
Parallel Bayesian Optimization,  
for Metrics Optimization at Yelp

Peter Frazier
Associate Professor

Operations Research & Information Engineering
Cornell University

Currently on sabbatical leave at Uber,  
serving as a Staff Data Scientist,  

and the Manager for Data Science on UberPool

Joint work with:  
Jialei Wang (Cornell), Scott Clark (Yelp, SigOpt), Eric Liu (Yelp, SigOpt),  

Deniz Oktay (Yelp, MIT), Norases Vesdapunt (Yelp, Stanford)

Consider optimizing an
“expensive” function.

• We’d like to optimize an objective
function, f : ℝd ➝ ℝ.

• f’s feasible set is simple,  
e.g., box constraints.

• f is continuous but lacks special
structure, e.g., concavity, that would
make it easy to optimize.

• f is derivative-free: evaluations do not
give gradient information.

• f is “expensive” to evaluate ---  
the # of times we can evaluate it is
severely limited.

X*

●

●

●

●

●

●

●
●

●

●

● ●
●

y(n)

f(x)

Optimization of expensive functions arises
when optimizing physics-based models

joint work with Alison Marsden, UCSD

Optimization of expensive functions arises
when fitting machine learning models

Optimization of expensive functions arises
when tuning websites with A/B testing

Optimization of expensive functions arises
when tuning transportation markets

Optimization of expensive functions arises
in drug and materials discovery

ongoing work with Mike Burkart and Nathan Gianneschi, UCSD

Sfp  
(a protein-modifying enzyme)

AcpS  
(another protein-modifying enzyme)

Bayesian Optimization
looks like this

Elicit a prior distribution on the function f  
(typically a Gaussian process prior).

while (budget is not exhausted) {

Find the point to sample whose value of
information is the largest.

Sample that point.

Update the posterior distribution.

}

Background:
Expected Improvement

• Efficient Global Optimization (EGO)
[Jones, Schonlau & Welch 1998;  
Mockus 1972] is a well-known Bayesian
optimization method.

• It does one function evaluation at a time.

• It measures the value of information for
each potential measurement using
“Expected Improvement.”

Background: Expected Improvement

50 100 150 200 250 300
−2

−1

0

1

2

x

va
lu
e

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

x

EI

Background: Expected Improvement

50 100 150 200 250 300
−2

−1

0

1

2

x

va
lu
e

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

x

EI

Background: Expected Improvement

50 100 150 200 250 300
−2

−1

0

1

2

x

va
lu
e

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

x

EI

Background: Expected Improvement

50 100 150 200 250 300
−2

−1

0

1

2

x

va
lu
e

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

x

EI

Almost all existing Bayesian Optimization
methods take one measurement at a time

• EGO / expected improvement take one
measurement at a time.

• So do earlier algorithms [Kushner, 1964, Mockus et
al., 1978, Mockus, 1989].

• So do most later methods [Calvin and Zilinskas,
2005, Huang et al., 2006, Frazier et al., 2009,
Villemonteix et al., 2009, ...]

• There are a few exceptions:  
recent methods by David Ginsbourger and co-
authors, and by Ryan Adams (more later).

We extend Bayesian Optimization
to parallel function evaluations.

• What if we evaluate the function
at multiple points simultaneously?

• This happens in parallel
computing, A/B testing on the
web, and laboratory experiments.

• We use decision theory.

• This was also suggested by
Ginsbourger et al., 2007.

Parallel A/B tests

Parallel computer

We generalize to multiple function evaluations
using a decision-theoretic approach

• We’ve evaluated x(1),...x(n), and observed f(x(1)),...,f(x(n)).

• Once sampling stops, we will select the best point
found.

• What is the Bayes-optimal way to choose the set of
points x1,...,xq to evaluate next?

• In general, we would need to solve a dynamic program.

• When this is the last stage of measurements, the
dynamic program becomes a simpler two-stage
optimization problem.

• We’ve evaluated x(1),...,x(n) & observed
f(x(1)),...,f(x(n)).

• The best value observed is  
fn* = max{f(x(1)),…,f(x(n))}.

