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Consider optimizing an 
“expensive” function.

• We’d like to optimize an objective 
function, f : ℝd ➝ ℝ.

• f’s feasible set is simple,  
e.g., box constraints.

• f is continuous but lacks special 
structure, e.g., concavity, that would 
make it easy to optimize.

• f is derivative-free: evaluations do not 
give gradient information.

• f is “expensive” to evaluate ---  
the # of times we can evaluate it is 
severely limited.
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Optimization of expensive functions arises 
when optimizing physics-based models

joint work with Alison Marsden, UCSD



Optimization of expensive functions arises  
when fitting machine learning models



Optimization of expensive functions arises  
when tuning websites with A/B testing



Optimization of expensive functions arises  
when tuning transportation markets



Optimization of expensive functions arises  
in drug and materials discovery

ongoing work with Mike Burkart and Nathan Gianneschi, UCSD

Sfp  
(a protein-modifying enzyme)

AcpS  
(another protein-modifying enzyme)



Bayesian Optimization 
looks like this

Elicit a prior distribution on the function f  
(typically a Gaussian process prior).

while (budget is not exhausted) {

Find the point to sample whose value of 
information is the largest.

Sample that point.

Update the posterior distribution.

}



Background:  
Expected Improvement

• Efficient Global Optimization (EGO) 
[Jones, Schonlau & Welch 1998;  
Mockus 1972] is a well-known Bayesian 
optimization method.

• It does one function evaluation at a time.

• It measures the value of information for 
each potential measurement using 
“Expected Improvement.”



Background: Expected Improvement
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Almost all existing Bayesian Optimization 
methods take one measurement at a time

• EGO / expected improvement take one 
measurement at a time.

• So do earlier algorithms [Kushner, 1964, Mockus et 
al., 1978, Mockus, 1989].

• So do most later methods [Calvin and Zilinskas, 
2005, Huang et al., 2006, Frazier et al., 2009, 
Villemonteix et al., 2009, ...]

• There are a few exceptions:  
recent methods by David Ginsbourger and co-
authors, and by Ryan Adams (more later).



We extend Bayesian Optimization 
to parallel function evaluations.

• What if we evaluate the function 
at multiple points simultaneously?

• This happens in parallel 
computing,  A/B testing on the 
web, and laboratory experiments.

• We use decision theory.

• This was also suggested by 
Ginsbourger et al., 2007.

Parallel A/B tests

Parallel computer



We generalize to multiple function evaluations 
using a decision-theoretic approach

• We’ve evaluated x(1),...x(n), and observed f(x(1)),...,f(x(n)).

• Once sampling stops, we will select the best point 
found.

• What is the Bayes-optimal way to choose the set of 
points x1,...,xq to evaluate next?

• In general, we would need to solve a dynamic program.

• When this is the last stage of measurements, the 
dynamic program becomes a simpler two-stage 
optimization problem.



• We’ve evaluated x(1),...,x(n) & observed 
f(x(1)),...,f(x(n)).

• The best value observed is  
fn* = max{f(x(1)),…,f(x(n))}.

• If we measure at new points x1,...,xq, and then stop,  
then the expected value of our new solution is

En[max(f

⇤
n, max

i=1,...,q
f(xi))]

We generalize to multiple function evaluations 
using a decision-theoretic approach



• The expected improvement (aka, EI, or q-EI) is  
E[value of new solution] - value of old solution

• We write this as

• Our algorithm will be to sample at the set of points 
with largest expected improvement

We generalize to multiple function evaluations 
using a decision-theoretic approach

EIn(x1, . . . , xq) = En[max(f

⇤
n, max

i=1,...,q
f(xi))]� f

⇤
n

argmax

x1,...,xq
EI(x1, . . . , xq

)



Our approach is Bayes-optimal for 
one stage of function evaluations

• If we have one stage of function evaluations left,  
then evaluating 
 
 
is Bayes-optimal.

• If we have more than one stage left, it is not,  
but we argue that it is a well-motivated heuristic.

argmax

x1,...,xq
EI(x1, . . . , xq

)



q-EI lacks an easy-to-compute expression

• When q=1 (no parallelism),  
this is the expected improvement of Jones et al., 1998, which has a closed-form 
expression.

