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Abstract

We derive a one-period look-ahead policy for finite- and infinite-horizon online
optimal learning problems with Gaussian rewards. The resulting decision rule easily
extends to a variety of settings, including the case where our prior beliefs about the
rewards are correlated. Experiments show that the KG policy performs competitively
against other learning policies in diverse situations. In the case where the optimal
policy is known, the KG policy performs comparably well, while being substantially
more convenient to use.

1 Introduction

We consider a class of optimal learning problems in which sequential measurements are

used to gradually improve estimates of unknown quantities. In each time step, we choose

one of finitely many alternatives and observe a random reward whose expected value is the

unknown quantity corresponding to that alternative. The random rewards are independent

of each other and follow a Gaussian distribution with fixed, known variance. Our objective

is to maximize the total expected reward collected over a horizon of N measurements. We

allow several variations of this basic setup: the rewards may be discounted over time, the

time horizon could be finite or infinite, and our beliefs about the unknown rewards may be

correlated.

Applications arise in many fields, where we need to sequentially allocate measurements

to alternatives in order to eliminate less valuable alternatives as we go. We deal with online

learning in this paper, so we consider applications in which we are interested not only in
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finding the best alternative, but in maximizing the total expected reward collected over the

entire time horizon. Several situations where this distinction is important are:

1. Clinical trials. Experimental drug treatments are tested on groups of human patients.

Each treatment has a different, unknown expected effectiveness. We are interested in

the well-being of the patients as well as in finding the best treatment, so the problem is

online. If the treatments consist of overlapping sets of drugs, the problem has correlated

rewards.

2. Call centers. We are assigning calls arriving in series to technicians. The reward is

the time needed by a technician to resolve the issue. The objective is to minimize the

total time needed to finish all jobs. This problem is online, with a potentially large

time horizon and no discount factor.

3. Energy management. We are applying sets of energy-saving technologies (e.g. insula-

tion, computer-controlled thermostats, tinted windows) to identical industrial build-

ings. Different technologies interact in an unknown way which can only be measured

by actually implementing portfolios of technologies and measuring their combined per-

formance. We maximize total performance over all buildings.

4. Sensor management. In this area (see Mahajan & Teneketzis (2008) and Washburn

(2008) for more on applications), a “sensor” (airport inspector, radiation detector,

medical clinic) is used to collect information about the environment. We often have

the ability to control the use of a sensor which allows us to not only better learn the

state of the system, but also to learn relationships among different variables.

Variations of this problem have been widely studied under the name “multi-armed bandit

problems.” In particular, Gittins (1989) describes a measurement policy (referred to as

“Gittins indices”) that is asymptotically optimal as N → ∞ in the discounted case. There

are also many general heuristics (descriptions can be found in Powell (2007) and Sutton &

Barto (1998)) that can be applied to broad classes of optimal learning problems, including

multi-armed bandits: the interval estimation policy by Kaelbling (1993), the Boltzmann

exploration policy, pure exploitation, and the equal-allocation policy. Some general bounds

2



on the performance of learning policies were obtained by Lai & Robbins (1985). Empirical

comparisons of some policies in certain settings are available in Vermorel & Mohri (2005).

We consider several generalizations of online learning problems, including finite-horizon

problems, both discounted and undiscounted, and problems with correlated prior beliefs.

Many applications have a natural finite time horizon, such as the problem of finding the best

type of diabetes medication within a particular budget, or the problem of finding the best

pricing strategy for a product during its lifetime. Correlated problems, where our prior belief

about the mean value of one alternative is correlated with our beliefs about mean values of

other alternatives, also arise frequently in applications. However, the Gittins policy and the

other heuristics listed above do not handle correlations. The correlated case has been studied

by Pandey et al. (2007), but this work relies on the assumption of binomial rewards.

Our analysis is motivated by the knowledge gradient (KG) principle, developed by Gupta

& Miescke (1994) and further analyzed by Frazier et al. (2008a) and Chick et al. (2007) for

the ranking and selection problem. This problem is the offline version of the multi-armed

bandit problem: we must find the best out of M alternatives with unknown rewards, given

N chances to learn about them first. The KG policy for ranking and selection chooses the

measurement that yields the greatest expected single-period improvement in the estimate of

the best reward. It is optimal for N = 1 and N →∞, and performs well in practice for other

values of N , while providing an easily computable decision rule. More recently, Frazier et

al. (2008b) extended the KG principle to the ranking and selection problem with correlated

priors, and Chick et al. (2007) extended it to the case of unknown measurement noise.

The knowledge gradient offers an important practical advantage: it is easily computable,

in contrast with the far more difficult calculations required for Gittins indices. The computa-

tion of Gittins indices in the general case is discussed by Katehakis & Veinott Jr (1987) and

Duff (1995). An LP-based computational method was developed by Bertsimas & Nino-Mora

(2000), however it is founded on a Markov decision process framework, in which the prior

beliefs about the alternatives are limited to a finite set of values, whereas our problem has

continuous, Gaussian priors and rewards. For our problem, an approximation for Gittins

indices can be found in Yao (2006), but it is less accurate for small time horizons and large
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discount factors. However, we show that our KG policy closely matches the performance

of the Gittins policy even for problems where the Gittins indices are known and optimal.

Furthermore, the knowledge gradient is a general methodology that can be applied to other

distributions, although these require the development of different computational formulas.

We proceed as follows. In Section 2, we lay out a dynamic-programming-based math-

ematical model of the problem. In Section 3, we derive the KG measurement policy for

undiscounted, finite-horizon problems, and provide lower and upper bounds on the value of

learning under this policy. We also show that the marginal value of a measurement does

not always decrease with the amount of measurements already performed. In Section 4,

we extend the KG policy to the discounted and correlated cases. Finally, we present nu-

merical results comparing our online KG rules to existing learning policies. We focus on

an undiscounted, finite-horizon setting with correlated rewards, motivated by the medical

application described above, but we also test the KG policy against the Gittins policy in

a discounted, infinite-horizon problem. We emphasize KG as a general approach to differ-

ent kinds of optimal learning problems, with the intent of eventually extending it to more

complicated problem classes.

2 Mathematical model for learning

Suppose that there are M objects or alternatives. In every time step, we can choose any

alternative to measure. If we measure alternative x, we will observe a random reward µ̂x that

follows a Gaussian distribution with mean µx and variance σ2
ε . The measurement error σ2

ε is

known, and we use the notation βε = σ−2
ε to refer to the measurement precision. Although

µx is unknown, we assume that µx ∼ N
(
µ0
x, (σ

0
x)

2
)

, where µ0
x and σ0

x represent our prior

beliefs about x. We also assume that the rewards of the objects are mutually independent,

conditioned on µx, x = 1, ...,M .