• If we measure at new points x1,...,xq, and then stop,  
then the expected value of our new solution is

En[max(f

⇤
n, max

i=1,...,q
f(xi))]

We generalize to multiple function evaluations
using a decision-theoretic approach

• The expected improvement (aka, EI, or q-EI) is  
E[value of new solution] - value of old solution

• We write this as

• Our algorithm will be to sample at the set of points
with largest expected improvement

We generalize to multiple function evaluations
using a decision-theoretic approach

EIn(x1, . . . , xq) = En[max(f

⇤
n, max

i=1,...,q
f(xi))]� f

⇤
n

argmax

x1,...,xq
EI(x1, . . . , xq

)

Our approach is Bayes-optimal for
one stage of function evaluations

• If we have one stage of function evaluations left,  
then evaluating 
 
 
is Bayes-optimal.

• If we have more than one stage left, it is not,  
but we argue that it is a well-motivated heuristic.

argmax

x1,...,xq
EI(x1, . . . , xq

)

q-EI lacks an easy-to-compute expression

• When q=1 (no parallelism),  
this is the expected improvement of Jones et al., 1998, which has a closed-form
expression.

• When q=2,  
Ginsbourger et al., 2007 gives an expression using bivariate normal cdfs.

• When q > 2,  
Ginsbourger et al., 2007 proposes Monte Carlo estimation;  
Chevalier and Ginsbourger, 2013 proposes exact evaluation using repeated calls
to high-dimensional multivariate normal cdfs.  
Both are difficult to optimize.

EIn(x1, . . . , xq) = En[(max

i=1,...,q
f(xi)� f

⇤
n)

+
]

q-EI is hard to optimize

• From Ginsbourger, 2009: “directly optimizing the q-EI
becomes extremely expensive as q and d (the dimension
of the inputs) grow.”

• Rather than optimizing the q-EI, Ginsbourger et al.,
2007 and Chevalier and Ginsbourger, 2013 propose
other schemes.

Our contribution

• Our 1st contribution is an efficient method for
solving 

• This makes the single-batch Bayes-optimal
algorithm implementable, not just conceptual.

• Our 2nd contribution is a high-quality open
source implementation. This implementation is
currently in use at Yelp & Netflix, and spawned a
Ycombinator-funded startup company, Sigopt.

argmax

x1,...,xq
EI(x1, . . . , xq

)

Our approach to solving

1.Construct an unbiased estimator of 
 
using infinitesimal perturbation analysis (IPA).

2.Use multistart stochastic gradient ascent to
find an approximate solution to

argmax

x1,...,xq
EI(x1, . . . , xq

)

rEI(x1, . . . , xq)

argmax

x1,...,xq
EI(x1, . . . , xq

)

Here’s how we estimate ∇EI

• Y=[f(x1),...,f(xq)]’ is multivariate normal.

• Y’s mean vector m and covariance matrix C
depend on x1,...,xq.

• Y=m+CZ, where Z is a vector of independent
standard normals.

• EI(x1,...,xq) = E[h(Y)] for some function h.

• If our problem is well-behaved, then we can switch
derivative and expectation:  
 ∇EI(x1,...,xq) = E[∇h(m+cZ)]

Here’s how we estimate ∇EI

• Y=[f(x1),...,f(xq)]’ is multivariate normal.

• Y’s mean vector m and covariance matrix C
depend on x1,...,xq.

• Y=m+CZ, where Z is a vector of independent
standard normals.

• EI(x1,...,xq) = E[h(Y)] for some function h.

• If our problem is well-behaved, then we can switch
derivative and expectation:  
 ∇EI(x1,...,xq) = E[∇h(m+cZ)]

This is our gradient
estimator, g(x1,...,xq,Z)

Our gradient estimator is unbiased,
given su�cient conditions

Theorem

Let
~
m(~x1, . . . ,~xq) and C (~x1, . . . ,~xq) be the mean vector and Cholesky

factor of the covariance matrix of (f (~x1), . . . , f (~xq)) under the posterior

distribution at time n. If the following conditions hold

~
m(·) and C (·) are three times continuously di↵erentiable in a

neighborhood of
~
x1, . . . ,~xq.

C (~x1, . . . ,~xq) has no duplicated rows.

then

—EI(~x1, . . . ,~xq) = En

h
g(~x1, . . . ,~xq,~Z)

i
.

Our gradient estimator is unbiased,
given mild sufficient conditions

Example of Estimated GradientHere’s what ∇EI looks like

Estimating ∇EI can be
parallelized on a GPU

We use this gradient estimator in
multistart stochastic gradient ascentMultistart Stochastic Gradient Ascent

1 Select several starting points, uniformly at random.
2 From each starting point, iterate using the stochastic gradient

method until convergence.

