer and inner induction
hypotheses are true, then the inner induction hypothesis is still
true when y is replaced by y + 1. Assume the contrary, that
there is a budget-balanced distribution rule f that guarantees
the existence of an equilibrium in all games G ∈ G(N, f,W ),
but satisfies f(i, S) ̸= 0 for some i ∈ S−I(S), where S ⊆ N ,
|T (S)| = z + 1, and |S − I(S)| = y + 1. Since f is budget-
balanced, we have,

f(i, S) +
∑

k∈S−{i}

f(k, S) =
∑

k∈S−{i}

f(k, S − {i})

⇒ f(i, S) =
∑

k∈S−{i}

(f(k, S − {i})− f(k, S))

Since f(i, S) is nonzero, it is clear that at least one of the
difference terms on the right hand side is either strictly positive
or strictly negative, according to whether f(i, S) is strictly
positive or strictly negative. That is, there is some j ∈ S−{i}
such that

f(i, S) (f(j, S − {i})− f(j, S)) > 0

We also know that4 f(i, S−{j}) = 0. So, the above inequality
can be rewritten as,

(f(i, S)− f(i, S − {j})) (f(j, S)− f(j, S − {i})) < 0

First, let us consider the case where f(i, S)−f(i, S−{j}) < 0
and f(j, S)− f(j, S −{i}) > 0. For this case, the exact same
game that was illustrated in Figure 2, and the argument for non-
existence of equilibrium therein (proof of Lemma 1) serves as
a counterexample here too. The proof for the other case, where
f(i, S) − f(i, S − {j}) > 0 and f(j, S) − f(j, S − {i}) < 0
is symmetric.5 This completes the inductive argument. �

Our third lemma formalizes the intuitive necessary condition
that for any subset S ⊆ N of players, f distributes welfare
among the contributing players (players in I(S)) as if all other
players (players in S − I(S)) were absent. In other words,
the manner in which f distributes welfare among contribut-
ing players is independent of which other (non-contributing)
players are present.

Lemma 3 Let f be a budget-balanced distribution rule that
guarantees the existence of an equilibrium in all games G ∈
G(N, f,W ). Let S ⊆ N be a nonempty set. Then, for all
players i ∈ I(S), f(i, S) = f(i, I(S)).

4If j ∈ I(S), we know this from the outer induction hypothesis. If j /∈
I(S), we know this from the inner induction hypothesis.

5The best response cycle is just reversed.

Proof: The proof is by induction on |T (S)|. The base
case, where |T (S)| = 0, is vacuously true. Our induction hy-
pothesis is the following statement. Any budget-balanced dis-
tribution rule f that guarantees the existence of an equilibrium
in all games G ∈ G(N, f,W ) satisfies f(i, S) = f(i, I(S))
for all i ∈ I(S), where S ⊆ N and |T (S)| ≤ z, for some
integer z satisfying 0 ≤ z < |T |.

Now, we prove that if the induction hypothesis is true, then it
is still true when z is replaced by z+1. Assume the contrary,
that is, suppose that there is a budget-balanced distribution
rule f that guarantees the existence of an equilibrium in all
games G ∈ G(N, f,W ), but satisfies f(i, S) ̸= f(i, I(S) for
some i ∈ I(S), and some S ⊆ N , such that S ) I(S) and
|T (S)| = z+1. Without loss of generality, let us assume that,

f(i, S) < f(i, I(S)) (5)

Because f is budget-balanced, we have,∑
k∈S

f(k, S) =
∑

k∈I(S)

f(k, I(S))

From Lemma 2, we know that f(k, S) = 0 for all k ∈ S −
I(S). Therefore, we get,∑

k∈I(S)

f(k, S) =
∑

k∈I(S)

f(k, I(S))

So, there exists a player j ∈ I(S) such that,

f(j, S) > f(j, I(S)) (6)