We use the random observations we make while measuring to improve our beliefs about

the rewards of the alternatives. Let Fn be the sigma-algebra generated by our choices of

the first n objects to measure, as well as the random observations we made of their rewards.
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We say that something happens “at time n” if it happens after we have made exactly n

observations. Then,

µnx = IEn (µx) ,

where IEn (·) = IE ( · |Fn), represents our beliefs about µx after making n measurements.

Then, (σnx)2 represents the conditional variance of µx given Fn, which can be viewed as

a measure of how confident we are about the accuracy of µnx. We also use the notation

βnx = (σnx)−2 to denote the conditional precision of µx. Thus, at time n, we believe that

µx ∼ N
(
µnx, (σ

n
x)2), and our beliefs are updated after each measurement using Bayes’ rule:

µn+1
x =

{
βnxµ

n
x+βεµ̂

n+1
x

βnx+βε
if x is the (n+ 1)st object measured

µnx otherwise.
(1)

The rewards of the objects are independent, so we update only one set of beliefs, about the

object we have chosen. The precision of our beliefs is updated as follows:

βn+1
x =

{
βnx + βε if x is the (n+ 1)st object measured
βnx otherwise.

(2)

We use the notation µn = (µn1 , ..., µ
n
M) and βn = (βn1 , ..., β

n
M). We also let

(σ̃nx)2 = V ar
(
µn+1
x |Fn

)
= V ar

(
µn+1
x |Fn

)
− V ar (µnx|Fn)

be the reduction in the variance of our beliefs about x that we achieve by measuring x at

time n. It can be shown that

σ̃nx =

√
(σnx)2 − (σn+1

x )2 =

√
1

βnx
− 1

βnx + βε
.

It is known, e.g. from DeGroot (1970), that the conditional distribution of µn+1
x given Fn is

N
(
µnx, (σ̃

n
x)2). In other words, given Fn, we can write

µn+1
x = µnx + σ̃nx · Z (3)

where Z is a standard Gaussian random variable.

We can define a knowledge state

sn = (µn, βn)
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to represent our beliefs about the alternatives after n measurements. If we choose to measure

an object xn at time n, we write

sn+1 = KM
(
sn, xn, µ̂n+1

xn

)
where the transition function KM is described by (1) and (2). For notational convenience,

we suppress the dependence on µ̂n+1
xn when we write KM , but it is important to remember

that the transition function is stochastic.

We assume that we collect rewards as we measure them. For the time being, we also

assume that the rewards are not discounted over time. Thus, if we have N measurements

to make, followed by one final chance to collect a reward, our objective is to choose a

measurement policy π that achieves

sup
π

IEπ
N∑
i=0

µXπ,i(si), (4)

where Xπ,i (si) is the alternative chosen by policy π at time i given a knowledge state si.

Then the value of following a measurement policy π, starting at time n in knowledge state

sn, is given by Bellman’s equation for dynamic programming (used in an optimal learning

context by DeGroot (1970)):

V π,n (sn) = µnXπ,n(sn) + IEnV π,n+1
(
KM (sn, Xπ,n (sn))

)
(5)

V π,N
(
sN
)

= max
x

µNx . (6)

At time N , we can collect only one more reward. Therefore, we should simply choose

the alternative that looks the best given everything we have learned, because there are no

longer any future decisions that might benefit from learning. At time n < N , we collect an

immediate reward for the object we choose to measure, plus an expected downstream reward

for future measurements. The optimal policy satisfies a similar equation

V ∗,n (sn) = max
x

µnx + IEnV ∗,n+1
(
KM (sn, x)

)
(7)

V ∗,N
(
sN
)

= max
x

µNx (8)

with the only difference being that the optimal policy always chooses the best possible

measurement, the one that maximizes the sum of the immediate and downstream rewards.
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3 The online knowledge gradient policy

We derive an easily computable online decision rule using the KG principle. We then define

the value of learning under the online KG policy, and prove lower and upper bounds on this

quantity. Finally, we discuss the general behaviour of the value of learning, and present an

example in which the marginal value of information is non-concave.

3.1 Derivation

Suppose that we have made n measurements, reached the knowledge state sn, and then

stopped learning entirely. That is, we would still collect rewards after time n, but we would

not be able to use those rewards to update our beliefs. Then, we should follow the empirical

Bayesian policy of choosing the alternative that looks the best based on the most recent

information. The expected total reward obtained after time n under these conditions is

V EB,n (sn) = (N − n+ 1) max
x

µnx. (9)

If we cannot make any more measurements, but we can still collect N −n+ 1 more rewards,

we should always choose the alternative that looks the best given everything that we were

able to learn up to time n.

The knowledge gradient principle, first described by Gupta & Miescke (1994) and later

developed by Frazier et al. (2008a), can be stated as “choosing the measurement that would

be optimal if it were the last measurement we were allowed to make.” Suppose we are at

time n, with N − n+ 1 more rewards to collect, but only the (n+ 1)st reward will be used

to update our beliefs. Then, we need to make an optimal decision at time n, under the

assumption that we will switch to the empirical Bayesian policy starting at time n+ 1. The

KG decision rule that follows from this assumption is

XKG,n (sn) = arg max
x

µnx + IEnV EB,n+1
(
KM (sn, x)

)
. (10)
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The expectation on the right-hand side of (10) can be written as

IEnV EB,n+1
(
KM (sn, x)

)
= (N − n) IEn max

x′
µn+1
x′

= (N − n) IE max

{
max
x′ 6=x

µnx′ , µ
n
x + σ̃nx · Z

}
= (N − n)

(
max
x′

µnx′
)

+ (N − n) νKG,nx (11)

where the computation of IEn maxx′ µ
n+1
x′ comes from Frazier et al. (2008a). The quantity

νKG,nx is called the knowledge gradient of alternative x at time n, and is defined by

νKG,nx = IEnx

(
max
x′

µn+1
x′ −max

x′
µnx′
)

, (12)

where IEnx observes all the information known at time n, as well as the choice to measure x

at time n. The knowledge gradient can be computed exactly using the formula

νKG,nx = σ̃nx · f
(
−
∣∣∣∣µnx −maxx′ 6=x µ

n
x′

σ̃nx

∣∣∣∣) (13)

where f (z) = zΦ (z) + φ (z) and φ,Φ are the pdf and cdf of the standard Gaussian distri-

bution. We know from Gupta & Miescke (1994) and Frazier et al. (2008a) that (13) and

(12) are equivalent in this problem, and that νKG is always positive. The origin of the term

“knowledge gradient” arises from (12), where the quantity νKG,nx is written as a difference.

