Optimal Sequential Experimental Design for Stochastic Root-finding in Drug Development

Peter I. Frazier1 Zachary Owen1 Rodrigo C. Bicalho2
Thiago M.A. Santos2 André G.V. Teixera 2

1School of Operations Research & Information Engineering, Cornell University
2College of Veterinary Medicine, Cornell University

Tuesday June 21, 2011
INFORMS Healthcare Conference
Montreal, Quebec

Research supported by the Atkinson Center for a Sustainable Future
The Disease: Metritis

- Metritis is a bacterial infection of the uterus.
 - It is a leading cause of loss of milk production and fertility in dairy cows.
 - It also occurs in other animals and people.
- The treatments developed may also be useful for other problematic bacterial infections, in both animals and people (e.g. MRSA).
Metritis is caused primarily by *E. coli* and *A. pyogenes* bacteria.

Antibiotics are used to treat metritis in sick cows.

Antibiotics are also given to well cows as a preventative measure.

Causes to be concerned about the indiscriminate use of broad-spectrum antibiotics:

1. Bacteria develop *resistance to antibiotics* if they are used too widely.
2. Releasing large quantities of antibiotics into the environment via farm effluent may have negative *environmental effects*.
An Alternative Treatment: Bacteriophages

- Bacteriophages (abbreviated phages) are viruses that kill bacteria.
- Can we treat bacterial infections with phages instead of antibiotics?
Bacteriophage-based Treatments: Advantages

- **Reduced risk of **bacterial resistance
 - Phages are a new type of treatment.
 - Each phage would be used against a few bacteria, limiting its use.
 - Increasing the number of available treatments, and limiting their use, mitigates the problem of bacterial resistance.

- **Reduced environmental impact:**
 - Each phage kills a few very specific strains of bacteria, and nothing else. In contrast, each type of antibiotic kills a wide variety of bacteria.
 - Phages already exist naturally at dairy farms.
Specificity and Cocktails

- **Specificity:**
 - Each phage kills only a few very specific strains of bacteria.
 - An infection could be caused by any one of a number of strains of bacteria.
 - An effective treatment must then be a cocktail of phages that will be effective against each common metritis-causing strains of bacteria.
- **A cocktail** is a collection of phages.
 - We also specify a concentration (# phages/mL) for each phage in the cocktail.
A cocktail is a collection of phages, with a concentration specified for each phage.

Production costs
- A cocktail is cheaper to produce if it contains few phages.
- A cocktail is cheaper to produce if the concentrations are small.

What is the cheapest cocktail that kills all targeted bacteria?
The Matrix

Given many lab experiments (**600 days of experiments**), we could create a matrix like the one above, but with accurate values.

The color in each cell would give the minimum concentration of that phage needed to kill that bacteria.

- Red cells: the phage kills the bacteria at very low concentrations.
- White cells: the phage kills the bacteria at high concentrations.
- Gray cells: the phage does not kill the bacteria at any concentration.
The Matrix

- With this matrix, we could find the cheapest cocktail that kills every bacteria.
 - (Actually, a partially filled matrix would be sufficient — This is a subject of ongoing work)
 - The matrix is also of independent scientific interest.
- The goal of this talk is to develop an efficient method to create this matrix.
Problem: Given a phage and a bacteria, find the **minimal** concentration of the phage that kills the bacteria.

Each experiment is time consuming (1 day), so we should **use as few experiments as possible** (< 10 experiments).

We act **sequentially**, basing each new experiment on previous results. (Experiments are done in batches of 96 per day. To allow sequential decision-making, we consider 96 phage-bacteria pairs simultaneously.)
The standard approach is stochastic approximation [Robbins and Monro, 1951].

This approach requires many (20 or more) samples to be reliable.

We can afford < 10 samples per phage-bacteria pair.