Fig. 3. Counter-example for Lemma 3

Now consider the following game illustrated in Figure 3,
with resource set R = {r11, r12, r21, r22} and local resource
coefficients vr11 = vr12 = vr21 = vr22 > 0. Player i is the
column player and player j is the row player. That is, their
action sets are given by Ai = {L = (r11, r21) , R = (r12, r22)}
and Aj = {T = (r11, r12) , B = (r21, r22)}. All other players
in I(S) have a fixed action – they choose all four resources.
That is, Ak = {(r11, r12, r21, r22)} for k ∈ I(S) − {i, j}.
Finally, for all remaining players k ∈ S − I(S), Ak =
{(r12, r21)}. This is essentially a game between players i
and j. The joint action set can therefore be represented as
A = {LT,LB,RT,RB}. We now show that none of these
four action profiles is a Nash equilibrium, which would be a
contradiction:
(1) LT would not be a Nash equilibrium if player j has an

incentive to switch from T to B. This would happen if

f(j, S) + f(j, I(S)− {i}) > f(j, I(S)) + f(j, S − {i})
But this is true, because of (6), and the fact that6
f(j, I(S)− {i}) = f(j, S − {i}).

6First, observe that I(I(S)−{i}) = I(S−{i}), and then, since i ∈ I(S),
|T (S − {i})| < |T (S)|, so the induction hypothesis applies.



(2) LB would not be a Nash equilibrium if player i has an
incentive to switch from L to R. This would happen if

f(i, I(S)) + f(i, S − {j}) > f(i, S) + f(i, I(S)− {j})

But this is true, by our assumption in (5), and the fact that7
f(i, S − {j}) = f(i, I(S)− {j}).

(3) The action profiles RB and RT are not Nash equilibria
either, because in these action profiles, players j and i
respectively have incentives to deviate – the arguments are
essentially identical to Case (1) and (2) above, respectively.

This completes the inductive argument. �
We next show that the three necessary conditions above

(Lemmas 1-3) imply that f can now be represented as a linear
combination of basis weighted Shapley value distribution rules
– for every player subset T ⊆ N , define a basis T -distribution
rule

(
parameterized by a positive vector ωT =

(
ωT
i

)
i∈T

)
as

follows:

fT (i, S;ωT ) =

{
ωT

i∑
k∈T ωT

k

, i ∈ T and T ⊆ S

0 , otherwise
(7)

It is easy to see that (7) is the weighted Shapley distribution
rule for its corresponding T -welfare function defined in (4),
where the player weights are given by ωT .

Lemma 4 Let f be a budget-balanced distribution rule that
guarantees the existence of an equilibrium in all games G ∈
G(N, f,W ). Then, there exists a sequence of weight-vectors
Ω =

{
ωT
}
T∈T such that

f =
∑
T∈T

qT f
T (8)

where each fT is a weighted Shapley value distribution rule
for its corresponding T -welfare function, with weight vector
ωT .

Proof: First, we introduce the following partition of T ,
which we call its min-decomposition. Begin with T . Set T1 =
T min and remove the elements of this set from T . Repeat this
process (the next iteration would set T2 = (T − T1)min) until
the partition is complete. Let this partition be {T1, T2, . . . , Tℓ}.

Now for the proof. Let f be a budget-balanced distribution
rule that guarantees the existence of an equilibrium in all games
G ∈ G(N, f,W ). From Lemmas 1-3, it follows that to specify
such a distribution rule f , one only has to specify the values
f(i, S) for those subsets S for which S = I(S) (that is, those
subsets S that are unions of one or more coalitions in T ). Given
an f specified in such a manner, we proceed to derive the basis
distribution rules fT that appear in (8), for each T ∈ T as
follows. First, for all T ∈ T1, for all i ∈ T , set fT (i, T ) =
1
qT

f(i, T ). Then, recursively for z > 1, for all T ∈ Tz , for all
i ∈ T , set

fT (i, T ) =
1

qT

f(i, T )−
∑
T ′(T
T ′∈T
i∈T ′

qT ′fT ′
(i, T ′)

 (9)

7First, observe that I(I(S)−{j}) = I(S−{j}), and then, since j ∈ I(S),
|T (S − {j})| < |T (S)|, so the induction hypothesis applies.

We show now that fT as defined above is budget-balanced,
i.e.,

∑
i∈T

fT (i, T ) = 1. This will be useful later in the proof.