It is easy to see that (10) can be rewritten as

XKG,n (sn) = arg max
x

µnx + (N − n) νKG,nx . (14)

The term (N − n) maxx′ µ
n
x′ in (11) is dropped because it does not depend on the choice of

x and thus does not affect which x achieves the maximum in (10). The value of this policy

follows from (5) and is given by

V KG,n (sn) = µnXKG,n(sn) + IEnV KG,n+1
(
KM

(
sn, XKG,n (sn)

))
. (15)

Instead of choosing the alternative that looks the best, the KG policy adds an uncertainty

bonus of (N − n) νKG,nx to the most recent beliefs µnx, and chooses the alternative that maxi-

mizes this sum. In this way, the KG policy finds a balance between exploitation (measuring
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alternatives that are known to be good) and exploration (measuring alternatives that might

be good), with the uncertainty bonus representing the value of exploration. The form of

the decision rule in (14) is common in optimal learning algorithms. Many other policies,

such as interval estimation and Gittins indices, do the same thing, but define the value of

exploration in different ways. In our case, it represents the value of learning one more time.

Remark 3.1. Like the KG policy for ranking and selection, the online KG policy is optimal

for N = 1. This follows from (7) and (8), because

V ∗,N−1
(
sN−1

)
= max

x
µN−1
x + IEN−1V ∗,N

(
KM

(
sN−1, x

))
= max

x
µN−1
x + IEN−1 max

x′
µNx′

= µN−1
XKG,N−1(sN−1)

+ IEN−1V EB,N
(
KM

(
sN−1, XKG,N−1

(
sN−1

)))
= µN−1

XKG,N−1(sN−1)
+ IEN−1V KG,N

(
KM

(
sN−1, XKG,N−1

(
sN−1

)))
= V KG,N−1

(
sN−1

)
.

The last measurement is chosen optimally, so if there is only one measurement in the problem,

then the online KG algorithm is optimal.

Remark 3.1 suggests that the policy given by (14) is the correct extension of the KG

principle to the online bandit problem. The decision rule itself is different from the one

for ranking and selection. In particular, it is not stationary (as it is for offline problems),

because the right-hand side of (14) depends on n as well as on sn. If we collect a reward in

each time period, knowledge is more useful early on, while there are still many rewards left

to collect. For this reason, if n1 < n2, the uncertainty bonus for an alternative at time n1 is

greater than the uncertainty bonus for the same alternative at time n2, even if the available

information is the same at both times.

3.2 Properties of the online KG policy

We continue our discussion of the undiscounted case with several results on the value of

information. First, we show that it is better to measure under the KG policy than to not
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measure at all. Second, we derive a lower bound on (15). Although the KG policy is

suboptimal for N > 1, the lower bound tells us that we are guaranteed to achieve a certain

expected reward by following it. Finally, we derive an upper bound on (15). Together, these

results enable us to narrow the value of information under the KG policy to an interval.

Proposition 3.1. For any s and any n,

V KG,n (s) ≥ V EB,n (s) .

Proof: For any n and any alternative x′,

µnx′ ≤ µnx′ + (N − n) νKG,nx′

≤ max
x

µnx + (N − n) νKG,nx

= µnXKG,n(s) + (N − n) νKG,n
XKG,n(s)

(16)

where the first inequality is due to the fact that νKG,nx′ ≥ 0 for any n and any x′, and the

last line follows from (14). In particular, we can let n = N − 1 and x′ = arg maxx µ
N−1
x .

Combined with (9), this yields

V EB,N−1 (s) = 2 max
x

µN−1
x

≤ max
x

µN−1
x + µN−1

XKG,N−1(s)
+ νKG,N−1

XKG,N−1(s)

= V KG,N−1 (s) .

Suppose now that V KG,n′ (s) ≥ V EB,n′ (s) for all s and all n′ > n. Then,

V KG,n (s) = µnXKG,n(s) + IEnV KG,n+1
(
KM

(
s,XKG,n (s)

))
≥ µnXKG,n(s) + IEnV EB,n+1

(
KM

(
s,XKG,n (s)

))
= µnXKG,n(s) + (N − n) IEn max

x
µn+1
x

= µnXKG,n(s) + (N − n)
(

max
x′

µnx

)
+ (N − n) νKG,n

XKG,n(s)

≥ (N − n+ 1) max
x′

µnx′

= V EB,n (s) .
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The first inequality is due to the monotonicity of conditional expectation and the inductive

hypothesis for n′ = n+ 1. The second inequality follows from (16). �

Proposition 3.2. For any s and any n,

V KG,n (s) ≥ (N − n)
(

max
x′

µnx′
)

+ max
x

(
µnx + (N − n) νKG,nx

)
.

Proof: Observe that

V KG,n (s) = µnXKG,n(s) + IEnV KG,n+1
(
KM

(
s,XKG,n (s)

))
≥ µnXKG,n(s) + IEnV EB,n+1

(
KM

(
s,XKG,n (s)

))
= µnXKG,n(s) + (N − n)

(
max
x′

µnx′
)

+ (N − n) νKG,n
XKG,n(s)

= (N − n)
(

max
x′

µnx′
)

+ max
x

(
µnx + (N − n) νKG,nx

)
where the inequality is due to Proposition 3.1 and the last line follows from (14). �

Proposition 3.3. For any s and any n,

V KG,n (s) ≤ (N − n+ 1) max
x

µnx +

[
(N − n) (N − n+ 1)

2

]
cn (17)

where

cn =
1√
2π

max
x

σ̃nx .

Proof: From (12), we have

νKG,nx = IEnx

(
max
x′

µn+1
x′ −max

x′
µnx′
)

≤ IEnx

(
max
x′

µn+1
x′ − µ

n
x′

)
= IE (max (0, σ̃nx · Z))

=
1√
2π
σ̃nx

for any x, whence it follows that νKG,nx ≤ cn for any n and any x. Furthermore, we have

cn+1 ≤ cn for any n, because the variance reduction for the alternative measured at time n
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is smaller at time n+ 1 (after the measurement) than at time n, and the variance reduction

for the other alternatives stays the same from time n to time n+ 1.

