Efficient Learning with Knowledge Gradients

Peter Frazier
Warren Powell
Savas Dayanik

Department of Operations Research and Financial Engineering
Princeton University

January 21, 2007
EEB Lab Tea Presentation
Outline

- Problem Formulation
- Examples
- Knowledge Gradient Definition
- Numerical and Theoretical Results
Problem Formulation

Examples

Knowledge Gradient Definition

Numerical and Theoretical Results
Drug Discovery Application

A pharmaceutical company has a library of millions of compounds that it would like to screen for potential cancer drugs. Robots will do the initial assay by performing a fixed test one or several times on some subset of the compounds.

Sources: http://www.paa.co.uk/img/labauto/inst_highres/ssi/mini_dispenser.jpg,
http://vitalleaf.chainreactionweb.com/images/Angel.JPG
Drug Discovery Application: Assumptions

- We have a prior estimate of the quality of each compound.
- This prior estimate is normally distributed and is independent of estimates for other compounds.
- Each test has stationary independent unbiased normally distributed errors with known variance.
- After all tests are complete, we will choose only one compound to send to the next drug development stage.
Suppose the number of compounds in the library is 5, and the number of tests allowed is $N = 10$. At time 0, before any tests are performed, we have a prior estimate of the quality of each compound.
We test compound $x = 1$ and measure its quality with noise. We update our estimate of the value of compound 1.
Time 2
Time 5
After our experimental budget of $N = 10$ tests is exhausted, we choose the compound that is the best according to our current estimate, and we deliver it to the next stage of drug development.
After our experimental budget of $N = 10$ tests is exhausted, we choose the compound that is the best according to our current estimate, and we deliver it to the next stage of drug development.
Outline

Problem Formulation

Examples

Knowledge Gradient Definition

Numerical and Theoretical Results
One common experimental design is to spread our measurement budget equally across all alternatives.
DistributeMeasurementsEqually n=0

Prior Estimate
True Value
DistributeMeasurementsEqually n=1

Prior Estimate
True Value
Measurement
Problem Formulation

Examples

KG Definition

Results

DistributeMeasurementsEqually n=2

Prior Estimate
True Value
Measurement

16 / 65
Distribute Measurements Equally n=4

Prior Estimate
True Value
Measurement
Problem Formulation

Examples

KG Definition

Results

DistributeMeasurementsEqually n=5

Prior Estimate

True Value

Measurement
DistributeMeasurementsEqually n=6

Prior Estimate True Value Measurement

-2 -1 0 1 2
0 1 2 3 4 5 6
Problem Formulation

Examples

KG Definition

Results

DistributeMeasurementsEqually n=8

Prior Estimate
True Value
Measurement

<table>
<thead>
<tr>
<th>Prior Estimate</th>
<th>True Value</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>65</td>
<td>22</td>
</tr>
<tr>
<td>-1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>-2</td>
<td>6</td>
</tr>
</tbody>
</table>
DistributeMeasurementsEqually n=9

Prior Estimate
True Value
Measurement
Problem Formulation

Examples

KG Definition

Results

DistributeMeasurementsEqually n=10

Prior Estimate
True Value
Measurement

\[
\frac{24}{65}
\]
DistributeMeasurementsEqually n=11

Prior Estimate
True Value
Measurement

-2 -1 0 1 2
0 1 2 3 4 5 6

25 / 65
DistributeMeasurementsEqually n=12

Prior Estimate
True Value
Measurement

-2 -1 0 1 2
0 1 2 3 4 5 6
DistributeMeasurementsEqually n=13

Prior Estimate
True Value
Measurement

<table>
<thead>
<tr>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

\[
\frac{27}{65}
\]
DistributeMeasurementsEqually $n=14$

Prior Estimate
True Value
Measurement

$\frac{28}{65}$
Problem Formulation

Examples

KG Definition

Results

DistributeMeasurementsEqually n=15

Prior Estimate
True Value
Measurement
Example 2
Example 2

When some compounds have larger variance, we want to measure these more often.
MaxVarianceExplore n=3

Prior Estimate
True Value
Measurement
MaxVarianceExplore \(n=4 \)