This can be shown by induction on z (the partition level that
contains T in the min-decomposition of T ). The base case,
where z = 1 is true by definition and the budget-balance of
f . Assume that fT is budget-balanced for all T ∈ Tm for
1 ≤ m ≤ z. For any T ∈ Tz+1, from the recursive definition
in (9) we have,

∑
i∈T

fT (i, T ) =
1

qT


∑
i∈T

f(i, T )−
∑
i∈T

∑
T ′(T
T ′∈T
i∈T ′

qT ′fT ′
(i, T ′)



=
1

qT

W (T )−
∑
T ′(T
T ′∈T

∑
i∈T ′

qT ′fT ′
(i, T ′)



=
1

qT

W (T )−
∑
T ′(T
T ′∈T

qT ′


=

1

qT
(qT ) = 1

where we have used the budget-balance of f , followed by the
induction hypothesis.

Note that the definition (9) immediately implies that for each
T ∈ T ,

f(i, T ) =
∑
T ′⊆T
i∈T ′

qT ′fT ′
(i, T ′) (10)

This means that f already satisfies (8) for all subsets S ∈ T .
We still need to show that f satisfies (8) for all subsets S that
are unions of two or more coalitions in T . So, for any subset
S ⊆ N , such that S = I(S), we prove this by induction
on |T (S)|. The base case, where |T (S)| = 1 is trivial, from
(10). Suppose f satisfies (8) for all subsets S ⊆ N , such that
S = I(S), with |T (S)| ≤ z for some integer z satisfying
1 ≤ z < |T |. Consider the case where |T (S)| = z+1. Assume
the contrary, i.e.,

f(i, S) <
∑

T∈T (S)

qT f
T (i, T ) (11)

for some i ∈ S.8 Since f and fT are budget-balanced, it must
be that for some j ∈ S,

f(j, S) >
∑

T∈T (S)

qT f
T (j, T ) (12)

As with the other proofs, we present a counter-example game
where the above two inequalities would suffice to show that a
Nash equilibrium doesn’t exist. This time, it is more compli-
cated, and so, we describe the intuition first. We’d like to have
a counter-example of the form in Figure 3, where, to begin

8The ‘<’ sign in the assumption is without loss of generality.



with, when player j selects T , the difference in the utilities of
player i between choosing R and L is exactly∑

T∈T (S)

qT f
T (i, T )− f(i, S),

which we can argue is positive due to (11). Note that this
cannot be accomplished by simply having the whole set S in
the top-left box and all the individual coalitions T ∈ T (S)
in the top-right box, because f(i, T ) is not the same as
qT f

T (i, T ), since f(i, T ) includes utilities to i from all sub-
coalitions of T as well, so there would be a lot of repetition.
This suggests the following idea of an inclusion-exclusion
method of adding resources to the two boxes. First, add the
sets in T max(S) to the top-right box. Then, to compensate for
the repetition in this box, add all the sets that cover all possible
two-way intersections between distinct sets in T max(S) to the
top-left box. To compensate for the repetition in this box,
add all the sets that cover all possible three-way intersections
between distinct sets in T max(S) to the top-right box. And so
on (this process will obviously terminate). Then, to complete
the symmetric lower half, copy all the resource sets from the
top-left box into the bottom-right box and the top-right box
into the bottom-left box.

Now, we present the formal details. Let T max(S) ={
T1(S), T2(S), . . . , Tℓ(S)(S)

}
. For 1 ≤ k ≤ ℓ(S), define

Pk(S) = T (Tk(S)); this is the collection of all coalitions that
will appear in the expansion of f(·, Tk(S)). For 1 ≤ k ≤ ℓ(S),
define the collection of minimal covers of all possible distinct
k-way intersections,

C(k;S) =

{
C

(
k∩

m=1

Pym(S)

)}
1≤ym≤ℓ(S)

y1 ̸=y2 ̸=... ̸=yk

Let c(k;S) = |C(k;S)|.