Then, for any sN−1, it follows from (11) and Remark 3.1 that

V KG,N−1
(
sN−1

)
= µN−1

XKG,N−1(sN−1)
+ IEN−1V EB,N

(
KM

(
sN−1, XKG,N−1

(
sN−1

)))
= µN−1

XKG,N−1(sN−1)
+ max

x
µN−1
x + νKG,N−1

XKG,N−1(sN−1)

≤ 2 max
x

µN−1
x + cN−1

which is exactly (17) for n = N − 1. Suppose now that (17) holds for all s and all n′ > n.

Then, for n, we have

V KG,n (sn) = µnXKG,n(sn) + IEnV KG,n+1
(
KM

(
sn, XKG,n (sn)

))
≤ max

x
µnx + IEnV KG,n+1

(
KM

(
sn, XKG,n (sn)

))
≤ max

x
µnx + IEn

{
(N − n) max

x
µn+1
x +

[
(N − n− 1) (N − n)

2

]
cn+1

}
= (N − n+ 1) max

x
µnx + (N − n) νKG,n

XKG,n(sn)
+

[
(N − n− 1) (N − n)

2

]
cn+1

≤ (N − n+ 1) max
x

µnx + (N − n) cn +

[
(N − n− 1) (N − n)

2

]
cn+1

≤ (N − n+ 1) max
x

µnx +

[
(N − n) (N − n+ 1)

2

]
cn

which completes the proof. The second inequality is due to the inductive hypothesis for

n′ = n + 1, and the third and fourth inequalities are due to the fact that νKG,nx ≤ cn and

cn+1 ≤ cn. �

Corollary 3.1. For any s and any n,

0 ≤ bn ≤ V KG,n (s)− V EB,n (s) ≤
[

(N − n) (N − n+ 1)

2

]
cn

where cn is as in Proposition 3.3, and

bn = max
x

(
µnx + (N − n) νKG,nx

)
−max

x
µnx.
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Corollary 3.1 follows directly from Propositions 3.2 and 3.3, and gives us a range for the

value of information under the KG policy. In our discussion, V EB,n represents the best value

that can be obtained if learning stops at time n. Therefore, V KG,n−V EB,n represents exactly

the value of learning, starting at time n, under the online KG policy. Note that the interval

given by Corollary 3.1 becomes tighter as n increases. This reflects the intuitive idea that

earlier measurements (corresponding to smaller n) are somehow more unpredictable, which

is discussed below in greater detail.

3.3 The marginal value of information

The quantity V KG,n − V EB,n is difficult to compute. However, an analogous expression

V π,n − V EB,n, representing the value of learning under some policy π, can be computed for

certain simple choices of π. Suppose that we have an undiscounted, finite-horizon problem

in which there are only two alternatives, A and B. Alternative A is known to yield zero

reward, that is, µ0
A = 0 and β0

A = ∞. Let µ0
B = 10 and β0

B = 1 represent our beliefs about

alternative B. In addition, let βε = 1.

Now, define πB to be the deterministic policy that always measures alternative B, in

every time step. From (5), we have

V πB ,n (sn) = µnB + IEnV πB ,n+1
(
KM (sn, B)

)
.

Since, for any n, we have IEnV πB ,n+1
(
KM (sn, B)

)
= µnB + IEnV πB ,n+2

(
KM (sn, B)

)
by the

tower property of conditional expectation, it follows that

V πB ,0
(
s0
)

= N · µ0
B + IE0 max

{
0, µNB

}
= N · µ0

B + IE max
{

0, µ0
B + σ̃0

B (N) · Z
}

(18)

where Z is a standard Gaussian random variable, and

σ̃nx (k) =

√
(σnx)2 − (σn+k

x )2 =

√
1

βnx
− 1

βnx + k · βε
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(a) Non-concavity. (b) Log-concavity.

Figure 1: Properties of the value of learning under policy πB over different time horizons.

is the total reduction in the variance of our beliefs about x achieved by k consecutive mea-

surements of x starting at time n. In this setting,

σ̃0
B (N) =

√
1− 1

N + 1
=

√
N

N + 1
.

Then, (18) becomes

V πB ,0
(
s0
)

= N · µ0
B + max

{
0, µ0

B

}
+ g (N) = (N + 1) · µ0

B + g (N)

where

g (N) = σ̃0
B (N) · f

(
−
∣∣∣∣ µ0

B

σ̃0
B (N)

∣∣∣∣) (19)

and the function f is as in (13). Because max {µ0
A, µ

0
B} = max {0, µ0

B} = µ0
B, it follows that

V πB ,0
(
s0
)
− V EB,0

(
s0
)

= (N + 1) · µ0
B + g (N)− (N + 1) · µ0

B = g (N)

so g (N) is precisely the total value of learning under the policy πB. Equation (19) allows us

to easily compute and plot g (N) versus N . Figure 1 shows the shape of g in both semi-log

and log-scale.

We discover that g (N) is not concave in N . The shape of g looks convex for small N

and concave for large N . This means that the marginal value of one more measurement of

B does not necessarily diminish with the total number of measurements of B performed up
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to that point. In fact, for small time horizons, later measurements of B are actually more

valuable than earlier ones. At the same time, g (N) appears to be log-concave.

This behaviour has an intuitive explanation. The early beliefs are based on few observa-

tions and heavily rely on the prior. Our beliefs still have high variance and it is difficult to

tell whether the prior means are accurate. Successive measurements should be increasingly

more valuable in the early stages, because they play a key role in revealing the structure of

the problem. Later on, additional measurements serve to refine an already accurate estimate,

and we observe typical diminishing returns.

Not all learning problems have these properties. If we let µ0
B = 0 in the preceding

example, we do not observe the non-concave behaviour at all. On the other hand, if N

is too small, we may never observe the eventual concavity. Many applications have small

measurement budgets, and in discounted problems, early iterations are more important than

later ones. This example suggests that the quality of an optimal learning algorithm is largely

determined by its performance in a relatively small number of iterations early on.

The S-curve in Figure 1(a) can be said to reflect the problem of having too many choices.

In a situation where there are multiple choices, but the measurement budget is limited, we

will tend to simply ignore some of the choices, and spend our time measuring a subset of

the choices multiple times. Of course, these will be the choices where the marginal value of

information is non-concave.

4 Extensions of the KG policy

The definition of the KG policy given in (10) is quite versatile. We can extend it to online

problems with a discount factor, as well as online problems with correlated normal priors.

