Sequential Bayes-optimal Policies for Multiple Comparisons with a Control

Jing Xie and Peter I. Frazier

Operations Research & Information Engineering, Cornell University

Sunday November 13, 2011
Junior Faculty Interest Group (JFIG) Paper Competition
INFORMS Annual Meeting
Charlotte, NC
What is Multiple Comparisons with a Control?

- We have a stochastic simulator.
- Given a set of input parameters x, it provides a random sample $y(x)$.
- For which inputs x is $E[y(x)] > 0$?

In other words, find the level set of $x \mapsto E[f(x)]$.
We must allocate ambulances across 11 bases in the city of Edmonton. Which allocations satisfy mandated minimums for percentage of calls answered in time, under a variety of different possible call arrival rates?

Allocations of Ambulances to Bases

[Thanks to Shane Henderson and Matt Maxwell for providing the ambulance simulation]
A researcher who develops a new algorithm would like to know:

- In which problem settings is average-case performance better with Algorithm A than with Algorithm B?
Given Samples, Estimating the Level Set is Well-Understood
Given Samples, Estimating the Level Set is Well-Understood
If our simulator is complex and takes a long time to run, the number of samples we can take is limited.

This makes accurate MCC more difficult.

Where should we place our limited samples to estimate the level set as accurately as possible?

Our contribution: We provide an answer to this question with Bayes-optimal performance.
The Optimal Policy Puts Samples Where They Help Most
The Optimal Policy Puts Samples Where They Help Most

\[y(x) \]

\[x=1 \] \[x=10 \]
The Optimal Policy Puts Samples Where They Help Most
Mathematical Model

- We have alternatives $x = 1, \ldots, k$.
- Samples from alternative x are $\text{Normal}(\mu_x, \sigma_x^2)$.
- μ_x is unknown, while σ_x^2 is assumed known (can be relaxed).
- We have an independent normal Bayesian prior on each μ_x.
- Sampling continues until an external deadline requires it to stop.
- We assume this deadline is unknown and geometrically distributed.
- When sampling stops, we estimate the level set $\{x : \mu_x > 0\}$ based on the samples. The reward is the number of alternatives correctly classified.
A policy π is a rule for choosing where to sample next, based on previous observations.

Let R be the number of alternatives classified correctly when sampling stops.

$E^\pi[R|\vec{\mu}]$ is the performance under policy π and true mean vector $\vec{\mu}$.

$\int E^\pi[R|\vec{\mu}]P(d\vec{\mu}) = E^\pi[R]$ is the Bayes- or average-case performance.

We wish to find the policy that maximizes this.
Finding the Optimal Policy Means Solving a Dynamic Program

- We wish to find the policy π that solves:

$$\sup_\pi \mathbb{E}^\pi [R]$$

- The solution is characterized theoretically via dynamic programming.
- The *curse of dimensionality* usually makes computing the solution to such dynamic programs intractable.
We Rewrite the Problem as a Bandit Problem

- The expected reward is the expected number of alternatives correctly classified at the end.
- We decompose this expected reward into an infinite sum of discounted expected one-step rewards

\[\mathbb{E}^{\pi}[R] = R_0 + \mathbb{E}^{\pi} \left[\sum_{n=1}^{\infty} \alpha^{n-1} R_n \right]. \]

Here,
- \(\alpha \) is the parameter of the geometric distribution of the deadline.
- \(R_0 \) is the expected reward if we stop after taking no samples.
- \(R_n \) is the expected one-step improvement, due to sampling, of the probability of correctly classifying the alternative sampled.
We Can Compute the Optimal Policy

- Written in this way, the problem becomes a **multi-armed bandit** problem.
- (Gittins & Jones 1974) shows the optimal solution is

\[
\arg \max_x \nu_x(S_{nx}),
\]

where \(S_{nx} \) is a parameterization of the Bayesian posterior on \(\mu_x \).

- The Gittins index \(\nu_x(\cdot) \) is defined in terms of a single-alternative version of the problem

\[
\nu_x(s) = \sup_{\tau > 0} \mathbb{E} \left[\frac{\sum_{n=1}^{\tau} \alpha^{n-1} R_n}{\sum_{n=1}^{\tau} \alpha^{n-1}} \bigg| S_{0x} = s, x_1 = \cdots = x_\tau = x \right].
\]

- We can compute Gittins indices efficiently because the single-alternative problem is much smaller than the full DP.
The Optimal Policy Improves Accuracy in Ambulance Positioning

PE = pure exploration (sample at random);

MV = max variance (equal allocation);

OPT = optimal policy.

Time ↓
Conclusion: The Optimal Policy Saves Time

- The **Multiple Comparisons with a Control** problem appears in many different simulation applications.
- **We found the optimal method** for deciding where to sample.
- This allows accurately characterizing level sets more quickly and with fewer simulation samples.
Thank You

Any questions?
Much of the literature on this topic has focused on providing non-Bayesian statistical guarantees on accuracy.

- One-stage policies: Tukey 1953, …
- Two-stage policies: Dudewicz and Ramberg 1972, …

We focus on sampling sequentially in a Bayes-optimal way.