(~x1, . . . ,~xq) (~x1, . . . ,~xq)+ang(~x1, . . . ,~xq,w),

where (an) is a stepsize sequence.
3 For each starting point, average the iterates to get an estimated

stationary point. (Polyak-Ruppert averaging)
4 Select the estimated stationary point with the best estimated value as

the solution.

x1

x 2

Animation

Animation

Animation

The method works:
adding parallelism improves performance

• q=1 (one thread) is also the EGO
method of [Jones et al., 1998]

(2-dim) (6-dim)

The method works: it outperforms an
approximation to the Bayes-optimal

procedure on harder problems

• Constant Liar (CL) is a class of algorithms proposed by Chevalier & Ginsbourger 2013.

• CL-mix is the best CL algorithm.

(6-dim)Easy problem Hard problem

With Yelp, we made a high-quality implementation of some of
these methods, called MOE (Metrics Optimization Engine) With Yelp, we made a high-quality implementation, called
MOE (Metrics Optimization Engine)

MOE is open source

MOE has had impact  
at Yelp

When user is close, 
show distance.

When user is far, 
hide distance.

Also, tuning features used in ML-based prediction;  
choosing parameters for search and advertising.

Example:  
Thresholds chosen by MOE determine when to
show distance information in search results.

MOE has had impact  
at other companies that are / were / might be using MOE

MOE has had impact  
through the creation of this startup company

MOE has had impact  
through the creation of this startup company

Here’s what I’m learning about how to have impact  
from Yelp, SigOpt, and Uber

• Listen to people inside the organization  
to understand what their real problems are.

• Communicate your ideas clearly.

• Make your ideas easy to use.

• Do the first order thing quickly.

• Focus on being better than what was there before.

• Theoretical guarantees or optimality 
are not that helpful in convincing business people to use your ideas.

Thanks!
Any Questions?

• This is joint work with:

Scott Clark  
Cornell PhD ’12

Yelp, SigOpt  

Eric Liu
Yelp 

Jialei Wang
Cornell PhD

student 
Yelp intern  

Deniz Oktay  
MIT undergraduate  

Yelp intern  

Norases
Vesdapunt

Stanford under-
graduate

Yelp intern  

This q-EI method can be used in the noisy case, but it
loses its decision-theoretic motivation

We use Gaussian process regression with normally distributed noise.
The red line is the posterior mean, µn(x) = En[f (x)]
The largest posterior mean is µ⇤

n =maxi=1,...,n µn(~x (m)).

50 100 150 200 250 300
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

va
lu
e

We use EIn(~x1, . . . ,~xq) = En

⇥
(maxm=1,...,q µn+1(~xi)�µ⇤

n)
+⇤

This ignores that µn+1(x) 6= µn(x) for previously evaluated x .
A more principled approach is possible (e.g., generalize knowledge
gradient method to multiple evaluations), but we haven’t done it yet.

Fast and noisy is better
than slow and exact  

(when q is bigger than 3 or 4)

Branin function, EI vs. n, q=4 Hartmann function, EI vs. n, q=4

Fast and noisy is better
than slow and exact  

(when q is bigger than 3 or 4)

Branin function, EI vs. q, n=100 Hartmann function, EI vs. q, n=100

Fast and noisy is better
than slow and exact  

(when q is bigger than 3 or 4)

Our procedure is only Bayes-
optimal for a single batch

• If we do just one batch, then our
procedure is Bayes-optimal.

• If we run many batches, starting each new
batch after the previous one completes,
then our procedure is not optimal.

Finding the Bayes-optimal
multi-batch procedure

is hard

• The optimal procedure for N>1 batches is the
solution to a partially observable Markov decision
process (POMDP).

• This is well-understood theoretically,  
but hard computationally.

• The amount of memory required is
exponential in d (the problem dimension),  
q (the batch size), and N (the number of
batches).

We have found Bayes-optimal multi-batch
procedures for other related learning problems

• We have found Bayes-optimal multi-batch procedures,  
or upper bounds on their value, for related problems:

• multiple comparisons [Xie and F., 2013, Hu, F., Xie 2014]

• stochastic root-finding [Waeber, F., Henderson 2013]

• ranking & selection (pure exploration MAB) [Xie and F.,
2013]

• information filtering [Zhao and F., 2014]

• object localization [Jedynak, F., Sznitman, 2012]