• When q=2,  
Ginsbourger et al., 2007 gives an expression using bivariate normal cdfs.

• When q > 2,  
Ginsbourger et al., 2007 proposes Monte Carlo estimation;  
Chevalier and Ginsbourger, 2013 proposes exact evaluation using repeated calls 
to high-dimensional multivariate normal cdfs.  
Both are difficult to optimize.

EIn(x1, . . . , xq) = En[( max

i=1,...,q
f(xi)� f

⇤
n)

+
]



q-EI is hard to optimize

• From Ginsbourger, 2009: “directly optimizing the q-EI 
becomes extremely expensive as q and d (the dimension 
of the inputs) grow.”

• Rather than optimizing the q-EI, Ginsbourger et al., 
2007 and Chevalier and Ginsbourger, 2013 propose 
other schemes.



Our contribution

• Our 1st contribution is an efficient method for 
solving 

• This makes the single-batch Bayes-optimal 
algorithm implementable, not just conceptual. 

• Our 2nd contribution is a high-quality open 
source implementation.  This implementation is 
currently in use at Yelp & Netflix, and spawned a 
Ycombinator-funded startup company, Sigopt.

argmax

x1,...,xq
EI(x1, . . . , xq

)



Our approach to solving  
      

1.Construct an unbiased estimator of 
 
using infinitesimal perturbation analysis (IPA).

2.Use multistart stochastic gradient ascent to 
find an approximate solution to 

argmax

x1,...,xq
EI(x1, . . . , xq

)

rEI(x1, . . . , xq)

argmax

x1,...,xq
EI(x1, . . . , xq

)



Here’s how we estimate ∇EI

• Y=[f(x1),...,f(xq)]’ is multivariate normal.

• Y’s mean vector m and covariance matrix C 
depend on x1,...,xq.

• Y=m+CZ, where Z is a vector of independent 
standard normals.

• EI(x1,...,xq) = E[h(Y)] for some function h.

• If our problem is well-behaved, then we can switch 
derivative and expectation:  
    ∇EI(x1,...,xq) = E[∇h(m+cZ)]



Here’s how we estimate ∇EI

• Y=[f(x1),...,f(xq)]’ is multivariate normal.

• Y’s mean vector m and covariance matrix C 
depend on x1,...,xq.

• Y=m+CZ, where Z is a vector of independent 
standard normals.

• EI(x1,...,xq) = E[h(Y)] for some function h.

• If our problem is well-behaved, then we can switch 
derivative and expectation:  
    ∇EI(x1,...,xq) = E[∇h(m+cZ)]

This is our gradient 
estimator, g(x1,...,xq,Z)



Our gradient estimator is unbiased,
given su�cient conditions

Theorem

Let
~
m(~x1, . . . ,~xq) and C (~x1, . . . ,~xq) be the mean vector and Cholesky

factor of the covariance matrix of (f (~x1), . . . , f (~xq)) under the posterior

distribution at time n. If the following conditions hold

~
m(·) and C (·) are three times continuously di↵erentiable in a

neighborhood of
~
x1, . . . ,~xq.

C (~x1, . . . ,~xq) has no duplicated rows.

then

—EI(~x1, . . . ,~xq) = En

h
g(~x1, . . . ,~xq,~Z )

i
.

Our gradient estimator is unbiased,  
given mild sufficient conditions



Example of Estimated GradientHere’s what ∇EI looks like



Estimating ∇EI can be 
parallelized on a GPU



We use this gradient estimator in 
multistart stochastic gradient ascentMultistart Stochastic Gradient Ascent

1 Select several starting points, uniformly at random.
2 From each starting point, iterate using the stochastic gradient

method until convergence.

