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Ranking and Selection for Discrete Event Simulation

We have a large discrete event simulator with which we can estimate
the consequences of a future real-world decision. For example:

Designs of a queuing network.
Inventory policies for a supply chain.
Pricing strategies for a revenue management problem.
. . .

We would to find a real-world decision that will work well, according
to the simulator.

Our simulator requires significant time to accurately characterize a
decision, and we do not have enough time to do so for each one.

Question: which real-world decisions should we simulate, and how
accurately?



Ranking & Selection (R&S)

We have M alternatives.

Each alternative has a true value, θx , which is unknown.

We may sample alternative x and get a noisy observation of θx ,

y ∼ Normal(θx ,λx),

where we suppose the measurement variance λx is known.

We wish to decide which alternatives to sample in order to most
efficiently find arg maxx θx .

Sampling is expensive. The central question is how to sample most
efficiently.



Bayesian Ranking & Selection

In the Bayesian formulation, we have a prior or posterior belief on θ .

In simulation, this belief is often the posterior resulting from a first
stage of measurements.

Let ni be the number of measurements to take from alternative i , and
let n = (n1, . . . ,nM).

Let Y be the set of observations resulting from these measurements.

The value of this set of measurements n is

v(n) = E
[

max
i

E[θi | Y,n] | n
]
−max

i
µi .



The Value of Information

One would generally like to find

maxv(n)

subject to nx ≥ 0, ∑
x

nx ≤ N,

where N is a budget constraint.

We may also have an integrality constraint on nx .

Two approximation approaches are given in:

LL(B) [Chick & Inoue 2001].
OCBA for linear loss [He Chick Chen 2007].



Non-concavity of the value of information

v is usually not concave.

Non-concavity causes non-intuitive behavior by the optimal allocation.

Non-concavity has consequenes for allocation heuristics.

It is known that there are many cases outside of ranking & selection
for which the value of information is not concave in the amount of
information collected (see, e.g., [Howard 1966, 1988]).



Measuring One Alternative

Plot shows the value v(nxex) of measuring only alternative x as a function
of how many times it is measured. The measurement variance is λx = 100.
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Measuring One Alternative

Let ∆x = |µx −maxx ′ 6=x µx ′ |.

Theorem

nx 7→ v(nxex) is convex on (0,n∗x ] and concave on (n∗x ,∞), where

n∗x =
λx

8σ4
x

[
∆2

x −σ
2
x +

√
∆4

x + 14σ2
x ∆2

x + σ4
x

]
.

Corollary

If ∆x = 0, then nx 7→ v(nxex) is concave on R++.

The amount of non-concavity is increasing in ∆x and λx .



Homogeneous Case

Consider the homogeneous case, in which

We have M alternatives
µ1 = . . . = µM .
σ2

1 = . . . = σ2
M .

We might expect that the optimal allocation measures each
alternative the same number of times... but this is not true.



Homogeneous Case

Consider the homogeneous case, in which

We have M alternatives
µ1 = . . . = µM .
σ2

1 = . . . = σ2
M .

We might expect that the optimal allocation measures each
alternative the same number of times... but this is not true.

It may be better to randomly ignore some alternatives, and spread our
budget over those that remain.



Homogeneous Case

N = M = 100.
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Homogeneous Case

N = M = 100.
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Homogeneous Case

N = M = 100.
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Homogeneous Case

N = M = 100.
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Implications for myopic policies for sequential allocation

Now consider the fully sequential problem, where we choose each
measurement based on all previous measurements.

Let µn
x = Enθx be the posterior mean of our belief about θx .

xn+1 is the alternative to measure at time n + 1, and depends upon all
observations up to time n.

The non-concavity of information has consquences for fully sequential
policies as well.



Knowledge-Gradient Policy

The knowledge-gradient policy (introduced as the (R1,. . . ,R1) policy in
[Gupta & Miescke 1996]) is defined to be the policy that chooses the xn+1

with the largest value of information.

xn+1 ∈ arg max
x

v(ex)

= arg max
x

En

[
max

i
µ

n+1
i | xn+1 = x

]
−max

i
µ

n
i .

This choice of xn+1 is optimal if N = n + 1.

µn
i is the expected value of i given our information at time n.

maxi µn
i is the best we can do given what we know at n.

maxi µ
n+1
i is the best we will be able to do given what we know at n

and what we learn from our measurement xn+1.



Knowledge-Gradient Policy

The KG policy is a reasonably good policy.
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Histograms show difference in value between KG and other competing
policies across 100 randomly generated priors.
Bars to the right of 0 are priors for which KG performed better.



Knowledge-Gradient Policy

We will take more than one samples, but v(ex) and the KG policy ignore
this. This can cause a problem.
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The blue alternative has ∆x = 1, σx = 1.1, λx = 10.
The red alternative has ∆x = 0, σx = 0.003, λx = 10.
The blue alternative is clearly better to measure, as long as N > 1.
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KG(*) Policy

We propose the KG(*) policy, which chooses

xn+1 ∈ arg max
m∈[1,N−n]

v(mex)/m.

v(mex)/m is the average value per measurement when performing
m measurements of x .
maxm∈[1,N−n] v(mex)/m is the best possible average value per
measurement when measuring x .
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Example

µ = [0,0,−1], σ2 = [0,10−4,2].
KG measures alternative 2, while KG(*) measures alternative 3.
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KG(*) Policy

Proposition

m 7→ v(mex)/m is strictly unimodal over R++ and its unique maximum
m∗ satisfies m ≤m∗ ≤m, where

m =
λx

4σ2
x

(
−1 + r +

√
1 + 6r + r2

)
,

m =
λx

4σ2
x

(
1 + r +

√
1 + 10r + r2

)
,

and where r = ∆2
x/σ2

x .

The KG(*) policy requires calculating arg maxm∈[1,N−n] v(mex)/m.

We approximate this by (m + m)/2, truncated above by N−n and
below by 1.



Thank You

Any questions?