Fig. 4. Counter-example for Lemma 4

Our counter-example, illustrated in Figure 4, has the follow-
ing set of resources, R = {r1, r2}

∪ℓ(S)
k=1 R1(k)

∪ℓ(S)
k=1 R2(k),

where Ry(k) =
{
ry1(k), ry2(k), . . . , ryc(k;S)(k)

}
for y =

1, 2. The local resource coefficients are all identical positive
numbers. The action set for player i is given by Ai = {L,R},
where

L = {r1}
∪

k is even

R1(k)
∪

k is odd

R2(k),

R = {r2}
∪

k is odd

R1(k)
∪

k is even

R2(k)

Player j has the action set Aj = {T,B}, where

T = {r1}
∪
k

R1(k),

B = {r2}
∪
k

R2(k)

All other players have a single action, implied by the following
fixtures – for all k, for all 1 ≤ y ≤ c(k;S), fix players in
Cy(k;S)− {i, j} at resources r1y(k), r2y(k), r1 and r2. This
is essentially a game between players i and j. The joint action
set can therefore be represented as A = {LT,LB,RT,RB}.
We now show that none of these four action profiles is a Nash
equilibrium, which would be a contradiction:
(1) LT would not be a Nash equilibrium if player i has an

incentive to switch from L to R. This would happen if

∑
k is odd

c(k;S)∑
y=1

f(i, Cy(k;S)) + f(i, S − {j})

+
∑

k is even

c(k;S)∑
y=1

f(i, Cy(k;S)− {j})

>
∑

k is even

c(k;S)∑
y=1

f(i, Cy(k;S)) + f(i, S)

+
∑

k is odd

c(k;S)∑
y=1

f(i, Cy(k;S)− {j})

(13)

The inclusion-exclusion principle, coupled with (10), gives
the following:

∑
k is odd

c(k;S)∑
y=1

f(i, Cy(k;S))−
∑

k is even

c(k;S)∑
y=1

f(i, Cy(k;S))

=
∑

T∈T (S)

qT f
T (i, T )

∑
k is odd

c(k;S)∑
y=1

f(i, Cy(k;S)− {j})−
∑

k is even

c(k;S)∑
y=1

f(i, Cy(k;S)− {j})

=
∑

T∈T (S−{j})

qT f
T (i, T )

Now, rearranging the terms in (13) and applying the above,
we get∑
T∈T (S)

qT f
T (i, T )−f(i, S) >

∑
T∈T (S−{j})

qT f
T (i, T )−f(i, S−{j})

But this is true, because of (11), and the fact that the right
hand side vanishes due to the induction hypothesis.9

(2) By an argument analogous to the one above, it can be
shown that RT is not a Nash equilibrium, because player
j has an incentive to switch from T to B.

(3) The action profiles RB and LB are not Nash equilibria
either, because in these action profiles, players i and j
respectively have incentives to deviate – the arguments are
essentially identical to Case (1) and (2) above, respectively.

This completes the inductive argument.

9Note that |T (S − {j})| < |T (S)|.



Finally, we show that each fT as defined in (9), already
shown to be budget-balanced, corresponds to a weighted Shap-
ley value distribution rule on its corresponding WT for some
vector of weights ωT . To show this, we first show that fT

is positive. We prove this by contradiction. Suppose there is
some player i ∈ T such that fT (i, T ) < 0. Since fT is budget-
balanced, there has to be some other player j ∈ T such that
fT (j, T ) > 0. Without loss of generality,10 assume qT > 0.
Let Tij(T ) denote the set of all sub-coalitions in T (excluding
T ) containing both i and j. The counter-example construction
here utilizes the same inclusion-exclusion technique that was
employed before. In fact, the counter-example is exactly the
same as before, but replace S by T , and T max(S) by T max

ij (T ).
The arguments for none of the action profiles being Nash
equilibria are analogous:
(1) LT would not be a Nash equilibrium if player i has an

incentive to switch from L to R. This would happen if
(after applying the inclusion-exclusion principle),∑

T ′∈
∪

P∈Tij(T ) T (P )

qT ′fT ′
(i, T ′)−

∑
T ′∈T (T )

qT ′fT ′
(i, T ′)

>
∑

T ′∈
∪

P∈Tij(T ) T (P−{j})

qT ′fT ′
(i, T ′)

−
∑

T ′∈T (T−{j})

qT ′fT ′
(i, T ′)

which simplifies to qT f
T (i, T ) < 0, which is true by

assumption.
(2) By an argument analogous to the one above, it can be

shown that RT is not a Nash equilibrium, because player
j has an incentive to switch from T to B (the condition
in this case would simplify to qT f

T (j, T ) > 0.
(3) The action profiles RB and LB are not Nash equilibria

either, because in these action profiles, players i and j
respectively have incentives to deviate – the arguments are
essentially identical to Case (1) and (2) above, respectively.