(~x1, . . . ,~xq) (~x1, . . . ,~xq)+ang(~x1, . . . ,~xq,w),

where (an) is a stepsize sequence.
3 For each starting point, average the iterates to get an estimated

stationary point. (Polyak-Ruppert averaging)
4 Select the estimated stationary point with the best estimated value as

the solution.

x1

x 2
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The method works: 
adding parallelism improves performance

• q=1 (one thread) is also the EGO 
method of [Jones et al., 1998]

(2-dim) (6-dim)



The method works: it outperforms an 
approximation to the Bayes-optimal 

procedure on harder problems

• Constant Liar (CL) is a class of algorithms proposed by Chevalier & Ginsbourger 2013.

• CL-mix is the best CL algorithm.  

(6-dim)Easy problem Hard problem



With Yelp, we made a high-quality implementation of some of 
these methods, called MOE (Metrics Optimization Engine) With Yelp, we made a high-quality implementation, called
MOE (Metrics Optimization Engine)



MOE is open source



MOE has had impact  
at Yelp

When user is close, 
show distance.

When user is far, 
hide distance.

Also, tuning features used in ML-based prediction;  
choosing parameters for search and advertising. 

Example:  
Thresholds chosen by MOE determine when to 
show distance information in search results.



MOE has had impact  
at other companies that are / were / might be using MOE



MOE has had impact  
through the creation of this startup company



MOE has had impact  
through the creation of this startup company



Here’s what I’m learning about how to have impact  
from Yelp, SigOpt, and Uber

• Listen to people inside the organization  
to understand what their real problems are.

• Communicate your ideas clearly.

• Make your ideas easy to use.

• Do the first order thing quickly.

• Focus on being better than what was there before.

• Theoretical guarantees or optimality 
are not that helpful in convincing business people to use your ideas.



Thanks!   
Any Questions?

• This is joint work with:

Scott Clark  
Cornell PhD ’12 

Yelp, SigOpt  

Eric Liu 
Yelp 

Jialei Wang 
Cornell PhD 

student 
Yelp intern  

Deniz Oktay  
MIT undergraduate  

Yelp intern  

Norases 
Vesdapunt 

Stanford under-
graduate 

Yelp intern  



This q-EI method can be used in the noisy case, but it
loses its decision-theoretic motivation

We use Gaussian process regression with normally distributed noise.
The red line is the posterior mean, µn(x) = En[f (x)]
The largest posterior mean is µ⇤

n =maxi=1,...,n µn(~x (m)).
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We use EIn(~x1, . . . ,~xq) = En

⇥
(maxm=1,...,q µn+1(~xi )�µ⇤

n)
+⇤

This ignores that µn+1(x) 6= µn(x) for previously evaluated x .
A more principled approach is possible (e.g., generalize knowledge
gradient method to multiple evaluations), but we haven’t done it yet.



Fast and noisy is better 
than slow and exact  

(when q is bigger than 3 or 4)



Branin function, EI vs. n, q=4 Hartmann function, EI vs. n, q=4

Fast and noisy is better 
than slow and exact  

(when q is bigger than 3 or 4)



Branin function, EI vs. q, n=100 Hartmann function, EI vs. q, n=100

Fast and noisy is better 
than slow and exact  

(when q is bigger than 3 or 4)



Our procedure is only Bayes-
optimal for a single batch 

• If we do just one batch, then our 
procedure is Bayes-optimal.

• If we run many batches, starting each new 
batch after the previous one completes, 
then our procedure is not optimal.



Finding the Bayes-optimal  
multi-batch procedure  

is hard 

• The optimal procedure for N>1 batches is the 
solution to a partially observable Markov decision 
process (POMDP).

• This is well-understood theoretically,  
but hard computationally.

• The amount of memory required is 
exponential in d (the problem dimension),  
q (the batch size), and N (the number of 
batches). 



We have found Bayes-optimal multi-batch 
procedures for other related learning problems

• We have found Bayes-optimal multi-batch procedures,  
or upper bounds on their value, for related problems:

• multiple comparisons [Xie and F., 2013, Hu, F., Xie 2014] 

• stochastic root-finding [Waeber, F., Henderson 2013]

• ranking & selection (pure exploration MAB) [Xie and F., 
2013]

• information filtering [Zhao and F., 2014]

• object localization [Jedynak, F., Sznitman, 2012]