Prior Estimate
True Value
Measurement
MaxVarianceExplore $n=5$

Prior Estimate
True Value
Measurement
MaxVarianceExplore n=6

Prior Estimate
True Value
Measurement
MaxVarianceExplore n=8

Prior Estimate
True Value
Measurement
MaxVarianceExplore n=9

Prior Estimate
True Value
Measurement
MaxVarianceExplore $n=12$

Prior Estimate
True Value
Measurement
MaxVarianceExplore n=13

Prior Estimate
True Value
Measurement
MaxVarianceExplore n=14

Prior Estimate
True Value
Measurement
MaxVarianceExplore n=15

Prior Estimate
True Value
Measurement

-1 0 1 2 3 4
0 1 2 3 4 5 6

47 / 65
Example 3

Allocating measurements based solely on variance can also be inefficient. There is less value in measuring compounds whose estimated quality is very poor.
Example 4

In this example, compound 5 has the largest variance but compound 4 has the largest mean. Which compound should we test?
Goal

- Can we find the best measurement strategy?
 - Not in general, though we can in some special cases.
 - Dynamic programming tells us what the best measurement strategy is in general, but the “curse of dimensionality” prevents us from computing it.

- If we cannot find the best, can we find a measurement strategy that is “good enough”?
Outline

Problem Formulation

Examples

Knowledge Gradient Definition

Numerical and Theoretical Results
The Information State

- Our estimate of the quality of compound x after n tests have been performed takes the form of a normal distribution.
- Define μ^n_x to be the estimate’s mean and Σ^n_{xx} its variance.
- Then, our estimate of the quality of all compounds is completely represented by the vector S^n

$$S^n := (\mu^n_1, \ldots, \mu^n_M, \Sigma^n_{11}, \ldots, \Sigma^n_{MM})$$

We call S^n the “information state.”
Measurement’s Effect on the Information State

If we test compound x^n at time n, our estimate of the value of compound x changes randomly but our other estimates remain the same.
Knowledge Definition

We define the amount of “knowledge” contained in our information state S^n as

$$K(S^n) := \max_x \mu^n_x.$$

When the experimental budget is exhausted, $K(S^N)$ is the expected value of our drug assay. This is because we choose for further development the compound with maximum mean according to our estimate.
Consider the change in knowledge resulting from our measurement x^n at time n,

$$K(S^{n+1}) - K(S^n) = \max_x \mu_x^{n+1} - \max_x \mu_x^n$$

The knowledge gradient policy is the one that chooses its measurements to maximize the expected gain in knowledge.

$$X^{KG}(S^n) := \arg\max_{x^n \in \{1...M\}} E_n [K(S^{n+1}) - K(S^n)]$$
The Knowledge Gradient policy may be computed using the formula

\[X^{KG}(S^n) = \operatorname{arg\ max}_{x \in \{1...M\}} \tilde{\sigma}(\Sigma_{xx}^n) f(\xi_x(S^n)) \]

where \(\varphi \) is the normal pdf, \(\Phi \) is the normal cdf, and

\[
\tilde{\sigma}(\Sigma_{xx}) := \frac{\Sigma_{xx}}{\sqrt{\Sigma_{xx} + (\sigma(\epsilon))^2}}
\]

\[
\xi_x(S^n) := -\left| \frac{\mu^n_x - \max_{x' \neq x} \mu^n_{x'}}{\tilde{\sigma}(\Sigma_{xx}^n)} \right|
\]

\[
f(z) := z\Phi(z) + \varphi(z)
\]
Numerical Example 1

\[X^{KG}(S^n) = \arg \max \tilde{\sigma}_x^n f(\zeta_x^n) = 1 \]

| \(x\) | \(\mu_x\) | \(\Sigma_{xx}\) | \(\tilde{\sigma}_x = \frac{\Sigma_{xx}}{\sqrt{\Sigma_{xx} + \sigma^2}}\) | \(\Delta_x = |\mu_x - \max_{x' \neq x} \mu_{x'}|\) | \(\zeta_x = \frac{-\Delta_x}{\tilde{\sigma}(\Sigma_{xx})}\) | \(\tilde{\sigma}_x f(\zeta_x)\) |
|---|---|---|---|---|---|---|
| 1 | 0 | 4 | 1.789 | 0 | 0 | 0.714 |
| 2 | 0 | 2 | 1.155 | 0 | 0 | 0.461 |
| 3 | 0 | 1 | 0.707 | 0 | 0 | 0.282 |
Problem Formulation

Numerical Example 2

\[\chi^{KG}(S^n) = \arg \max \tilde{\sigma}_x^n f(\zeta_x^n) = 2 \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\mu_x)</th>
<th>(\Sigma_{xx})</th>
<th>(\tilde{\sigma}x = \frac{\Sigma{xx}}{\sqrt{\Sigma_{xx} + \sigma^2}})</th>
<th>(\Delta_x = \frac{-\Delta_x}{\tilde{\sigma}(\Sigma_{xx})})</th>
<th>(\zeta_x = \frac{-\Delta_x}{\tilde{\sigma}(\Sigma_{xx})})</th>
<th>(\tilde{\sigma}_x f(\zeta_x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(-\infty)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0.707</td>
<td>1</td>
<td>-1.414</td>
<td>0.025</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>0.707</td>
<td>2</td>
<td>-2.828</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Numerical Example 3

\[\chi_{KG}^{S^n} = \arg \max \tilde{\sigma}_x^n f(\zeta^n_x) = 2 \]

| \(x \) | \(\mu_x \) | \(\Sigma_{xx} \) | \(\tilde{\sigma}_x = \frac{\Sigma_{xx}}{\sqrt{\Sigma_{xx} + \sigma^2}} \) | \(\Delta_x = |\mu_x - \max_{x' \neq x} \mu_{x'}| \) | \(\zeta_x = \frac{-\Delta_x}{\tilde{\sigma}(\Sigma_{xx})} \) | \(\tilde{\sigma}_x f(\zeta_x) \) |
|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 0.707 | 1 | -1.41 | 0.0251 |
| 2 | 0 | 4 | 1.789 | 1 | -0.56 | 0.3223 |
| 3 | -1 | 1 | 0.707 | 2 | -2.83 | 0.0005 |
Outline

Problem Formulation

Examples

Knowledge Gradient Definition

Numerical and Theoretical Results
Problem Formulation

Examples

KG Definition

Results

Vary N

number of alternatives (M) = 10
noise variance (σ^2) = 1
$\mu^0 = [0,...0]$, $\beta^0 = [1,...1]$
number of samples = 10000

Knowledge Gradient
Interval Estimation $z_{\alpha/2} = 2.5$
Boltzmann $T=1.0$
Gittins discount = 0.7
Uniform Explore
Exploit
Problem Formulation

Examples

KG Definition

Results

Vary M

number of measurements (N) = 20
noise variance(σ^2)=1
$\mu^0=[0,...,0]$, $\beta^0=[1,...,1]$
number of samples = 10000

KnowledgeGradient
IntervalEstimation $z_{\alpha/2} = 2.5$
Boltzmann $T=1.0$
Gittins discount=0.7
UniformExplore
Exploit

Vary \(N \) and \(M \)

![Graph showing the variation of policy value with respect to M for different methods and parameters. The parameters include number of samples = 10000, \(\mu^0 = [2.5,0..0] \), \(\beta^0 = [100,1..1] \), noise variance(\(\sigma^2 \))=1, and Ratio N/M = 3. The methods compared include KnowledgeGradient, IntervalEstimation (z\(\alpha \)/2 = 2.5), Boltzmann (T=1.0), Gittins (discount=0.7), UniformExplore, and Exploit.](image-url)
KG is optimal if any of the following conditions are met:

- $N = 1$
- In the limit as $N \to \infty$
- $M = 2$
- There is no measurement noise ($\sigma^2 = 0$) and the prior is ordered in both mean and variance ($\mu_1^0 \geq \mu_2^0 \geq \ldots \geq \mu_M^0$ and $\Sigma_{11}^0 \geq \Sigma_{22}^0 \geq \ldots \geq \Sigma_{MM}^0$).
Further Information Collection Applications

- A polling agency may wish to determine which candidate is most preferred by the electorate.
- An agronomist studying a number of varieties of wheat may seek to select the variety that will produce the largest number of bushels per acre.
- The Department of Homeland Security may wish to allocate their surveillance budget across some subset of targets to minimize the probability of a successful terrorist attack.
- During a disease outbreak, a doctor may wish to quickly determine which drug is most effective in treating the disease.
- A scientist running a Monte Carlo simulation may wish to find the set of input parameters that best fit an observed natural phenomenon.