This completes the inductive argument.
Now, since fT is positive and budget-balanced, it is com-

pletely specified by |T | positive values fT (i, T ) for all i ∈ T ,
that sum to 1. Define a weight vector ωT by

ωT
i =

{
fT (i, T ) , i ∈ T

arbitrary , otherwise

Then, the weighted Shapley value distribution rule fWSV on
WT , with weight vector ωT ), for i ∈ T , is given by

fWSV (i, T ;ωT ) =
∑

S⊆T :i∈S

ωT
i∑

j∈S ωT
j

∑
R⊆S

(−1)|S|−|R|WT (R)


=

ωT
i∑

j∈T ωT
j

∑
R⊆T

(−1)|T |−|R|WT (R)


=

ωT
i∑

j∈T ωT
j

WT (T )

=
ωT
i∑

j∈T ωT
j

= ωT
i = fT (i, T )

This concludes the proof. �
10If qT < 0, interchange the labels of i and j and the same proof would

work.

Notice that f is now completely specified by a sequence of
weight vectors Ω =

{
ωT
}
T∈T , but we are not done yet, since

a pair of players can have “inconsistent” weights in different
coalitions. Thus, our final steps focus on deriving necessary
consistency conditions for the weight vector Ω.

To guarantee consistency of the weights, we first show that if
there is a pair of players common to two coalitions, then their
weights in those two coalitions must be “consistent”, i.e., their
ratios must be the same in both coalitions. This is formalized
by the following lemma.

Lemma 5 Let f be a budget-balanced distribution rule that
guarantees the existence of an equilibrium in all games G ∈
G(N, f,W ). Then, when written in the form (8), for every pair
of players (i, j), every pair of subsets T1, T2 ∈ T with {i, j} ⊆
T1 ∩ T2,

ωT1
i

ωT2
i

=
ωT1
j

ωT2
j

Proof: For each pair of players (i, j), let Tij denote the
collection of all coalitions in T that contain both i and j.
Also, let Tij(S) denote the collection of all coalitions in T
that are present in S and contain both i and j. Let T be
a minimal coalition in Tij . Given a collection T ′ ⊆ T of
coalitions, we informally use the notation f(i, T ′) to denote∑

P∈T ′ qP f
P (i, P ). For example, this means that f(i, S) and

f(i, T (S)) denote the same quantity. We now state a quick
result that will be useful within the proof.

Lemma 6 Let W = (T ,Q) be a welfare function. For
any subset S ⊆ N , any two players i, j ∈ S, we have,
f(i, Tij(S))f(i, Tij(S)) ≥ 0.

Proof: The proof is by contradiction. Suppose, there
exists a subset S ⊆ N , and two players i, j ∈ S, such
that f(i, Tij(S))f(i, Tij(S)) < 0. Without loss of generality,
assume that f(i, Tij(S)) < 0 and f(i, Tij(S)) > 0. This means
that f(i, S) < f(i, S−{j}) and f(j, S) > f(j, S−{i}). Now,
the exact same game that was illustrated in Figure 2, and the
argument for non-existence of equilibrium therein (proof of
Lemma 1) serves as a counterexample here too. �

We now proceed to prove Lemma 5 – for any set S ∈ Tij ,

ωS
i

ωT
i

=
ωS
j

ωT
j

(14)

The proof is by induction on the partition level that contains
S in the min-decomposition of Tij . Given any coalition S ̸= T ,
assume that all “lower” coalitions already satisfy (14). Assume
the contrary, that is, S doesn’t satisfy (14). We consider the
following cases:
(a) f(i, Tij(S))f(i, Tij(T )) > 0. Note that in this case, by

Lemma 6, it follows that f(j, Tij(S))f(j, Tij(T )) > 0.
Consider the game (with four resources) in Figure 5.
Note that unlike all previous counter-examples, we now
have different positive local resource coefficients – v1
for resources r11 and r22, and v2 for resources r12 and
r21. This is essentially a game between players i and j
(all other players have a single action, specified through
the fixtures in the resources indicated on the figure). The
joint action set can therefore be represented as A =
{TL, TR,BL,BR}. We will now show that we can pick