In both cases, the KG policy resembles the one given by (14), with some differences in the

computation of the uncertainty bonus.
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4.1 Discounted problems

Let us now replace the objective function in (4) with the discounted objective function

sup
π

IEπ
N∑
i=0

γiµXπ,i(si)

where γ ∈ (0, 1) is a given parameter. The knowledge gradient policy for this problem is

derived the same way as in Section 3. First, in the discounted setting,

V EB,n (sn) =
1− γN−n+1

1− γ
max
x

µnx.

Then, (10) is computed as

XKG,n (sn) = arg max
x

µnx + γ · IEnV EB,n+1
(
KM (sn, x)

)
= arg max

x
µnx + γ

1− γN−n

1− γ
νKG,nx (20)

where νKG,nx is as in (13). Taking N → ∞, we obtain the infinite-horizon discounted KG

decision rule

XKG,n (sn) = arg max
x

µnx +
γ

1− γ
νKG,nx . (21)

Both (20) and (21) look similar to (14), with a different multiplier in front of the knowledge

gradient. For both finite- and infinite-horizon problems, the value of the discounted KG

policy is given by

V KG,n (sn) = µnXKG,n(sn) + γ · IEnV KG,n+1
(
KM

(
sn, XKG,n (sn)

))
.

The next result shows that, in the limit as N → ∞, the discounted KG policy will

converge. In other words, only one alternative will be measured infinitely often by the

policy. Like Corollary 3.1, this suggests that information becomes less valuable over time.

In the limit, the value of additional information converges to zero, and the KG policy settles

on an alternative that it believes to be the best.

Proposition 4.1. Suppose that µx 6= µy for any x 6= y. Then, for almost every sample path,

only one alternative will be measured infinitely often by the infinite-horizon discounted KG

policy.
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Proof: Let A be the set of all sample paths ω for which the KG policy measures at least

two distinct alternatives infinitely often. By the strong law of large numbers, if we measure

an alternative x infinitely often, we have µnx → µx almost surely. Furthermore, σ̃nx → 0 and

νKG,nx → 0 in n almost surely. Therefore, if we let A′ be the subset of A for which these

properties hold, we have P (A′) = P (A).

Let ω ∈ A′, and suppose that alternatives x and y are measured infinitely often by the

KG policy on ω. Then, if we define

Qn
x′ (ω) = µnx′ (ω) +

γ

1− γ
νKG,nx′ (ω)

to be the quantity computed by the KG policy for alternative x′ at time n on this sam-

ple path, it follows that Qn
x (ω) → µx (ω) and Qn

y (ω) → µy (ω) in n. Then, letting

ε = |µx (ω)− µy (ω)|, we can find an integer Kω such that, for all n > Kω,

|Qn
x (ω)− µx (ω)| ,

∣∣Qn
y (ω)− µy (ω)

∣∣ < ε

2
.

Consequently, at all times after time Kω, the KG policy will prefer one of these alternatives

to the other, namely the one with the higher true reward. This contradicts the assumption

that both x and y are measured infinitely often on the sample path ω. It follows that A′ = ∅,

whence P (A′) = P (A) = 0, meaning that the KG policy will measure only one alternative

infinitely often on almost every sample path. �

We see that the asymptotic behaviour of the online KG policy is exactly the opposite

of that of the offline KG policy for ranking and selection. We know from Frazier et al.

(2008a) that the offline KG policy will measure every alternative infinitely often, if there

are infinitely many opportunities to measure. In the online setting, however, the KG policy

converges almost surely to one alternative. Note that this alternative will not necessarily be

the best one. The KG policy may miss the alternative that is truly the best if the Q-factor

of that alternative is low (for example, due to an inaccurate prior). However, the optimal

Gittins policy does not necessarily converge to the best alternative either. In the discounted

setting, earlier measurements are more important than later ones, so it is more important

for a policy to learn well early on than to converge to the optimal alternative in the future.
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4.2 Problems with correlated normal priors

Let us now return to the undiscounted setting, and the objective function from (4). However,

we now assume a covariance structure on our prior beliefs about the different alternatives.

We now have a multivariate normal prior distribution on the vector µ = (µ1, ..., µM) of true

rewards. Initially, we assume that µ ∼ N (µ0,Σ0), where µ0 = (µ0
1, ..., µ

0
M) is a vector of our

beliefs about the mean rewards, and Σ0 is an M ×M matrix representing the covariance

structure of our beliefs about the true mean rewards. As before, if we choose to measure

alternative x at time n, we observe a random reward µ̂nx ∼ N (µx, σ
2
ε). Conditioned on

µ1, ..., µM , the rewards we collect are independent of each other. After n measurements, our

beliefs about the mean rewards are expressed by a vector µn and a matrix Σn, representing

the conditional expectation and conditional covariance matrix of the true rewards given Fn.

The updating equations, given by (1) and (2) in the uncorrelated case, now become

µn+1 = µn +
µ̂nxn − µnx
σ2
ε + Σn

xnxn
Σnexn (22)

Σn+1 = Σn − Σnexne
T
xnΣn

σ2
ε + Σn

xnxn
(23)

where xn ∈ {1, ...,M} is the alternative chosen at time n, and exn is a vector with 1 at index

xn, and zeros everywhere else. Note that a single measurement now leads us to update the

entire vector µn, not just one component as in the uncorrelated case. Furthermore, (3) now

becomes a vector equation

µn+1 = µn + σ̃corr,n (xn) · Z

where Z is standard Gaussian and

σ̃corr,n (xn) =
Σnexn√
σ2
ε + Σn

xnxn

.

The empirical Bayesian policy, which we follow if we are unable to continue learning after

time n, is still given by (9). The derivation of the online KG policy remains the same.

However, the formula for computing νKG,n in (13) no longer applies. In the correlated

setting, we have

IEnx max
x′

µn+1
x′ = IEn

[
max
x′

µnx′ + σ̃corr,nx′ (x) · Z
]

.
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We are computing the expected value of the maximum of a finite number of piecewise linear

functions of Z. Let

νKGC,nx = IEnx

(
max
x′

µn+1
x′ −max

x′
µnx′
)

be the analog of (12) in the correlated setting. From the work by Frazier et al. (2008b), it is

known that

νKGC,nx =
M−1∑
y=1

(
σ̃corr,ny+1 − σ̃corr,ny

)
f (− |cy|)

where the alternatives have been sorted in order of increasing σ̃corr,ny , f is as in (13), and the

numbers cy are such that y = arg maxx′ µ
n
x′ + σ̃corr,nx′ (x) · z for z ∈ [cy−1, cy). The online KG

decision rule for the correlated case is given by

XKGC,n (sn) = arg max
x

µnx + (N − n) νKGC,nx . (24)

An efficient algorithm for computing νKGC exactly is presented in Frazier et al. (2008b),

and can be used to solve this decision problem. If we introduce a discount factor into the

problem, the decision rule becomes as in (20) or (21), using νKGC instead of νKG.