We use methods from sequential Bayesian experimental design.
Stochastic Root-Finding: Motivation

Motivation for our approach:

- We think of $z = \text{sgn}(y)$ as a noisy bit indicating whether x_* is left or right of x_n.
- When $|y|$ is big, this bit is more likely to be correct.
Stochastic Root-Finding: Mathematical Model

- \(f : \mathbb{R} \mapsto \mathbb{R} \) is a decreasing function, with root \(x_\ast \), so \(f(x_\ast) = 0 \).
- When we measure \(x_n \) we see a direction \(z_n \in \{-1, +1\} \) and a probability \(r_n \).
- The true direction, \(\text{sgn}(x_n - x_\ast) \), is equal to \(z_n \) with probability \(r_n \). (Nature gives the right direction with probability \(r_n \)).
- We choose each \(x_n \) given the available information, \((x_m, z_m, r_m), m < n \).
- Central Question: Given a budget of \(N \) measurements, \(x_1, \ldots, x_N \), how should we place them to find \(x_\ast \) as accurately as possible?
Posterior Distributions

- Place a prior density p_0 on the root x^*, e.g., uniform on $[0, 1]$.
- Each measurement x_n produces a new posterior density p_n on x^*:

$$p_n(x) = \mathbb{P}\{X^* \in dx \mid x_{1:n}, z_{1:n}, r_{1:n}\}$$
Posterior Distributions
One measure of success is the entropy of the final posterior distribution,

\[H(p_N) = - \int p_N(x) \log p_N(x) \, dx. \]

A policy \(\pi \) is a method for choosing the next experiment based on the results so far.

The optimal policy \(\pi^* \) is the solution to the stochastic optimization problem

\[\inf_{\pi} \mathbb{E}^\pi [H(p_N)], \]

Given a very large computer, we could compute \(\pi^* \) by dynamic programming.
Bayes Optimality

Theorem

If r_n is chosen independently, and its distribution does not depend on x_n, then the policy that chooses x_n at the median of p_n is the Bayes optimal fully sequential policy for the entropy loss function.

- The assumption on r_n is not met in our application, but the policy can still be used here.
- This policy was introduced by [Horstein, 1963], and is called probabilistic bisection.
- For r_n constant, the proof is due to [Waeber, Frazier, Henderson 2011]. For more general r_n, the proof follows [Jedynak, Frazier, Sznitman 2011].
In practice we observe y_n, not r_n.

One can use training data to fit a parametric statistical model,

$$r_n \approx g(y_n, \beta),$$

where β is one or more parameters to be fit.

In experimental results to be shown later, we use $g(y, \beta) = \Phi(\beta | y|)$,

$$r_n \approx \Phi(\beta | y_n|).$$

For applications allowing more measurements, we could include the whole history $x_{1:n}, y_{1:n}$ into the fit to obtain asymptotically consistent estimates of r_n,

$$r_n \approx g(x_{1:n}, y_{1:n}, \beta),$$

Open question: Would the resulting procedure provide an asymptotically consistent estimator of x_*?
Example

Posterior Density $p_n(x)$
Example

Posterior Density $p_n(x)$

$0 \leq x \leq 1$

$x(1)$

$n=1$
Example
Posterior Density $p_n(x)$

$x(3)$

$n=3$
Example

Posterior Density $p_n(x)$
Example

Posterior Density $p_n(x)$

$x(5)$ $n=5$
Caveat: graph presents initial results based on a small amount of experimental data.

These results suggest we can use 3 experiments per phage-bacteria pair instead of 6 (currently used), and get better accuracy.

This would reduce the time required to **300 days** down from **600**.
Ongoing work: Bayesian global optimization

- We can use structure in the phage-bacteria matrix for prediction.
 - We use low rank matrix approximation, as in collaborative filtering.
 - Results so far suggest that bacteria and phages are described by a small number of features.
- Finding a good cocktail with as few measurements as possible is a Bayesian global optimization problem.
 - We do not need to evaluate every cell in the matrix to find a good cocktail.
 - We are planning to use methods based on the value of information, e.g., knowledge-gradient methods, or expected improvement methods.
Conclusion

- We are using fully sequential Bayesian learning methods to make drug development for bacteriophage-based therapies faster, cheaper, and more likely to succeed.
- **Dynamic programming** is an excellent tool for analyzing and developing these methods.
- **Ongoing work** in implementing this approach, analysis of the algorithm, and in Bayesian global optimization.

We gratefully acknowledge support from the Atkinson Center for a Sustainable Future.
References

Thank you for coming!