Fig. 5. Counter-example for Lemma 5(a)

the constants v1, v2 in such a way that none of these four
action profiles will be Nash equilibria.
In action profiles TL and BR, j will have an incentive to
deviate if:
v2f(j, T ) + v1f(j, S − {i}) > v1f(j, S) + v2f(j, T − {i})
⇐⇒ v2f(j, Tij(T )) > v1f(j, Tij(S))

In action profiles TR and BL, i will have an incentive to
deviate if:
v2f(i, T − {j}) + v1f(i, S) > v1f(i, S − {j}) + v2f(i, T )

⇐⇒ vif(i, Tij(S)) > v2f(i, Tij(T ))

Without loss of generality, assume f(i, Tij(S)) > 0 and
f(i, Tij(T )) > 0.11 One again, from Lemma 6, this means
f(j, Tij(S)) > 0 and f(j, Tij(T )) > 0. Then, the two
inequalities above give:

f(i, Tij(T ))
f(i, Tij(S))

<
v1
v2

<
f(j, Tij(T ))
f(j, Tij(S))

It is possible to find v1 > 0 and v2 > 0 to satisfy this
inequality if and only if:
f(i, Tij(S))
f(i, Tij(T ))

̸=
f(j, Tij(S))
f(j,Tij(T ))

⇐⇒
f(i, Tij(S))

ωT
i∑

k∈T ωT
k

qT

̸=
f(j, Tij(S))

ωT
j∑

k∈T ωT
k

qT

⇐⇒

ωS
i∑

k∈S ωS
k

qS +
∑

T ′∈Tij(S)−{S}

(
ωT ′
i∑

k∈T ′ ωT ′
k

qT ′

)
ωT
i

̸=

ωS
j∑

k∈S ωS
k

qS +
∑

T ′∈Tij(S)−{S}

(
ωT ′
j∑

k∈T ′ ωT ′
k

qT ′

)
ωT
j

⇐⇒
ωS
i

ωT
i

̸=
ωS
j

ωT
j

which is true, by our assumption that S doesn’t satisfy
(14). Here, the first equivalence is due to the fact that T is
a minimal coalition in Tij , and therefore, Tij(T ) = {T}.
The second equivalence is due to canceling common terms
and expanding numerators on both sides. The third and
final equivalence is due to the induction hypothesis, that
all “lower” coalitions T ′ in Tij satisfy (14), and a lot of
resulting cancelations.

11For the other case, when f(i, Tij(S)) < 0 and f(i, Tij(T )) < 0, the
same arguments apply, this time, the deviations are reversed.

(b) f(i, Tij(S))f(i, Tij(T )) < 0. Note that in this case, by
Lemma 6, it follows that f(j, Tij(S))f(j, Tij(T )) < 0.

Fig. 6. Counter-example for Lemma 5(b)

Consider the game (with four resources) in Figure 6.
This time, we have four different positive local resource
coefficients as indicated. Also, let Ti, Tj ∈ T be some two
coalitions that contain i and j respectively. This is essen-
tially a game between players i and j (all other players
have a single action, specified through the fixtures in the
resources indicated on the figure). The joint action set can
therefore be represented as A = {TU,BU,BD, TD}. We
will now show that we can pick the constants v1, v2, v3, v4,
and coalitions Ti, Tj in such a way that none of these four
action profiles will be Nash equilibria.
In action profile TU and BD, i will have an incentive to
deviate if:

v1f(i, S) + v2f(i, T ) > v3f(i, Ti)

> v1f(i, S − {j}) + v2f(i, T − {j})
=⇒ v1f(i, Tij(S)) + v2f(i, Tij(T )) > 0

In action profiles BU and TD, j will have an incentive to
deviate if:

v1f(j, S) + v2f(j, T ) < v4f(j, Tj)

< v1f(j, S − {i}) + v2f(j, T − {i})
=⇒ v1f(j, Tij(S)) + v2f(j, Tij(T )) < 0

Without loss of generality, assume f(i, Tij(S)) > 0 and
f(i, Tij(T )) < 0.12 One again, from Lemma 6, this means
f(j, Tij(S)) > 0 and f(j, Tij(T )) < 0. Then, the two
inequalities above give:

−f(i, Tij(T ))
f(i, Tij(S))

<
v1
v2

< −f(j, Tij(T ))
f(j, Tij(S))

It is possible to find v1 > 0 and v2 > 0 to satisfy this
inequality if and only if:

f(i, Tij(S))
f(i, Tij(T ))

̸= f(j, Tij(S))
f(j, Tij(T ))

which is true, by our assumption that S doesn’t satisfy
(14) by the exact same argument in the previous case.