5 Computational experiments

We used the problem of clinical trials of experimental diabetes treatments to obtain realistic

initial parameters for experiments comparing online KG to other learning policies. In a

situation where our prior beliefs give us a lot of information about the rewards, online

KG is comparable to the competition. When the prior beliefs tell us nothing about which

alternative is the best, online KG consistently outperforms the other policies. Also, in a

discounted infinite-horizon setting, online KG is comparable to the known optimal policy,

while being easier to compute.

5.1 Background and setup of experiments

In the final stages of clinical drug trials, the most promising treatments are chosen for testing

on several thousand human patients. Each treatment is an alternative, in our terminology,
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and the reward is the effectiveness of the treatment. The effectiveness of a new diabetes drug

can be expressed in terms of the resulting reduction in fasting plasma glucose (FPG), the

blood sugar level after the patient has not eaten for eight hours. The FPG level is measured

in millimoles per liter (mmol/L). A healthy subject typically has an FPG level of 4 − 6

mmol/L, whereas diabetes patients can show FPG levels of 10− 15 mmol/L. A single drug

can reduce FPG level by as little as 0.5 (Figure 5 in DREAM Trial Investigators (2006)) or

as much as 2 (Figure 3 in UKPDS Group (1998)) mmol/L over a period of several months.

Often, the treatment is actually a combination of several drugs. The effectiveness of the

drugs is not additive, so the point of interest is the effectiveness of the entire treatment. A

possible range for such a value might be the interval [2, 5]. We consider a setting in which

there are six drugs (e.g. metformin, insulin, glibenclamide, chlorpropamide, rosiglitazone,

and conventional treatment), and each treatment consists of three drugs. Thus, there are

20 possible alternatives in our problem, and rewards are correlated because the same drugs

can appear in multiple treatments. In practice, it would take too long to test all patients

one by one in series, so we suppose that the patients are split up into N + 1 large groups,

and every patient within a group is assigned to the same treatment. One measurement is

the average FPG reduction across one group, so our normality assumptions will be plausible

if the groups are large enough. Our objective is to maximize the sum of the average FPG

reductions over all groups, with no discount factor. This objective balances the need to find

the best treatment with concern for the well-being of the patients.

In order to test a learning policy, we must first assume a truth, then evaluate the ability

of the policy to find that truth. Furthermore, the truths should represent a wide variety of

situations. For this reason, the starting data for our experiments was randomly generated,

using the context of diabetes treatments to provide realistic numbers. Because the rewards

are correlated, we used the mathematical framework in Section 4.2, and the updating equa-

tions (22) and (23), in all of our experiments. The initial data for one experiment consists

of a vector µ to represent the true rewards, a prior (µ0,Σ0) to represent our initial beliefs

about the rewards, and a measurement error σ2
ε . We generated two sets of 100 experiments.

In the first set, referred to as the heterogeneous-prior experiments, we first generated
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the prior means µ0 from a uniform distribution on the interval [2, 5]. The variances were

generated from a uniform distribution on [0.25, 0.75]. These numbers represent our beliefs

about the range in which the true values are likely to fall. The correlation coefficient of two

treatments was set to be 0, 1
3

or 2
3
, depending on whether the two treatments had 0, 1 or 2

drugs in common. The measurement error σ2
ε was chosen to be 0.5 mmol2/L2, to reflect a

situation where the effectiveness of a drug varies fairly widely over groups of patients. The

true rewards µ were then generated from a multivariate Gaussian distribution with mean

vector µ0 and covariance matrix Σ0. That is, the truths were drawn from the prior. This

represents a situation in which we already have a reasonably good idea about the treatments,

and our prior beliefs are on average accurate.

In the second set of experiments, referred to as the equal-prior experiments, we first

generated the true rewards µ from a triangular distribution on [2, 5] with mode 3.5. The prior

means µ0 were all set to 3.5, and the prior variances were all set to 0.752. The covariances and

the measurement error were chosen the same way as in the heterogeneous-prior experiments.

This set of experiments represents a situation where we only know a general range of values

for the true rewards, but we know nothing at all about which treatment is better. The truths

are mostly concentrated around the prior, but there are a few very effective treatments.

For each experiment, in either set, we ran each measurement policy 104 times starting

from the same initial data, for each of four different measurement budgets N = 5, 10, 15, 20.

For each policy, we observed the average opportunity cost per reward collected, defined as

Cπ = max
x

µx −
1

N + 1

N∑
n=0

µXπ,n(sn)

for a generic policy π. The policies were compared by taking the difference of their oppor-

tunity costs. For policies π1, π2,

Cπ2 − Cπ1 =
1

N + 1

N∑
n=0

(
µXπ1,n(sn) − µXπ2,n(sn)

)
(25)

is precisely the amount by which π1 outperformed (or underperformed) π2. The 104 sample

paths were divided into groups of 500 in order to obtain approximately normal samples of

average opportunity cost and the standard errors of these averages. The standard error of
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the difference in (25) is the square root of the sum of the squared standard errors of Cπ1 , Cπ2 .

Five policies were tested overall; we briefly describe the implementation of each.

Independent and correlated online KG (KG/KGC). The independent and correlated KG

policies are defined by the decision rules (14) and (24), respectively. The KGC policy was

implemented using the algorithm from Frazier et al. (2008b), discussed in Section 4.2.

Gittins indices (Gitt). The Gittins decision rule, designed for discounted infinite-horizon

problems, is given by

XGitt,n (sn) = arg max
x

Γ (µnx, σ
n
x , σε, γ) , (26)

where Γ (µnx, σ
n
x , σε, γ) is the Gittins index based on our current beliefs about an alternative,

the measurement error, and the discount factor γ. To simplify the computation of Gittins

indices, we can use the identity

Γ (µnx, σ
n
x , σε, γ) = µnx + σε · Γ (0, σnx , 1, γ) ,

known from Gittins (1989). Furthermore, once the measurement error has been normalized

in this manner, we can use the fact that (σnx)2 ≈ 1
Nn
x

, where Nn
x is the number of times

alternative x has been visited up to and including time n, to avoid having to compute

Gittins indices for arbitrary σnx . Thus, we can rewrite (26) as

XGitt,n (sn) = arg max
x

µnx + σε · Γ (Nn
x , γ) ,

where Γ is now a function only of the discount factor and the number of times an alternative

has been measured.

The Gittins policy is not designed for undiscounted, finite-horizon problems. Therefore,

we view it as a heuristic, with a tunable parameter in the form of the Gittins discount factor

γ. It is reasonable to choose γ to satisfy
∑∞

n=0 γ
n = N , so the effective time horizon under

the Gittins policy is equal to the actual time horizon in our problem.

However, even with the above simplifications, Gittins indices are still hard to compute.

An LP-based method was developed by Bertsimas & Nino-Mora (2000), but it assumes

that the knowledge state is discrete, with only finitely many possible values of µn, σn. Dis-

cretization is not practical for our problem, where the priors and rewards are Gaussian.
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Furthermore, the method is computationally complex, requiring the size of the LP to grow

exponentially in order to obtain an exact solution.

In the setting of Gaussian priors and rewards, exact values are only available for a few

choices of γ in Gittins (1989). In order to allow us to tune the discount factor and consider

values of γ for which the exact Gittins indices are unknown, one can use the approximation

from Yao (2006). Define a function

Ψ (s) =



√
s
2

s ≤ 0.2

0.49− 0.11s−
1
2 0.2 < s ≤ 1

0.63− 0.26s−
1
2 1 < s ≤ 5

0.77− 0.57s−
1
2 5 < s ≤ 15

(2 log s− log log s− log 16π)−
1
2 s > 15

Now let s = − 1
n log γ

and define

ΓLB (n) =
1√
n

Ψ (s)− 0.583n−1

√
1 + n−1

ΓUB (n) =
1√
n

√
s

2
− 0.583n−1

√
1 + n−1

.

Finally, take the Gittins index to be

Γ (n, γ) ≈ 1

2

(
ΓLB + ΓUB

)
.

This approximation will perform very well for any value of γ, as long as n is high enough.

However, it can be inaccurate for low values of n and high values of γ, which is important

for our application, where the number of measurements is relatively small.

In our study, we found that the approximation worked best for γ ∈ [0.85, 0.9] across all

the time horizons. For N = 15, the exact Gittins indices for γ = 0.95, obtained from Gittins

(1989), yielded very similar results to the approximation. Our figures in the subsequent

discussion were obtained using these exact values. However, the approximation is a viable

alternative for any setting requiring a smaller discount factor.

Interval estimation (IE). The IE decision rule, created by Kaelbling (1993), is given by

XIE,n (sn) = arg max
x

µnx +
√

Σn
xx · zα/2,
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where zα/2 is a tunable parameter. We obtained the best performance for relatively low

values of zα/2, e.g. zα/2 = 1.25. In general, interval estimation worked better than the

Gittins policy, but was sensitive to the choice of zα/2.

Pure exploitation (Exp). This decision rule is given by XExp,n (sn) = arg maxx µ
n
x. It has

no uncertainty bonus and no tunable parameters.

5.2 Results: heterogeneous-prior experiments

The results for all four time horizons were similar. For this reason, we focus on one time

horizon N = 15 throughout this discussion, and explain the minor differences between time

horizons at the end. For each relevant comparison of two policies, we obtained 100 samples of

the difference in (25). Table 1 gives the means and average standard errors of our estimates

of (25) across the 100 problems in the heterogeneous-prior set, for N = 15.

Figure 2 shows the distribution of the sampled differences. The label on each histogram

names the two policies that were compared and gives the number of times the first policy

outperformed the second. Bars to the right of zero indicate that the first policy outper-

formed the second policy, and bars to the left of zero indicate the converse. For example,

“KG-Gitt: 73/100” means that the independent online KG policy outperformed the Gittins

heuristic in 73/100 experiments, and bars to the right of zero in this histogram represent

those experiments where KG performed better.

We see that KG and KGC outperform Gittins and IE about 70% of the time. Further-

more, KGC outperforms KG 73/100 times. The additional improvement brought about by

correlated KG can be observed in Table 1. Comparisons involving KGC tend to have smaller

negative tails and greater positive tails than KG. This is most evident in the comparison

with interval estimation.

KG-Gitt KG-IE KG-Exp KGC-Gitt KGC-IE KGC-Exp KGC-KG
Mean 0.0217 0.0008 0.0241 0.0251 0.0042 0.0275 0.0034
Avg. SE 0.0018 0.0017 0.0018 0.0019 0.0018 0.0018 0.0018

Table 1: Means and standard errors for the heterogeneous-prior experiments with N = 15.
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Figure 2: Histograms of the sampled difference in opportunity cost for competing policies
across 100 heterogeneous-prior experiments, with N = 15.

The comparisons exhibit noticeable negative tails. In a minority of experiments, KG and

KGC perform worse than IE and Gittins. We examined these outliers and found that they

were mostly coming from the same experiments. For example, the same experiment produces

the single worst outlier in all of the comparisons in Figure 2. A different experiment produces

the second best outlier in KG-Gitt and the best in KGC-Gitt, and gives good (positive)

results in KG-IE and KGC-IE. Figure 3 shows the relationship between the true rewards

and prior beliefs in both of these experiments.

In Figure 3(a), the prior consistently underestimates the truth, for every alternative. On

the other hand, in Figure 3(b), the prior consistently overestimates the truth, also for every

alternative. We believe that the first case leads KG to stop exploring sooner than the other

policies, and settle in on a suboptimal alternative that appears to be better than the others.

The second case, however, leads KG to explore more, as every measurement appears to be

worse than was previously believed. Thus, it appears that online KG is more susceptible to

being misled by a bad prior. However, a consistently, excessively pessimistic prior such as in

Figure 3(a) is unlikely in practice. Furthermore, in cases when the truths are more evenly

spread around the priors, KG outperforms Gittins and IE.
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(a) (b)

Figure 3: True rewards and prior beliefs for two experiments: (a) one producing the worst
outlier for all comparisons, and (b) one producing the best outlier for KGC-Gitt and second-
best for KG-Gitt.

Pure exploitation outperforms all of the other policies 60% of the time, though usually

by a small margin. However, there is a substantial minority of experiments where every

measurement achieves an additional FPG reduction of as much as 0.8 mmol/L under the

KG policy, the equivalent of adding a whole new drug to the treatment. These widely varying

results are also due to the relationship of the truth to the prior in each experiment. The

experiment in Figure 3(a) again contributes the single worst outlier for KG-Exp and KGC-

Exp, this time because the alternative with the highest prior also has the highest truth, far

ahead of the alternative with the second-highest prior. Pure exploitation happens to find the

optimal alternative in the first measurement, and usually stays there, while KG and other

policies are still exploring. In Figure 3(b), we see the opposite situation: the alternative with

the highest prior has a much lower truth than the alternative with the second-highest prior.

Thus, pure exploitation makes a mistake in the first measurement, while other policies are

more likely to use it to obtain more useful information.

Thus, although pure exploitation performs very well on most of the heterogeneous-prior

experiments, we argue that it is unreliable because it is prone to worse errors than any

other policy, and these errors are particularly bad for this application. In general, the good

performance of pure exploitation is due to the fact that the prior is heterogeneous. The

alternative with the highest prior is likely to have the highest truth also, allowing pure
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exploitation to quickly discover it. Pure exploitation is less effective in the equal-prior

experiments.

The choice of N does not change the overall portrait of the results. We found that smaller

values of N led to larger tails, both positive and negative, in the comparisons KG-Gitt, KGC-

Gitt, KG-IE, KGC-IE. The majority of experiments still fell into the range 0− 0.1, but this

majority increased with N . The KG-Exp and KGC-Exp comparisons showed the opposite

behaviour: larger values of N led to larger positive tails. Thus, pure exploitation becomes

less reliable as the time horizon gets larger. We conclude that, in a situation where we have

a reasonably accurate estimate of the true rewards, KG and KGC are more reliable than

pure exploitation, and comparable to Gittins and IE.

5.3 Results: equal-prior experiments

In the equal-prior setting, the KG policy yields consistently superior performance compared

to the other policies. The means and average standard errors of our estimates of (25) are

given in Table 2. It is notable that the Gittins heuristic does particularly poorly on this set

of experiments. In fact, as we see in Figure 4, both KG and KGC outperform the Gittins

heuristic a full 100% of the time. The Gittins policy makes more severe mistakes in the

correlated setting when our prior reveals nothing about which alternative is best.

By contrast, interval estimation performs quite well, usually losing to the KG policy by

a very small margin. However, this comparison also shows the most dramatic improvement

achieved by using KGC instead of KG. Where KG outperforms IE in 78/100 experiments,

for KGC this proportion is 93/100. The pure exploitation policy has the worst performance

of all the policies tested. As one might expect, it is less effective when it has a smaller chance

of immediately picking a good alternative.

KG-Gitt KG-IE KG-Exp KGC-Gitt KGC-IE KGC-Exp KGC-KG
Mean 0.1167 0.0079 0.1426 0.1258 0.0170 0.1516 0.0090
Avg. SE 0.0038 0.0044 0.0059 0.0039 0.0045 0.0060 0.0045

Table 2: Means and standard errors for the equal-prior experiments with N = 15.
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Figure 4: Histograms of the sampled difference in opportunity cost for competing policies
across 100 equal-prior experiments, with N = 15.

The choice of N has the same effect as in the heterogeneous-prior experiments. Larger

values of N lead to smaller tails, although the KG policy still consistently outperforms

the other policies. We conclude that, in a situation where we know nothing about how

the alternatives are ranked, KG and KGC offer reliable ways to distinguish between the

alternatives quickly. KGC is especially well-suited to this situation, because the correlations

between rewards become more important when we have little prior knowledge of the rewards.

5.4 Long-run comparison to Gittins policy

We end our computational study with a comparison of the independent KG policy to the

Gittins index policy in a situation where the latter is optimal: a discounted problem with

a large measurement budget and independent rewards. We use the knowledge transition

function given by (1) and (2), and the discounted variant of the KG decision rule given by

(20). Again, we measure the opportunity cost of each policy, but now we average over the

effective time horizon:

Cπ = max
x

µx −
1∑N

n=0 γ
n

N∑
n=0

γnµXπ,n(sn)
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Figure 5: KG-Gitt comparison over N = 100.

Then, (25) becomes

Cπ2 − Cπ1 =
1∑N

n=0 γ
n

N∑
n=0

γn
(
µXπ1,n(sn) − µXπ2,n(sn)

)
.

We are interested in the difference CGitt−CKG. As before, a positive difference would mean

that KG outperforms Gittins, and a negative difference means the converse.

We tested the policies using all the initial data from the heterogeneous-prior experiments,

except without the covariance structure. Earlier we observed that the KG policy has more

difficulty learning in this setting than in the equal-prior case. We chose a discount factor

of γ = 0.95, in order to use the exact Gittins indices from Gittins (1989), and simulated

each policy over a time horizon of N = 100, reporting the difference CGitt − CKG every

10 measurements. Our estimates of CGitt − CKG, averaged over 100 heterogeneous-prior

experiments and 104 sample paths in each experiment, are shown in Figure 5.

As expected, the KG policy is outperformed by the Gittins policy. However, even for

N = 10, the difference between them is very small, on the order of 10−4. In the context of

diabetes treatments, this is negligible. Furthermore, the difference shrinks as N increases.

In other words, the Gittins policy does choose better alternatives than the KG policy in the

early iterations, though this difference is not large to begin with. However, eventually, the

KG policy tends to converge to the same alternative as the Gittins policy, and the difference

between them shrinks.
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This suggests that the KG policy is competitive against the Gittins policy even when the

Gittins policy is known to be optimal. However, unlike Gittins indices, the KG decision rule

is easy to compute, and does not require us to rely on approximations or limit ourselves to a

few choices of γ. Thus, the KG policy emerges as a viable alternative to the Gittins policy.

6 Conclusion

We have proposed an easily computable decision rule for online learning problems. Within

the class of problems with a finite measurement budget, normally distributed priors, and

normal sampling errors with known variance, the KG policy proves to be versatile. Variations

of the basic KG decision rule cover both undiscounted and discounted, finite- and infinite-

horizon problems, and can also accommodate correlated priors. We compared the KG policy

to several other measurement policies in a realistic setting. In our experiments, we considered

different situations that might arise in practice: one where we already have some information

about the rewards of the alternatives, and one where we only know that they fall in a certain

range, not how they compare to each other. In the correlated setting, the KG policy is either

comparable to or better than the other policies tested, and performs especially well when

the prior provides little information.

We also showed that, in the uncorrelated, discounted setting, the KG policy is compara-

ble to the known optimal policy (Gittins indices), while being far easier to implement and

compute for any discount factor. For this reason, the KG policy emerges as a worthwhile al-

ternative even in problems where the optimal policy is known, with the additional advantage

of extending to the correlated setting. We have constructed our experimental study to illus-

trate the potential of the KG policy for application to problems with a finite measurement

budget.
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