12For the other case, when f(i, Tij(S)) < 0 and f(i, Tij(T )) > 0, the
same arguments apply, this time, the deviations are reversed.



We are not done yet – we still need to argue that given
any S, we can find coalitions Ti, Tj and v3 > 0, v4 > 0
such that:

v1f(i, S) + v2f(i, T ) > v3f(i, Ti)

> v1f(i, S − {j}) + v2f(i, T − {j}) and
v1f(j, S) + v2f(j, T ) < v4f(j, Tj)

< v1f(j, S − {i}) + v2f(j, T − {i})

Consider the first inequality. If the left hand side is positive,
then at least one of f(i, S), f(i, T ) must be positive, so
choose Ti to be S or T accordingly and adjust v3 to satisfy
the first inequality. The same argument applies when the
left hand side is negative. In an analogous manner, Tj and
v4 can be chosen to satisfy the second inequality.

This concludes the inductive argument. �
Finally, we show that all weight vectors in Ω must be con-

sistent, i.e., there exists a global weight vector ω = (ωk)k∈N ,
such that, for every T ∈ T , ωT and ω restricted to T are
linearly dependent. To show this, we first show a powerful
sufficient condition, for a special class of welfare functions,
for the collection Ω of weight vectors to be consistent.

Lemma 7 Let W = (T ,Q) be such that T contains all sub-
sets of N of size 2. In particular, all strictly submodular welfare
functions satisfy this property. Suppose Ω is a collection of
weight vectors, such that for any three players i, j, k ∈ N , the
collection

{
ω{i,j},ω{j,k},ω{i,k}} of three weight vectors is

consistent. Then Ω is consistent.

Proof: We are given that for every three players i, j, k ∈
N ,
{
ω{i,j},ω{j,k},ω{i,k}} is a consistent collection of weight

vectors. In other words,

ω
{i,j}
i

ω
{i,j}
j

ω
{j,k}
j

ω
{j,k}
k

ω
{i,k}
k

ω
{i,k}
i

= 1 (15)

Construct the following global weight vector ω = (ωk)k∈N

as follows. Set (ω1, ω2) = ω{1,2}. Then, for 3 ≤ i ≤ n,
recursively set

ωi =
ω
{i−1,i}
i

ω
{i−1,i}
i−1

ωi−1

We now prove an important property of this construction in a
quick lemma:

Lemma 8 With ω constructed as above, for any two players
i, j ∈ N ,

ω
{i,j}
i

ω
{i,j}
j

=
ωi

ωj
(16)

Proof: Equivalently, we show that for all ℓ ∈
{1, 2, . . . , n − 1}, for all i ∈ {1, 2, . . . , n − ℓ}, (16) holds
for players i and j = i + ℓ. The proof is by induction on ℓ.
The base case, where ℓ = 1 is trivially true, by construction
of ω. Assume this is true for some ℓ, then for ℓ+1, consider,
for any i ∈ {1, 2, . . . , n− ℓ−1}, the three players i, j = i+ ℓ,
and k = i+ ℓ+ 1. From the induction hypothesis, we have:

ω
{i,j}
i

ω
{i,j}
j

=
ωi

ωj

From the construction of ω, we have:

ω
{j,k}
j

ω
{j,k}
k

=
ωj

ωk

Plugging the above two equations into (15), we have:

ωi

ωj

ωj

ωk

ω
{i,k}
k

ω
{i,k}
i

= 1 =⇒ ω
{i,k}
i

ω
{i,k}
k

=
ωi

ωk

This completes the inductive argument. �
To complete the proof of Lemma 7, consider any coalition

T ∈ T , and any two players i, j ∈ T . Then, we have:

ωT
i

ωT
j

=
ω
{i,j}
i

ω
{i,j}
j

=
ωi

ωj

The first equality is due to Lemma 5, and the second is due
to Lemma 8. Hence, ωT and ω restricted to T are linearly
dependent. This concludes the proof. �

Armed with this sufficient condition13 for consistency, all we
need to show now is that for every three players i, j, k ∈ N ,
the collection

{
ω{i,j},ω{j,k},ω{i,j}} of three weight vectors

is consistent. We formalize this in our final lemma:

Lemma 9 Let W be a strictly submodular welfare function.
Let f be a budget-balanced distribution rule that guarantees
the existence of an equilibrium in all games G ∈ G(N, f,W ).
Then, when written in the form (8), for any three players
i, j, k ∈ N , the collection

{
ω{i,j},ω{j,k},ω{i,k}} of three

weight vectors is consistent, i.e.,

ω
{i,j}
i

ω
{i,j}
j

ω
{j,k}
j

ω
{j,k}
k

ω
{i,k}
k

ω
{i,k}
i

= 1 (17)

Proof: From the form (8) for the distribution rule f , and
the form (2) for the basis T -distribution rule, it is clear that
scaling the local weight vectors by a constant does not affect
the distribution rule. So, without loss of generality, assume
ω{i,j} = (ωi, ωj), ω{j,k} = (ωj , ωk), and ω{i,k} = (ω′

i, ωk).
Also, without loss of generality, assume ω′

i > ωi.14 For sim-
plicity, denote q{i,j}, q{j,k}, q{i,k} by q1, q2, q3 respectively.
We are given that W is strictly submodular, and therefore,
q1 < 0, q2 < 0, q3 < 0. To prove the theorem, we need to
show that ω′

i = ωi. Assume the contrary.

Fig. 7. Counter-example for Lemma 9

Figure (7) depicts a game with six resources. The local
resource coefficients are as shown in the figure. Each of
the three players has two possible actions: Ai = {Li =
(r11, r13), Ri = (r21, r23)}, Aj = {Lj = (r11, r22), Rj =
(r12, r21)}, Ak = {Lk = (r13, r22), Rk = (r12, r23)}.

13Notice that this is also (obviously) a necessary condition.
14Otherwise, simply switch labels of players j and k.



There are eight possible action profiles, and we now show
that it is possible to choose positive v1, v2, v3 such that none
of them are Nash equilibria.
(1) Regardless of the values of v1, v2, v3 (as long as they are

positive), it is clear that (Li, Lj , Lk) and (Ri, Rj , Rk) are
not Nash equilibria, since q1, q2, q3 are all negative, so
players prefer being alone to being with another player.

(2) In action profiles (Li, Lj , Rk) and (Ri, Rj , Lk), player j
will have an incentive to deviate, if

v2q2
ωj + ωk

>
v1q1

ωi + ωj

(3) In action profiles (Li, Rj , Rk) and (Ri, Lj , Lk), player k
will have an incentive to deviate, if

v3q3
ω′
i + ωk

>
v2q2

ωj + ωk

(4) In action profiles (Li, Rj , Lk) and (Ri, Lj , Rk), player i
will have an incentive to deviate, if

v1q1
ωi + ωj

ωi >
v3q3

ω′
i + ωk

ω′
i

Now, to simplify the calculations, let v′1 = v1q1
ωi+ωj

, v′2 =
v2q2

ωj+ωk
, v′3 = v3q3

ω′
i+ωk

. Then, all we need to show is that we can
find v′1 < 0, v′2 < 0, v′3 < 0, such that:

v′3 > v′2 > v′1 and v′1ωi > v′3ω
′
i

=⇒ 1 <
v′1
v′3

<
ω′
i

ωi

Clearly, this is feasible, because by assumption, ω′
i > ωi. Once

v′1 and v′3 are chosen, since they are distinct, v′2 can also be
chosen to lie between them. This completes the proof. �

As already argued above, scaling the local weight vectors
by a constant does not affect the distribution rule. Therefore,
it follows from Lemmas 7 and 9, that any budget-balanced dis-
tribution rule f that guarantees the existence of an equilibrium
in any game G ∈ G(N, f,W ), where W is strictly submodular,
is completely specified by a global weight vector ω. The proof
is complete by observing that, at this stage, f , in the form (8),
is exactly the weighted Shapley value distribution rule for the
welfare function (T , Q), with weight vector ω. �


