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Abstract

Motivated by applications in e-retail and online advertising, we study the problem of

assortment optimization under visibility constraints, that we refer to as APV. We are given

a universe of substitutable products and a stream of T customers. The objective is to

determine the optimal assortment of products to offer to each customer in order to maximize

the total expected revenue, subject to the constraint that each product is required to be

shown to a minimum number of customers. The minimum display requirement for each

product is given exogenously and we refer to these constraints as visibility constraints. We

assume that customer choices follow a Multinomial Logit model (MNL).

We provide a characterization of the structure of the optimal assortments and present an

efficient polynomial time algorithm for solving APV. To accomplish this, we introduce a novel

function called the “expanded revenue” of an assortment and establish its supermodularity.

Our algorithm takes advantage of this structural property. Additionally, we demonstrate

that APV can be formulated as a compact linear program. Next, we consider APV with

cardinality constraints, which we prove to be strongly NP-hard and not admitting a Fully

Polynomial Time Approximation Scheme (FPTAS), even in the special case where all the

products have identical prices. Subsequently, we devise a Polynomial Time Approximation

Scheme (PTAS) for APV under cardinality constraints with identical prices. Our algorithm

starts by linearizing the objective function through a carefully crafted guessing procedure,

then solves the linearized program, and finally randomly rounds the obtained solution to

derive a near optimal solution for APV with cardinality constraints. We also examine the

revenue loss resulting from the enforcement of visibility constraints, comparing it to the

unconstrained version of the problem. To offset this loss, we propose a novel strategy to

distribute the loss among the products subject to visibility constraints. Each vendor is

charged an amount proportional to their product’s contribution to the revenue loss. Finally,

we present the results of our numerical experiments providing illustration of the obtained

outcomes.
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1 Introduction

Assortment optimization is a crucial aspect of decision making in many industries such as e-

retail and online advertising. In this domain, our goal is to select a subset of available products

to offer to customers in order to maximize a context-appropriate objective function, such as

revenue, profit, or market share. For example, e-retailers seek to strategically select which

products should be displayed to customers in order to maximize their expected revenue. Online

advertisers strategically select the most effective combination of advertisements to maximize

user engagement and desired outcomes, such as click-through rates. Consequently, the choice

of a well formed assortment is crucial due to inherent substitution effects, where a product’s

attractiveness depend not only on its intrinsic value but also on the concurrent alternatives

presented at that time. For instance, offering a high-quality, high-priced product alongside

a comparable product at a significantly lower price may result in diminishing sales for the

higher-priced product, leading in turn to an unsatisfactory platform revenue. This highlights

the importance of carefully selecting assortments.

Traditionally, assortment optimization frameworks often overlook a crucial element in con-

temporary e-commerce: product visibility. In today’s complex business landscape, where com-

panies adhere to Service-Level Agreements (SLAs) with suppliers and prioritize sponsored prod-

uct promotion, product visibility within an assortment is pivotal. SLAs often define conditions

for product representation, ensuring equitable visibility for each supplier’s products on the plat-

form. Moreover, the concept of sponsored products has gained traction, with brands willing to

pay for prominent display and increased visibility. While these strategies influence consumer

behavior, solely focusing on products visibility without considering broader assortment opti-

mization can lead to an imbalanced product mix, resulting in reduced customer satisfaction

and overall revenue.

In this paper, we introduce the notion of visibility constraints in the context of Assortment

Optimization. The purpose is to enforce a minimum display of each product, i.e., each product

has to be shown at least a certain number of times in the displayed assortments. This constraint

models both Service-Level Agreements and sponsored products. It can also capture the settings

where the platform would like to ensure some fairness notion among vendors by ensuring that

each product is given a “fair” chance, i.e., it is shown at least to a certain number of customers.

Specifically, we are given a universe of substitutable products and a stream of T customers. For

each customer, we have to offer an assortment from the universe of products. The customer

decides to purchase one of these products, or to leave without purchasing any product (no-

purchase option). We assume that the choice of the customer is governed by a Multinomial

Logit (MNL) choice model. We enforce the constraint that each product in the universe has to

be shown a minimum number of times among the T assortments offered. The minimum display

requirement for each product is given exogenously. Our objective is to maximize the total

expected revenue from the T customers. We refer to this combinatorial optimization problem

as Assortment optimization Problem with Visibility constraints, concisely denoted as APV.

A first natural question concerns the complexity of APV. In fact, without visibility con-

straints, the problem reduces to the classic unconstrained revenue maximization problem under

MNL, for which we know that the optimal assortment is revenue-ordered (Talluri and Van Ryzin
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(2004)) and therefore can be solved in polynomial time. However, by enforcing the visibility

constraints, we might have to include certain products in the assortment that cannibalize the

sales of other more profitable products because of the substitution effect. Consequently, deter-

mining an optimal sequence of assortments for APV is not immediately clear. Subsequently, a

natural follow-up problem concerns the introduction of cardinality constraints on the offered as-

sortments of products. These form of constraints are widely used in the literature (Davis et al.,

2013; Gallego and Topaloglu, 2014; Désir et al., 2020), as they model multiple applications

where vendors have limited shelf space, or limited screen size for online vendors. Finally, an

interesting question emerging from the visibility problem is the task of quantifying the revenue

loss incurred by enforcing visibility constraints compared to the relaxed unconstrained problem.

This challenge compels us to develop a pricing strategy that appropriately apportions the loss

to different vendors based on the impact of their product on the overall revenue. Such a scenario

frequently occurs within the framework of SLAs. Typically, a contract between a platform and

a vendor includes a clause that guarantees a certain level of visibility to the vendor’s product.

In return for this visibility, the vendor compensates the platform with a fee.

1.1 Main Contributions and Technical Ideas

In this paper, we introduce and study the assortment optimization problem with visibility con-

straints under the Multinomial Logit choice model. Our first goal is to settle the complexity

question on the positive side by developing a polynomial time algorithm for APV. Next, we

consider a natural extension of this problem, where a cardinality constraint on the offered

assortment is enforced. We show that this additional constraints makes the problem fundamen-

tally harder, rendering it strongly NP-hard, even in the special case where all the products have

identical prices. Additionally, we leverage the NP-Hardness to prove that the existence of a Fully

Polynomial Time Approximation Scheme (FPTAS) is precluded. Following this assessment on

the hardness of the problem, we design a Polynomial Time Approximation Scheme (PTAS)

for the special case of equal prices. A subsequent goal is to quantify the revenue loss caused

by the visibility constraints compared to the unconstrained assortment optimization problem

and design a strategy to share this loss among the different vendors of the products for which

visibility constraints have been enforced. Our contributions are organized and summarized as

follows.

1. Polynomial time algorithm for APV. Our main technical contribution is to design a

polynomial time algorithm for APV. We introduce the notion of expanded revenue and

expanded set of an assortment, which will play a pivotal role in designing our algorithm.

We leverage structural properties of the expanded revenue function to characterize the

structure of an optimal solution of APV, and consequently design an efficient algorithm

to compute it.

(a) Expanded Revenue. In Section 3.1, we introduce the expanded revenue function.

Given a universe of products N and an assortment A ⊆ N . The expanded revenue

of assortment A is defined as the maximum revenue of any assortment in N that
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contains A. The expanded set is the assortment that achieves this maximum rev-

enue. We show that the expanded revenue function is closely related to the objective

function of APV in the case of a single customer. We provide a linear time algorithm

to compute the expanded revenue.

(b) Monotonicity and supermodularity1 of the expanded revenue. We show that

the expanded revenue, as defined above, possesses some useful properties. Namely,

we prove in Lemma 3.4 a monotonicity property, i.e., we show that the expanded

revenue of an assortment decreases as the assortment gets large. Then, in Lemma

3.5, we prove the main theoretical result on which our final algorithm relies: the

supermodularity of the expanded revenue function.

(c) Our algorithm and LP formulation. Building on the previous properties of the

expanded revenue, we finally identify in Theorem 3.7 a very simple nested structure

for an optimal solution of APV, and devise a polynomial time algorithm to efficiently

solve the problem. Additionally, we demonstrate in Theorem 3.9 that APV can be

formulated as a compact linear program.

2. APV with cardinality constraints. We consider in Section 4 the natural extension of

APV where there is an upper bound on the number of products that we can display in

each assortment.

(a) Hardness. In Theorem 4.1, we prove that APV with cardinality constraints is

strongly NP-hard, even in the case of equal prices, by linking its resolution to the

3-PARTITION decision problem. Moreover, we extend our proof to show that the

existence of an FPTAS is precluded for this problem, unless P = NP .

(b) Polynomial-time approximation scheme (PTAS). Our cornerstone algorithmic

result in the case of equal prices is the design of a polynomial-time approximation

scheme (PTAS), which for any fixed desired precision, returns a sequence of assort-

ments within that degree of precision, in polynomial time. Since the strong NP-

hardness rules out the existence of a Fully Polynomial Time Approximation Scheme

(FPTAS), unless P = NP , a PTAS is the best approximation algorithm we can

achieve. Our PTAS relies on a linearization of the objective function through the

guessing of a carefully chosen set of parameters of the problem. Then, we solve

the relaxed linear program, and we leverage its solution to compute a random ap-

proximate (integer) solution for the linearized problem, using a dependent rounding

scheme. This rounded solution is subsequently shown to be, in expectation, near

optimal for APV with cardinality constraints.

3. Price of visibility. The introduction of visibility constraints results in a reduction in the

total expected revenue compared to the unconstrained version of the assortment problem.

Therefore, we aim to evaluate this revenue loss and propose a fair strategy for distributing

it among vendors based on their respective contributions to the loss.

1A function f : Ω → R is supermodular if ∀A,B ∈ Ω, f(A ∪B) + f(A ∩B) ≥ f(A) + f(B).
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(a) Pricing the loss. We devise in Section 5.2, a pricing strategy as follows: For each

product that negatively impacts the overall revenue, we charge the vendor a fraction

of the loss proportional to the ratio between the negative contribution of the product

and the sum of the negative contributions of all products. We demonstrate that this

strategy satisfies natural fairness properties and exhibits favorable computational

tractability.

(b) Numerical experiments. Additionally, we conduct in Section 5.3 some numer-

ical experiments to illustrate our findings. We analyze the influence of visibility

constraints on expected revenue and sales, examine the individual effect of a single

product’s visibility constraint, and explore the trade-off between revenue and fees.

Moreover, we show how our pricing strategy accurately captures the revenue loss

attributed to the products made visible.

1.2 Related Literature

Assortment optimization under the Multinomial Logit (MNL) model is a well-established prob-

lem in scientific literature. Initially introduced by Luce (1959), with subsequent works by

McFadden (1973) and Hausman and McFadden (1984), the MNL choice model has gained pop-

ularity for modeling customer choices due to its simplicity in computing the choice probabilities,

its predictive power and its computational tractability compared to more complex choice models.

It has been extensively used in various research works such as Mahajan and Van Ryzin (2001);

Talluri and Van Ryzin (2004); El Housni and Topaloglu (2022); Sumida et al. (2021); Gao et al.

(2021); El Housni et al. (2023), to mention a few. The MNL model proves particularly useful in

assortment optimization, as demonstrated by Talluri and Van Ryzin (2004), who showed that

under the MNL model, the optimal assortment in the unconstrained setting is revenue-ordered.

This means that it contains all products whose revenues exceed a certain threshold, simplifying

the optimization problem by avoiding the consideration of exponentially numerous potential

subsets. Moreover, Gallego et al. (2015) give a linear programming formulation for the uncon-

strained assortment problem under MNL. Rusmevichientong et al. (2010) solved the version of

the problem with a cardinality constraint, proving it is still solvable in polynomial time, and

Désir et al. (2022) studied more general capacity constraints, showing it is NP-hard to solve

in the general case. Sumida et al. (2021) and Davis et al. (2013) studied totally unimodular

constraint structures for the assortment and showed that the resulting problem can be refor-

mulated as a linear program. However, when considering mixtures of MNL models (MMNL),

the assortment optimization problem becomes NP-hard even in the unconstrained setting with

two classes of customers as shown in Rusmevichientong et al. (2014).

To the best of our knowledge, this paper is the first to study assortment optimization under

MNL with visibility constraints. The topic of visibility in assortment planning has barely

been covered: Chen et al. (2022) studied visibility under a fairness approach, trying to enforce

similar visibility for products with similar characteristics, while Wang et al. (2021) studied a

version of the assortment optimization problem in which they can increase the attractiveness

of some products through an advertising budget. Recently, in a concurrent work, Lu et al.

(2023) considers an assortment optimization problem under the MNL model, subject to some
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fairness constraints similar to the visibility constraints presented in our paper. In contrast to

our model, which is deterministic and involves a predetermined number of customers, their

study investigates a probabilistic version with a single customer, where random assortments

can be offered. This probabilistic version is less complex than our framework. For instance, we

establish that our model with cardinality constraints is strongly NP-hard and does not admit an

FPTAS, whereas their probabilistic model does admit an FPTAS under cardinality constraints.

Hence, the need for different optimization techniques and approaches.

In addition, the topic of assortment optimization for a stream of customers is more often

studied from an online perspective, where decisions are made sequentially such as in Davis

et al. (2015) and Cheung and Simchi-Levi (2017). In contrast, we study a static version of

the problem, where we plan the entirety of our assortments in advance. Other versions of the

problem, such as in Li (2009), consider a flow of customers with randomized preferences, to

which we offer a common assortment. Finally, in revenue management, pricing problems are

often considered in the sense of optimizing the selling price of each product (Wang, 2012; Miao

and Chao, 2021; Alptekinoğlu and Semple, 2016), while selling prices are fixed for our problem,

and we instead study the question of pricing the loss generated by enforcing visibility of each

product.

Outline. The remainder of the paper is organized as follows. We first introduce the mathe-

matical framework and define our problem APV in Section 2. Then, in Section 3, we devise a

polynomial time algorithm for the APV problem. In Section 4, we consider APV with cardinality

constraints. We show that adding these constraints makes the problem strongly NP-hard even

in a setting with identical prices, then we provide a PTAS for the latter setting. In Section 5, we

propose a pricing strategy to charge the revenue loss to the vendors proportionally to their con-

tribution, and illustrate our results numerically. Finally, in Section 6, we draw some conclusions

and outline future work.

2 Model Formulation

The MNL choice model. Let N := {1, . . . , n} be a universe of substitutable products at

our disposal. Each product i ∈ N has a price pi ≥ 0. Without loss of generality, we order the

products by non-increasing prices, i.e., p1 ≥ p2 ≥ . . . ≥ pn. An assortment of products or an

offer set, is simply a subset of products S ⊆ N . Additionally, the option of not selecting any

product is symbolically represented as product 0, and referred to it as the no-purchase option.

We assume that customers make choices according to a Multinomial Logit model. Under

this model, each product i ∈ N is associated with a preference weight vi > 0. Note that vi

captures the attractiveness of product i, meaning a high preference weight indicates a high

popularity. Without loss of generality, we use the standard convention that the no-purchase

preference weight is normalized to v0 = 1. We use the notation V (S) :=
∑

i∈S vi, which is the

total weight of a subset S ⊆ N . Under the MNL model, if we offer an assortment S ⊆ N , the

customer chooses product i with probability

ϕ(i, S) :=
vi

1 + V (S)
.
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We refer to ϕ(i, S) as the choice probability of product i given assortment S. Alternatively,

the customer may decide to not purchase any product, which happens with the complementary

probability

ϕ(0, S) :=
1

1 + V (S)
.

Let R(S) be the expected revenue we get from a customer if we offer assortment S. In particular,

we have

R(S) :=
∑
i∈S

piϕ(i, S) =

∑
i∈S pivi

1 +
∑

i∈S vi
.

Assortment Optimization with Visibility constraints. We are presented with a finite

stream of T customers. Each customer t will be offered an assortment St. Customers make

choices according to the same MNL model, i.e., a customer decides to purchase product i from

assortment St with a probability ϕ(i, St), or they may choose the no-purchase option with

probability ϕ(0, St). The expected revenue we obtain from customer t is R(St). To ensure

visibility, we impose constraints that require each product i ∈ N to be shown to at least ℓi

customers. Note that the parameters ℓi are exogenous and satisfy ℓi ∈ {0, . . . , T} for all i ∈ N .

Our objective is to determine the assortment St to offer to each customer t in order to maximize

the total expected revenue while satisfying the visibility constraints. We refer to this problem

as the Assortment optimization Problem with Visibility constraints (APV). It can be formulated

as follows:

max
S1,...,ST⊆N

T∑
t=1

R(St)

s.t.

T∑
t=1

1(i ∈ St) ≥ ℓi, ∀i ∈ N .

(APV)

3 Polynomial Time Algorithm for APV

The primary contribution of this paper is the development of a polynomial time algorithm for

APV. To achieve this, we introduce in Section 3.1 the concepts of the “Expanded Revenue”

and “Expanded Set” of an assortment. In Section 3.2, we present a polynomial time algorithm

to compute the expanded set and expanded revenue and demonstrate the monotonicity and

supermodularity of the expanded revenue function. Leveraging these properties, we characterize

the structure of an optimal solution for APV and present an algorithm that computes it in

O(n+T ) time (Section 3.3). Finally, in Section 3.4, we demonstrate that APV can be formulated

as a compact linear program.

3.1 Expanded Revenue and Expanded Set

We begin our analysis by examining APV in the context of a single customer. In this particular

scenario, the visibility constraints are given such that either ℓi = 0 or ℓi = 1. Let A denote

the subset of all products where ℓi = 1. Consequently, APV is transformed into the problem of

identifying the assortment that maximizes revenue while including A. This particular problem
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will serve as the building block for our analysis, as it lays the foundation for understanding the

general case involving T customers. Thus, it leads us to introduce the subsequent definitions

that will aid us in our analysis.

Definition 3.1 (Expanded revenue). Let A ⊆ N . The expanded revenue of A, denoted

as R(A), is defined as the maximum expected revenue achieved by any assortment in N that

contains A. In particular, it is given by

R(A) := max
S⊆N , A⊆S

R(S). (1)

The optimal solution of the maximization problem in (1) is referred to as the expanded set

of A. In case multiple optimal solutions exist, we break ties by selecting the optimal assortment

with the largest cardinality, which we show is unique in Lemma 3.3, hence proving that the

expanded set is well defined. Formally, we have the following definition.

Definition 3.2 (Expanded set). The expanded set of A, denoted as A, is defined as the

assortment within N that maximizes the expected revenue among all assortments containing

A. If multiple assortments achieve the same maximum expected revenue, A is selected as the

assortment with the largest cardinality. Mathematically, A is given by

A := argmax
S⊆N , A⊆S

{
|S| : R(S) = R(A)

}
.

Problem (1) can be viewed as equivalent to APV when considering a single customer scenario

(T = 1) and defining A as the set of products that need to be shown once, i.e., A = {i ∈ N : ℓi =

1}. Thus, A represents the optimal assortment, with the largest cardinality, for the problem.

In our analysis, we consider R as a set function that takes an assortment A ⊆ N as input

and returns R(A). Note that R(A) = R(A). In the subsequent section, we delve into examining

various properties of this function, as well as properties associated with the expanded set.

3.2 Properties of the Expanded Revenue

In this section, we first show that we can compute the expanded revenue and the expanded

set of a given assortment in polynomial time (Lemma 3.3). Then, we show that the expanded

revenue is a non-increasing function and the expanded set is a non-decreasing function (Lemma

3.4). Finally, we show that the expanded revenue function is supermodular (Lemma 3.5) which

is the most fundamental property for our algorithm design later in the paper.

Computing the expanded revenue and expanded set. Recall without loss of generality

that p1 ≥ . . . ≥ pn. We define an assortment S to be price-ordered if S = {1, . . . , k} for some

1 ≤ k ≤ n. Essentially, a price-ordered assortment prioritizes products with high prices. It

is worth noting there are only n possible price-ordered assortments. Consider an assortment

A ⊆ N , and its expanded set A. In the following lemma, we demonstrate that A is the union

of A and a price-ordered assortment. Since there are only n possible price-ordered assortments,

it is sufficient to compute the expected revenue of the assortments A ∪ {1, . . . , k} for each

k ∈ {1, . . . , n}. The expanded set corresponds to the assortment with the highest expected
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revenue. In the case of multiple assortments with the same maximum revenue, we break ties

by selecting the one with the largest cardinality. Thus, the expanded set A can be computed

in linear time, specifically O(n). The expanded revenue is simply R(A) = R(A). The proof of

Lemma 3.3 leverages some structural properties of the revenue function under MNL that are

presented in Appendix A.

Lemma 3.3. For any A ⊆ N , the expanded set of A is given by A = A ∪ {i ∈ N : pi ≥ R(A)}.
Furthermore, R(A) and A can be computed in time O(n).

Proof. By definition of the expanded set, we have A ⊆ A. Hence, there exists an assortment

B ⊆ N \A, such that A = A ∪B. Let us show that

B = {i ∈ N \A : pi ≥ R(A)}.

• Direct inclusion: Let i ∈ B, and assume by contradiction that pi < R(A) = R(A ∪ B).

It is known that, under the MNL model, when we add a product j to an assortment S,

the revenue of this assortment increases if and only of pj ≥ R(S). For completeness, we

provide the statement and the proof of this result in Lemma A.2 in Appendix A. Using

this lemma implies that removing i from B would strictly increase the expected revenue

R(A), which contradicts the optimality of A ∪B.

• Indirect inclusion: Let i ∈ N \A such that pi ≥ R(A), and assume by contradiction that

i /∈ B. By Lemma A.2, adding i to B would increase the revenue. If this increase is strict,

it contradicts the optimality of A ∪ B. If the revenue stays the same, it contradicts the

definition of A = A ∪B as the optimal solution with maximum cardinality.

Thus,

A = A ∪ {i ∈ N \A, pi ≥ R(A)}.

Finally, A can be computed in time O(n). Indeed, we start from A, then we sequentially add

elements by decreasing price. At each iteration, we can compute the new revenue from the

previous one in constant time by storing the current numerator and denominator, since we only

need to add pivi to the former and vi to the latter when we reach element i. Finally, we pick

the highest revenue set among the n computed sets.

Lemma 3.4 (Monotonicity). If A ⊆ B ⊆ N , then A ⊆ B and R(A) ≥ R(B).

Proof. For A ⊆ B ⊆ N , we have {S ⊆ N : B ⊆ S} ⊆ {S ⊆ N : A ⊆ S}. Therefore, every
feasible solution for maxS⊆N , B⊆S R(S) is a feasible solution for maxS⊆N , A⊆S R(S). Hence,

R(A) ≥ R(B). It follows that {i ∈ N , pi ≥ R(A)} ⊆ {i ∈ N , pi ≥ R(B)}, and therefore

A = A ∪ {i ∈ N , pi ≥ R(A)} ⊆ B ∪ {i ∈ N , pi ≥ R(B)} = B.

Lemma 3.5 (Supermodularity). The expanded revenue function R is supermodular, i.e.,

∀A,B ⊆ N , R(A ∪B) +R(A ∩B) ≥ R(A) +R(B).
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Proof for Lemma 3.5. In this proof, we use the following alternative definition of supermodu-

larity. A function f : Ω → R is supermodular if and only if for all A,B ⊆ Ω such that A ⊆ B,

and each i ∈ Ω \B, f(B ∪ {i})− f(B) ≥ f(A ∪ {i})− f(A).

Following this definition, let A,B ⊆ N such that A ⊆ B, and let i ∈ N \ B. The proof of

this result is separated into two steps. In the first step, we show that

R
(
B
)
−R

(
B ∪A ∪ {i}

)
≤ R

(
A
)
−R

(
A ∪ {i}

)
. (2)

Subsequently, we show in the second step that

R
(
B ∪A ∪ {i}

)
−R

(
B ∪ {i}

)
≤ 0. (3)

The result follows directly by summing the inequalities (2) and (3) term by term.

Step 1. Let us start with the following claim which follows from simple algebra.

Claim 3.6. For any assortment S1, S2 ⊆ N such that S1 ⊆ S2, we have

R(S1)−R(S2) =
1

1 + V (S2)
·
∑

j∈S2\S1

(R(S1)− pj) · vj .

Using this claim, we have

R
(
B
)
−R

(
B ∪A ∪ {i}

)
=

1

1 + V
(
B ∪A ∪ {i}

) ·
∑

j∈A∪{i}\B

(
R
(
B
)
− pj

)
vj .

Next, we know by definition of the extended set of B that R(B) ≥ pj for all j /∈ B. Therefore,

since V (B ∪A ∪ {i}) is trivially greater than or equal to V (A ∪ {i}), we have,

R
(
B
)
−R

(
B ∪A ∪ {i}

)
≤ 1

1 + V
(
A ∪ {i}

) ·
∑

j∈A∪{i}\B

(
R
(
B
)
− pj

)
vj

≤ 1

1 + V
(
A ∪ {i}

) ·
∑

j∈A∪{i}\B

(
R
(
A
)
− pj

)
vj , (4)

where the second inequality follows from Lemma 3.4. Finally, we have

A ∪ {i} \B ⊆ A ∪ {i} \A.

Moreover, for every j ∈ A ∪ {i} \A, j /∈ A, and in particular, pj ≤ R(A). Therefore, by adding

the missing terms to the sum in Equation (4), we have

R
(
B
)
−R

(
B ∪A ∪ {i}

)
≤ 1

1 + V
(
A ∪ {i}

) ·
∑

j∈A∪{i}\A

(
R
(
A
)
− pj

)
vj

= R
(
A
)
−R

(
A ∪ {i}

)
,

where the equality follows from Claim 3.6. This concludes the first step.
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Step 2. On one hand, we have {i} ⊆ A ∪ {i}. Therefore, we have in particular

{i} ⊆ B ∪A ∪ {i}. On the other hand, B ⊆ B and therefore B ⊆ B ∪ A ∪ {i}. Hence

B∪{i} ⊆ B∪A ∪ {i}. Recalling that B ∪ {i} is by definition the maximum revenue assortment

containing B ∪ {i}, we have

R
(
B ∪ {i}

)
≥ R

(
B ∪A ∪ {i}

)
,

which concludes the second step, and thereby the proof of the lemma.

3.3 Optimal Solution for APV

In this section, we present the main technical result in this paper. In particular, we characterize

the structure of an optimal solution of APV. Our characterization relies on the supermodularity

property of the expanded revenue function. Moreover, we show that we can compute such a

solution in O(n+ T ), which gives us a polynomial time algorithm to solve APV.

Optimal solution. Consider an instance of APV. Recall that for all i ∈ N , ℓi is the lower bound

on the minimum number of customers for which we must offer product i. For t ∈ {0, 1, . . . , T},
we define the following sets

Lt = {i ∈ N , ℓi = t}. (5)

Our candidate solution for APV is given by

S∗
t =

⋃
t≤u≤T

Lu, ∀t ∈ {1, . . . , T}. (6)

Note that (Lt)0≤t≤T is a partition of N . Moreover, since
⋃

t+1≤u≤T Lu ⊆
⋃

t≤u≤T Lu, the

monotonicity property in Lemma 3.4 implies that S∗
t+1 ⊆ S∗

t for any t = 0, . . . , T −1. Therefore,

our solution has a nested structure, i.e., S∗
T ⊆ S∗

T−1 . . . ⊆ S∗
1 . In the following, we prove that the

assortments given by (6) are optimal for APV. Moreover, they can be computed in polynomial

time. Indeed, Lemma 3.3 shows that each of them can be computed in time O(n), so the entire

solution can be computed in time O(nT ). We can further improve the running time to O(n+T )

as shown below.

Theorem 3.7. The sequence of assortments (S∗
t )1≤t≤T defined in (6) is optimal for APV. More-

over, such a solution can be computed in O(n+ T ) time.

Proof. We prove the result by induction. First, for T = 1, for any i ∈ N , we either have ℓi = 0

or ℓi = 1. Noting that L1 is the set of products i such that ℓi = 1, APV reduces to the problem

of finding the optimal assortment that contains L1, i.e.,

max
S⊆N s.t L1⊆S

R(S),

whose solution is L1 by definition of the expanded set. The result follows for T = 1 by noticing

that S∗
1 = L1.
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Let us now prove the result for a general number of customers. Let T ≥ 2, and assume by

induction that the result is true for T − 1, in other words, given T − 1 customers, and for any

set of visibility constraints, the optimal solution of APV is given by the assortments defined in

Equation (6). Let us show that the result holds for T customers. We denote by A the set of all

products which must be shown to at least one customer due to the visibility constraints, i.e.,

A :=
⋃T

t=1 Lt. We start by providing the following crucial intermediary claim.

Claim 3.8. There exists an optimal solution S1, . . . , ST to APV such that S1 ⊇ A. In particular,

there exists an optimal solution S1, . . . , ST to APV such that S1 = S∗
1 .

In other words, Claim 3.8 states that there exists an optimal solution S1, . . . , ST to APV

such that S1 contains all the products that must be shown at least once due to the visibility

constraints, i.e., products i such that ℓi ≥ 1. Consequently, this allows us to focus only on those

feasible solutions of APV, which offer S∗
1 to customer 1. Maximizing the revenue amongst said

solutions thereby guarantees attaining the optimal objective. In the remainder of this proof, we

start by showing Claim 3.8, before leveraging it to conclude our induction.

Proof of Claim 3.8. The proof of this result mainly relies on a judicious exploitation of

the supermodularity property. Assume by contradiction that there exists no optimal solution of

APV such that S1 ⊇ A. Let Ŝ1, . . . , ŜT be the optimal solution of APV that maximizes |Ŝ1 ∩A|.
In the case of ties, we pick any arbitrary solution that maximizes |Ŝ1∩A|. By the contradiction

hypothesis, A ⊈ Ŝ1. In particular, there exists some product j ∈ N such that j ∈ A and j /∈ Ŝ1.

Moreover, since j ∈ A, we know that ℓj ≥ 1, and therefore, j must be shown at least to 1

customer, which means that there exists some u ∈ [T ] \ {1} such that j ∈ Ŝu. We define the

following new solution to APV: S1 = Ŝ1∪ Ŝu, Su = Ŝ1∩ Ŝu, and St = Ŝt for all t /∈ {1, u}. First,
this newly defined solution is also feasible since any product offered once in either Ŝ1 or Ŝu is

also shown in S1, and each product shown in both Ŝ1 and Ŝu is also shown in both S1 and Su.

Second, S1, . . . , ST is also an optimal solution. Indeed, by the supermodularity property, we

have

R
(
Ŝ1 ∪ Ŝu

)
+R

(
Ŝ1 ∩ Ŝu

)
≥ R

(
Ŝ1

)
+R

(
Ŝu

)
.

Therefore,
T∑
t=1

R (St) ≥
T∑
t=1

R
(
Ŝt

)
.

Third, we have |S1 ∩ A| ≥ |Ŝ1 ∩ A| + 1 since Ŝ1 ∩ A ⊊ S1 ∩ A, as the latter set contains j but

the former does not. This contradicts the definition the Ŝ1, . . . , ŜT , as the optimal solution that

maximizes |Ŝ1 ∩A|, and thereby proves by contradiction that there exists a solution S1, . . . , ST

such that S1 ⊇ A.

Finally we show that we can take S1 = S∗
1 in particular. On one hand, the solution

A,S2, . . . , ST is also feasible, as it is obtained by removing all the products j such that ℓj = 0

from S1, which cannot break any constraints. Therefore, noting that A = S∗
1 , the solution
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S∗
1 , S2, . . . , ST is also feasible, since A ⊆ A. Finally, we have

R (S∗
1) +

T∑
t=2

R (St) = R
(
A
)
+

T∑
t=2

R (St) ≥
T∑
t=1

R(St),

where the inequality follows from the definition of the expanded set of A, and the fact that

A ⊆ S1. In conclusion, there exists an optimal solution of APV such that S1 = S∗
1 .

Concluding the proof of the theorem. In Claim 3.8, we showed the existence of an

optimal solution which offers S∗
1 to the first customer. Therefore, restricting the search space to

only such solutions still guarantees obtaining an optimal solution. Therefore, APV is equivalent

to the following optimization problem:

max
S2,...,ST⊆N

R(S∗
1) +

T∑
t=2

R(St)

s.t. 1 +
T∑
t=2

1(i ∈ St) ≥ ℓi, ∀i ∈ A,

which itself reduces to the following different instance of APV.

max
S2,...,ST⊆N

T∑
t=2

R(St)

s.t.
T∑
t=2

1(i ∈ St) ≥ ℓ̃i, ∀i ∈ N ,

(7)

where ℓ̃i = ℓi − 1(i ∈ A), for all i ∈ N . Noting that this last problem is an instance of APV

with T − 1 customers, we can apply the induction hypothesis, which implies that the optimal

solution is given by Equations (6). Directly applying the formulas to this new instance implies

that S∗
2 , . . . , S

∗
T is an optimal solution to (7), and hence that S∗

1 , . . . , S
∗
T is an optimal solution

for APV.

Running time. The running time of the algorithm for APV can be improved from O(nT ) to

O(n+T ). In fact, we proceed by induction. We start by computing S∗
T . Then, when computing

S∗
t , we do not need to directly compute

⋃
t≤u≤T Lu. Instead, since S∗

t ⊇ S∗
t+1, we just need

to check the products {i ∈ N\(S∗
t+1) : pi ≥ R(S∗

t )}, which is achieved in O(1 + |S∗
t | − |S∗

t+1|).
Therefore, the running time is O(1+|S∗

T |)+
∑T−1

t=1 O(1+|S∗
t |−|S∗

t+1|) = O(|S∗
1 |+T ) = O(n+T ).

3.4 Linear Program for APV

Consider the classic unconstrained assortment problem under MNL model for a single customer

max
S⊆N

R(S). (AP)

It is known that AP can be formulated as the following LP (Gallego et al. (2015)),
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max
S⊆N

R(S) = max
(αi)0≤i≤n

{
n∑

i=1

piαi s.t. ∀i ∈ N , 0 ≤ αi

vi
≤ α0,

n∑
i=0

αi = 1

}
.

Motivated by the structure of the above LP and the structure of our optimal solution of APV

given in Equation (6), we propose the following linear formulation for APV.

Theorem 3.9 (LP for APV). APV is equivalent to the following linear program:

max
α

n∑
i=1

pi

T∑
t=1

αt
i

s.t.
n∑

i=0

αt
i = 1, ∀t ∈ [T ],

αt
i = viα

t
0, ∀i ∈ N , ∀t ∈ {1, . . . , ℓi},

0 ≤ αt
i ≤ viα

t
0, ∀i ∈ N , ∀t ∈ {ℓi + 1, . . . , T}.

(LP)

Proof. In this proof, we use OPTLP and OPTAPV to denote the values of LP and APV respec-

tively. Our objective is to show that these values are equal. We demonstrate, on one hand,

that OPTLP ≥ OPTAPV , by constructing a feasible solution to LP whose objective is greater

than or equal to OPTAPV . On the other hand, we demonstrate using the same technique that

OPTLP ≤ OPTAPV . The combination of these two inequalities directly implies the desired

result.

First inequality. Recall that (S∗
1 , . . . , S

∗
T ) is the optimal solution of APV, whose expression is

stated in Equations (6). We introduce a solution α for LP, defined as follows, for every t ∈ [T ],

αt
0 =

1

1 + V (S∗
t )
,

αt
i =

vi
1 + V (S∗

t )
· 1 (i ∈ S∗

t ) for i ∈ N .

Let us show that α is feasible. The first and third constraints are straightforward. Indeed, for

the first constraint, we have for all t ∈ [T ],

n∑
i=0

αt
i =

1

1 + V (S∗
t )

+
∑
i∈S∗

t

vi
1 + V (S∗

t )
= 1.

The third constraint is also directly verified by construction, as for all i ∈ N and t ∈ [T ], we

have

αt
i =

vi
1 + V (S∗

t )
· 1 (i ∈ S∗

t ) ≤
vi

1 + V (S∗
t )

= viα
t
0.

Regarding the second constraint, let i ∈ N and t ∈ {1, . . . , ℓi}. We have

i ∈ Lℓi ⊆
⋃

t≤u≤T

Lu ⊆
⋃

t≤u≤T

Lu = S∗
t .

Therefore,

αt
i =

vi
1 + V (S∗

t )
= viα

t
0,
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which proves that the second constraint is respected, and hence shows the feasibility of the

constructed solution. Finally, its objective is equal to the revenue of the sequence of assortments

S∗
1 , . . . , S

∗
T as demonstrated by the following easy computation:

n∑
i=1

pi

T∑
t=1

αt
i =

T∑
t=1

n∑
i=1

piα
t
i =

T∑
t=1

∑
i∈S∗

t

piϕ(i, S
∗
t ) =

T∑
t=1

R(S∗
t ) = OPTAPV .

Since the objective of α is trivially upper bounded by OPTLP , we deduce that

OPTLP ≥ OPTAPV .

Second inequality. Consider an optimal basic feasible solution for LP, denoted by α := (αt
i :

i ∈ N ∪ {0}, t ∈ [T ]). LP is a linear program with T · (n + 1) variables. Any basic solution

has at least T · (n + 1) active constraints. Since LP already contains T +
∑

i∈N ℓi equality

constraints, α activates at least
∑

i∈N (T − ℓi) constraints from the remaining 2 ·
∑

i∈N (T − ℓi)

inequality constraints. Moreover, since each pair of constraints αt
i ≥ 0 and αt

i ≤ viα
t
0 consists

on two incompatible constraints, at most
∑

i∈N (T − ℓi) (i.e., half of the inequality constraints)

can be active. Thus, α activates exactly
∑

i∈N (T − ℓi) inequality constraints, and we have for

all i ∈ N and t ∈ {ℓi + 1, . . . , T}, αt
i ∈ {0, viαt

0}. Using this new observation, we construct a

feasible solution (S1, . . . , ST ) for APV as follows: for all t ∈ [T ], let St := {i ∈ N : αt
i ̸= 0}.

In particular, if i ∈ St, then αt
i = viα

t
0. It is then easy to see that αt

i is exactly the choice

probability of product i in assortment S∗
t . Indeed, for all t ∈ [T ], we have

αt
0 +

∑
i∈N

αt
i = αt

0 +
∑
i∈St

viα
t
0 = αt

0 · (1 + V (St)),

which implies using the first constraint of LP that α0
i = ϕ(0, St), and thereby that αt

i = ϕ(i, St)

for all i ∈ St. Next, we can easily see that the (S1, . . . , ST ) is feasible for APV, as any product

i ∈ N is included in the first ℓi assortments, which guarantees the visibility constraints. Finally

we have

OPTLP =
∑
i∈N

pi

T∑
t=1

αt
i =

T∑
t=1

∑
i∈N

piϕ(i, St) =
T∑
t=1

R(St) ≤ OPTAPV .

Conclusion. Combining the inequalities from the two cases shows that OPTAPV = OPTLP ,

thereby demonstrating the equivalence between the two optimization problems LP and APV.

4 APV with Cardinality Constraints

A natural extension to APV consists on considering cardinality constraints on the offered as-

sortment. Cardinality constraints arise in multiple real world applications such as shelf space in

brick-and-mortar stores or screen size in online stores, in which case, offering large assortments

of products is infeasible. In this section we consider the constrained version of our problem,

which we refer to as Assortment Problem with Visibility and Cardinality constraints (APVC),

where each customer can be shown at most k products, where k is a positive integer specified
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as part of the input. Formally, APVC is defined as follows,

max
S1,...,ST⊆N

T∑
t=1

∑
i∈St

pivi

1 +
∑

i∈St
vi

s.t.
T∑
t=1

1(i ∈ St) ≥ ℓi, ∀i ∈ N ,

|St| ≤ k, ∀t ∈ [T ].

(APVC)

First, we study the complexity of APVC. In the next theorem, we show that APVC is strongly

NP-Hard.

Theorem 4.1. APVC is strongly NP-hard, even when all prices pi are equal. Moreover, there

is no FPTAS for APVC, even with equal prices.

The proof of this theorem relies on a reduction of the 3-PARTITION problem, where the

objective is to partition a set of cardinality 3T into T subsets, each of size 3, such that the

sum of elements within each subset is identical. The full proof of this reduction is deferred to

Appendix B.1.

Relying on the strong NP-hardness of this problem, we show that the existence of a Fully

Polynomial Time Approximation Scheme (FPTAS) is precluded, unless P = NP . Therefore,

we focus in the remainder of this section on the question of designing a Polynomial Time

Approximation Scheme (PTAS) for the problem, in the case of equal prices. This setting

corresponds to a sales maximization problem, which is particularly useful in the case where the

platform or the company’s goal is to maximize the captured portion of customers.

Theorem 4.2. There exists a PTAS for APVC with equal prices.

The remainder of this section focuses on proving Theorem 4.2, by devising a PTAS for

APVC with equal weights. The proof is organized as follows. In Section 4.1, we consider an

instance of APVC with equal prices, which we reduce to a “friendlier” instance of the problem

by slightly altering the weights of a particular subset of products. Importantly, we show that

we only incur an ϵ loss due to this reduction, and therefore only focus on solving the modified

instance. In Section 4.2, we linearize our optimization problem through a carefully crafted

guessing procedure, then we provide a method to obtain approximate solutions for the linearized

program, thereby completing the formulation of our PTAS. Finally, we show in Section 4.3 that

the solution yielded by our algorithm is indeed a (1− ϵ)-approximation for our problem.

4.1 Discretizing the universe of products

The setting with identical prices is formally defined as follows

max
S1,...,ST⊆N

T∑
t=1

V (St)

1 + V (St)

s.t.

T∑
t=1

1(i ∈ St) ≥ ℓi, ∀i ∈ N ,

|St| ≤ k, ∀t ∈ [T ].

(SPVC)
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In this section, we reduce the original instance of our problem into a modified instance, by

rounding down the weights of a particular subset of products in our original universe. Then,

we show that we incur at most an ϵ-loss by performing this reduction. For any product i ∈ N ,

• If vi ≥ 1/ϵ, then vi is rounded down to v↓i = 1/ϵ. We denote the product associated with

the weight v↓i simply by i↓.

• If vi < ϵ5, then vi remains unchanged and we define v↓i = vi. Similarly, the associated

product is denoted by i↓.

• If ϵ5 ≤ vi < 1/ϵ, then vi is rounded down such that vi/ϵ
5 meets the nearest power

of (1 + ϵ). In other words, since ϵ5 ≤ vi < 1/ϵ, there exists some q ≥ 1 such that

ϵ5 · (1+ ϵ)q−1 ≤ vi < ϵ5 · (1+ ϵ)q, and vi is rounded down to v↓i = ϵ5 · (1+ ϵ)q−1. We denote

the associated product by i↓. In particular, note that by this definition, we have

v↓i ≤ vi ≤ (1 + ϵ) · v↓i . (8)

Let us denote this new universe of products by N ↓ = {i↓ : i ∈ N}. We invite the reader

to think of .↓, when applied to a product, as a one-to-one map from the universe N , to the

modified universe N ↓, where a subset of weights have been rounded down. In the subsequent

result, we show that solving a modified instance of SPVC using the products from N ↓ yields a

(1 − ϵ)-approximation of the solution on the original instance. To this purpose, we define the

following new instance of SPVC, which only uses products from the universe N ↓:

max
S1,...,ST⊆N ↓

T∑
t=1

V (St)

1 + V (St)

s.t.
T∑
t=1

1(i↓ ∈ St) ≥ ℓi, ∀i↓ ∈ N ↓,

|St| ≤ k, ∀t ∈ [T ].

(SPVC↓)

Let OPT (resp. OPT↓) denote the objective of an optimal solution of SPVC (resp. SPVC↓).

In the following, we show that OPT and OPT↓ are within a 1 − ϵ fraction of one another. To

this purpose, we show a stronger result in Lemma 4.3. Indeed, for any sequence of assortments

S1, . . . , St, we define

E(S1, . . . , ST ) =
T∑
t=1

V (St)

1 + V (St)
.

For any assortment S ⊆ N , we denote by S↓ its rounded counterpart, defined as S↓ =

{i↓ : i ∈ S}. In the next lemma, we show that the objective achieved by any sequence of T

assortments in N is within 1 − ϵ of their rounded counterpart. In particular, letting OPT de-

note the value of SPVC (i.e., the objective of an optimal feasible sequence of assortments), and

similarly OPT↓ denote the value of SPVC↓, this implies that OPT and OPT↓ are also within

1− ϵ.
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Lemma 4.3. For any sequence of assortments S1, . . . , ST ⊆ N , we have

E(S↓
1 , . . . , S

↓
T ) ≤ E(S1, . . . , ST ) ≤ (1 + ϵ) · E(S↓

1 , . . . , S
↓
T ).

Consequently, we have OPT↓ ≤ OPT ≤ (1 + ϵ) · OPT↓.

Proof of Lemma 4.3. First, since all the weights of the products in N are either rounded down

or remain the same, then for all t ∈ [T ], V (S↓
t ) ≤ V (St). Consequently, by the monotonicity

of the map x 7→ x/(1 + x), we have V (S↓
t )/(1 + V (S↓

t )) ≤ V (St)/(1 + V (St)). By summing

over t, we obtain the first inequality E(S↓
1 , . . . , S

↓
T ) ≤ E(S1, . . . , ST ). Let us prove the second

inequality. We show that V (St)/(1 + V (St)) ≤ (1 + ϵ) · V (S↓
t )/(1 + V (S↓

t )), for every t ∈ [T ].

Let t ∈ [T ].

• If there exists a product i ∈ St such that vi ≥ 1/ϵ, then v↓i = 1/ϵ, and in turn, V (S↓
t ) ≥ 1/ϵ.

Therefore,

(1 + ϵ)
V (S↓

t )

1 + V (S↓
t )

≥ (1 + ϵ) · 1/ϵ

1 + 1/ϵ
= 1 ≥ V (St)

1 + V (St)
.

• If for all i ∈ St, we have vi < 1/ϵ. Note that Equation (8) holds trivially when vi < ϵ,

since v↓i = vi by definition. Therefore, Equation (8) holds for every i ∈ St. Hence,

vi
1 + vi

≤
(1 + ϵ) · v↓i
1 + v↓i

.

The result follows by summing over t = 1, . . . , T .

Noticing that if S1, . . . , ST is feasible for SPVC, then its rounded counterpart is also feasible

for SPVC↓, we also have OPT↓ ≤ OPT ≤ (1 + ϵ) · OPT↓.

In light of Lemma 4.3, we deduce that obtaining an approximation to the reduced problem

SPVC↓ automatically yields an approximation to the original problem SPVC, with only an

additional ϵ loss. In the remainder of this section, we will only focus on solving the reduced

problem SPVC↓, therefore, for simplicity of notation, we denote the products 1↓, . . . , n↓ simply

by 1, . . . , n respectively, and we denote their respective weights simply by the original v1, . . . , vn

instead of the heavy notation v↓1, . . . , v
↓
n. So, products 1, . . . , n and their respective weights

v1, . . . , vn will refer to those of the modified instance SPVC↓.

4.2 Linearization of the objective function and algorithm

In this section, we aim at linearizing the optimization problem SPVC, through a guessing pro-

cedure of a certain number of parameters pertaining to the optimal solution. We start by

presenting our detailed guessing procedure in Section 4.2.1, before leveraging the guessed pa-

rameters to construct a linearized formulation in Section 4.2.2. In Section 4.2.3, we present a

dependent rounding scheme introduced in Gandhi et al. (2002), which we use later in Section

4.2.4 to round a fractional solution of the linearized program, into a feasible integral solution

for SPVC↓.
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4.2.1 Guessing procedure

Let S∗
1 , . . . , S

∗
T be an (unknown) optimal solution for our problem SPVC↓.

Customer types. In this definition, we aim at categorizing customers with respect to the

total weight of the products offered to them in an optimal solution. First we say that a customer

t ∈ [T ] is light if V (S∗
t ) < ϵ. Similarly, we say that a customer is heavy if V (S∗

t ) ≥ 1/ϵ. Otherwise

(i.e., if ϵ ≤ V (S∗
t ) < 1/ϵ), we say that the customer is medium. We further partition medium

customers into L classes G1, . . . , GL, depending on the value of V (S∗
T ). Specifically, we define

every class ℓ = 1, . . . , L as follows,

Gℓ =
{
t medium : ϵ · (1 + ϵ)ℓ−1 ≤ V (S∗

t ) < ϵ · (1 + ϵ)ℓ
}
.

We fix L to be the smallest integer such that ϵ · (1 + ϵ)L ≥ 1/ϵ. In particular, L = O(1ϵ log(
1
ϵ )).

Therefore, the classes G1, . . . , GL form a partition of medium customers. Additionally, we

denote by Glight and Gheavy the sets of light and heavy customers respectively.

Packing patterns. First let us start by defining classes of products. Recall from Section 4.1

that for every product i ∈ N such that vi ≥ ϵ5, either there exists some 1 ≤ q ≤ Q−1 such that

vi = ϵ5 ·(1+ϵ)q−1 or vi = 1/ϵ, where Q is the smallest integer such that ϵ5 ·(1+ϵ)Q−1 ≥ 1/ϵ. Let

Dq denote the set of all the products of N such that vi = ϵ5 · (1+ ϵ)q−1, for every 1 ≤ q ≤ Q−1,

and let DQ denote the set of all products of N such that vi = 1/ϵ. Similarly, let D0 be the class

of all products i ∈ N whose weight vi < ϵ5. Note that by construction, the classes D0, . . . DQ

form a partition of the universe of products N . A packing pattern is a (Q + 1)-dimensional

vector, taking values in {0, 1, 2, . . . , 1/ϵ6, ⋆}, where 1/ϵ6 is assumed to be an integer without loss

of generality. For a given customer, each entry q = 0, . . . , Q of its associated packing pattern

characterizes the number of products from class Dq in the assortment S∗
t , and ⋆ should be

viewed simply as a symbol which characterizes the fact that the number of products from class

q is (strictly) greater than 1/ϵ6. Using this definition, the number of packing patterns is(
1

ϵ6
+ 2

)Q+1

= 2O((Q+1) log( 1
ϵ )) = 2O(

1
ϵ
log2( 1

ϵ )).

Guessing. With all the previous definitions, we are now able to present the guessing pro-

cedure. For each couple consisting of a class of customers ℓ ∈ {light,heavy, 1, . . . , L}, and a

packing pattern P , we guess the number of customers in Gℓ that use the packing pattern P .

Let us call this guessed number Kℓ,P .

It is important to note that using the above guessing procedure allows us to determine, for

any given customer t ∈ [T ], both her type and her packing pattern in the optimal solution, up

to a permutation of {1, . . . , T}. Indeed, since for each class ℓ ∈ {light, heavy, 1, . . . , L}, we know
the number of customers that use each packing pattern, in particular, we know the quantity

|Gℓ|. Hence, due to the fact that all customers are initially interchangeable, we arbitrarily assign

each customer to a type according to our guess, without loss of generality. Subsequently, given

our guess Kℓ,P for every customer type ℓ, and every packing pattern P , and since the customers
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within the same type are all interchangeable a priori, we arbitrarily assign each customer to a

packing pattern, according to our guess, without loss of generality. Therefore, for each customer

t ∈ [T ], we have determined both her type and her packing pattern, up to a permutation of

{1, . . . , T}.

Complexity of the guessing procedure. For any couple consisting of a specific class of

customers and a specific packing pattern, we guess the number of customers from said class who

use said packing pattern. There are L+2 = O(1ϵ log(
1
ϵ )) classes of customers, and O(2O( 1

ϵ
log2( 1

ϵ
)))

packing patterns. The number of couples is therefore given by O(2O( 1
ϵ
log2( 1

ϵ
))). Since there are

T customers, there are T + 1 possible guesses for each couple consisting of a class of customers

and a packing pattern. Therefore, the total number of guesses is O(T 2O( 1ϵ log2( 1ϵ ))
).

4.2.2 Integer linear programming formulation

Following the detailed presentation of the guessing procedure, we are now ready to leverage

the guessed parameters in order to introduce our integer linear programming formulation ILP.

This formulation is crucial to our algorithm, since its approximate solution is later (Section 4.3)

shown to be near optimal for SPVC↓. In Segev and Singla (2021), the authors use a similar idea

in order to obtain rounded solutions for the Santa Claus problem.

Let us start with some useful notation. For each customer t, we define the lower bound

Vt on the V (S∗
t ) as follows. If t is light (resp. heavy) then Vt = 0 (resp. Vt = 1/ϵ), and if

Vt is of type ℓ for some ℓ = 1, . . . , L, then Vt = ϵ · (1 + ϵ)ℓ−1. Finally, we denote the packing

pattern of customer t by (k0,t, k1,t, . . . , kQ,t). Using these newly defined parameters, we define

the following integer linear program:

max
x

∑
t∈Glight

∑
i∈N

vixit

s.t.

T∑
t=1

xit ≥ ℓi, ∀i ∈ N ,∑
i∈N

xit ≤ k, ∀t ∈ [T ],∑
i∈Dq

xit = kq,t, ∀t ∈ [T ], ∀q = 0, . . . , Q such that kq,t ̸= ⋆,

∑
i∈Dq

xit >
1

ϵ6
, ∀t ∈ [T ], ∀q = 0, . . . , Q such that kq,t = ⋆,∑

i∈N
vixit ≥ Vt, ∀t ∈ [T ],∑

i∈N
vixit ≤ ϵ, ∀t ∈ Glight,

xit ∈ {0, 1}, ∀i ∈ N , ∀t ∈ [T ].

(ILP)

The last step is to present a way to approximate ILP. To this purpose, the high level idea of

our method is to start by solving the linear relaxation of ILP, then to use a specific rounding

of the obtained fractional solution, in order to derive a near-optimal integral solution.

Let x∗ be an optimal solution to the linear relaxation of ILP, that is, to the linear program
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obtained by replacing the constraint xit ∈ {0, 1} by the relaxed constraint xit ∈ [0, 1]. Similarly,

let S∗
1 , . . . , S

∗
T be an optimal sequence of assortments for SPVC↓. The following lemma relates

x∗ to the optimal solution S∗
1 , . . . , S

∗
T .

Lemma 4.4.
T∑
t=1

∑
i∈N vix

∗
it

1 +
∑

i∈N vix∗it
≥ (1− ϵ) ·

T∑
t=1

V (S∗
t )

1 + V (S∗
t )
.

The proof of this Lemma is included in Appendix B.2. The next step is to round x∗ in order

to obtain a feasible solution for ILP.

4.2.3 The dependent rounding scheme

In this section, we briefly present the dependent rounding scheme in Gandhi et al. (2002), which

we use to round our fractional solution into an integral one. Given a bipartite graph (L,R,E)

and values xi,j ∈ [0, 1] for every edge (i, j) ∈ E, the authors in Gandhi et al. (2002) present a

polynomial time rounding scheme which returns a sequence of random variables Xi,j ∈ {0, 1}
representing a rounding of the values xi,j , and which verify the following properties:

(P1) Marginal distributions: For every edge (i, j), E(Xi,j) = xi,j .

(P2) Degree-preservation: The fractional degree of every edge is rounded to its floor or its

ceiling, i.e., for any i ∈ L ∪R, if di =
∑

j∈L∪R xij , then
∑

j∈L∪R Xij ∈ {⌊di⌋, ⌈di⌉}.

(P3) Negative correlation: For any node i ∈ L ∪ R, and any subset S ⊆ N(i), where N(i)

if the set of neighbors of i, we have

P

∧
j∈S

(Xi,j = 0)

 ≤
∏
j∈S

P [Xi,j = 0]

and P

∧
j∈S

(Xi,j = 1)

 ≤
∏
j∈S

P [Xi,j = 1] .

Negative correlation (P3) is a strong property that allows us to derive Chernoff bounds, as

stated in the following lemma.

Lemma 4.5 ((Theorem 1.10.24 Doerr, 2020, 66)). If X1, . . . , Xn are negatively correlated

random variables, then for any vector a = (a1, . . . , an) ∈ [0, 1]n we have

P[a(X) ≤ (1− ϵ) · E[a(X)]] ≤ exp

(
−ϵ2 · E[a(X)]

2

)
,

where a(X) =
∑n

i=1 aiXi.

Next, we construct a framework that allows us to use the dependent rounding scheme in

order to derive a feasible solution for ILP.
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4.2.4 Construction of the bipartite graph and feasibility of the rounded solution

Recall that the high level idea is to use the rounding procedure presented in 4.2.3, in order

to derive an integer solution to ILP. Noticing that the rounding procedure takes as input

a bipartite graph and a sequence of edge-associated values, the first step is to interpret the

solution of the linear relaxation of ILP as a sequence of edge-associated values in a carefully

constructed bipartite graph. Before presenting our proposed bipartite graph, let us introduce

the two following definitions. We say that a customer t ∈ [T ] is bounded if kq,t ̸= ⋆, for all

q = 1, . . . , Q (note that q starts from 1 in this definition and not from 0). Otherwise, we say

that customer t is unbounded. In other words, customer t is bounded if she is not offered more

than 1/ϵ5 products from any class Dq where q ≥ 1, in the optimal solution.

The bipartite graph. We start by defining the node sets L and R. The set L is simply

the set of all products in N . Let us now describe the set of right nodes R. First, for every

unbounded customer t, we introduce a node t in the set R. Alternatively, for every bounded

customer t, we introduce Q+1 nodes in the set R, specifically, one node (t, q) for every class of

products q = 0, . . . , Q. Therefore,

R = {t : t unbounded} ∪ {(t, q) : t bounded, q = 0, . . . , Q} .

Let us now describe the edge set E of the bipartite graph, as well as the associated value xe of

each edge e ∈ E. Let us fix a node i ∈ L and describe all of its adjacent edges and associated

values. First, i neighbors every node t where t is an unbounded customer, and the edge (i, t)

is associated with the value x∗it. Next, assume q is the class of products containing i, then the

node i neighbors every node (t, q) for t ∈ [T ], and the edge (i, (t, q)) is associated with the value

x∗it. This completes our description of the bipartite graph.

PTAS. Let us summarize the steps of our PTAS. The first step is to perform the guessing

procedure presented in Section 4.2.1, and then use our guess to construct ILP. The second

step is to solve the linear relaxation of ILP using standard linear programming techniques, and

obtain a fractional solution x∗. The third step is to use x∗ to construct the bipartite graph as

described above. We can now apply the dependent rounding presented in Section 4.2.3 to derive

a sequence of random variables (Xit : i ∈ N , t ∈ [T ]) representing rounded values. Finally, we

denote by S1, . . . , ST the associated sequence of assortments, that is, for each t ∈ [T ],

St = {i ∈ N : Xit = 1},

and the algorithm returns this sequence (S1, . . . , ST ).

Complexity analysis. Since our algorithm is exhaustive, the steps presented above are ap-

plied for every possible guess. Solving the linear relaxation of ILP takes O(n3T 3) using standard

linear programming algorithms (interior point method for example). Constructing the bipar-

tite graph takes O(nTQ) running time, and running the dependent rounding scheme takes

O((nTQ)3). Therefore, processing each guess takes O(n3T 3Q3) = O(n3T 3 1
ϵ3
log3 1

ϵ ) running
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time. Finally, since there are O(T 2O( 1ϵ log2( 1ϵ ))
) possible guesses as argued in Section 4.2.1, the

total running time of our algorithm is:

O

(
T 2

O( 1
ϵ log2( 1

ϵ )) · n3T 3 1

ϵ3
log3

1

ϵ

)
= O

(
n3T 2

O( 1
ϵ log2( 1

ϵ ))
)
,

which is polynomial in the size of the input for any fixed ϵ, confirming that our algorithm is

indeed a PTAS.

4.3 Near-optimality of the rounded solution

In this section, we show that the obtained solution (S1, . . . , ST ) is near-optimal for SPVC↓. The

main result is stated in the following theorem.

Theorem 4.6. The sequence of assortments S1, . . . , ST is feasible for SPVC↓ and we have

E

[
T∑
t=1

V (St)

1 + V (St)

]
≥ (1− 3ϵ) · OPT↓.

Proof. In this proof, we start by showing that the sequence S1, . . . , ST is feasible for SPVC↓.

Next, we show that the objective of the sequence of assortments S1, . . . , ST is within 1− 3ϵ of

the optimal objective. Recall that S∗
1 , . . . , S

∗
T is an optimal sequence of assortments for SPVC↓.

Feasibility. First, the visibility constraint is straightforward. Indeed, let i ∈ N . By the first

constraint of the linear relaxation of ILP, we have:
∑T

t=1 x
∗
it ≥ ℓi. Noticing that

∑T
t=1 x

∗
it is the

fractional degree of node i in the bipartite graph, we have by property (P2),
∑T

t=1Xit ≥ ⌊ℓi⌋ =
ℓi, which proves that the visibility constraint is respected. We now show that the cardinality

constraint is respected after the rounding. Let t ∈ [T ]. First, if t is unbounded, then the

cardinality of St is simply given by the degree of node t. Since
∑n

i=1 x
∗
it ≥ k, then by property

(P2), we have |St| =
∑

i∈N Xit ≥ k. Alternatively, if t is bounded, for every class q = 1, . . . , Q,

the degree of node (t, q) is
∑

i∈Dq
x∗it which is equal to kq,t, according to the third constraint

of ILP. Since kq,t is an integer, the degree of node (t, q) remains unchanged after the rounding,

according to property (P2). Therefore, we have almost surely:

∑
i∈N

viXit =
∑
i∈D0

viXit +

Q∑
q=1

∑
i∈Dq

viXit

≤


∑
i∈D0

vix
∗
it

+

Q∑
q=1

kq,t

=


∑
i∈D0

vix
∗
it +

Q∑
q=1

kq,t


=

⌈∑
i∈N

vix
∗
it

⌉
≤ ⌈k⌉ = k.
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The first inequality follows from Property (P2). In the equality in the third line, we use the fact

that the second summand is an integer. This proves the cardinality constraint and concludes

the feasibility proof.

Near-optimality. We show that the contribution of every customer t ∈ [T ] to the objective

function, i.e., the quantity V (St)/(1 + V (St)) is within 1 − 2ϵ of the contribution of t in the

optimal solution x∗, in expectation. Let t ∈ [T ].

Case 1: If t unbounded. Let qt ∈ {1, . . . , Q} be the class of products such that kqt,t = ⋆. We

have ∑
i∈Dqt

vix
∗
it ≥ ϵ5 ·

∑
i∈Dqt

x∗it ≥ ϵ5 · 1

ϵ6
=

1

ϵ
.

Therefore,

P
[
V (St) ≤

1− ϵ

ϵ

]
= P

[∑
i∈N

viXit ≤
1− ϵ

ϵ

]

≤ P

∑
i∈N

viXit ≤ (1− ϵ) ·
∑
i∈Dqt

vix
∗
it


≤ P

 ∑
i∈Dqt

viXit ≤ (1− ϵ) ·
∑
i∈Dqt

vix
∗
it


= P

 ∑
i∈Dqt

Xit ≤ (1− ϵ) ·
∑
i∈Dqt

x∗it


≤ exp

(
−
ϵ2 ·
∑

i∈Dqt
x∗it

2

)

≤ exp

(
− 1

2ϵ4

)
≤ ϵ. (9)

In the second equality, we use the fact that products within the same class have the same pref-

erence weight to simplify all the weights. The inequality in the fifth line is a direct application

of Lemma 4.5, and in the one in the sixth line, we use the fact that
∑

i∈Dqt
x∗it > 1/ϵ6, since

kqt,t = ⋆. Therefore, by conditioning on the event {V (St) > (1 − ϵ)/ϵ}, and neglecting one of

the terms, we have

E
[

V (St)

1 + V (St)

]
≥ P

[
V (St) >

1− ϵ

ϵ

]
· E
[

V (St)

1 + V (St)
| V (St) >

1− ϵ

ϵ

]
≥ (1− ϵ) ·

1−ϵ
ϵ

1 + 1−ϵ
ϵ

= (1− ϵ)2

≥ (1− 2ϵ) ·
∑

i∈N vix
∗
it

1 +
∑

i∈N vix∗it
.
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The second inequality follows from Equation (9) and the monotonicity of x 7→ x/(1 + x) on

[0,+∞).

Case 2: If t is bounded and heavy or if t is medium. Then we have

∑
i∈N

viXit =
∑
i∈D0

viXit +

Q−1∑
q=1

∑
i∈Dq

viXit.

Let W l
t =

∑
i∈N\D0

viXit, and W s
t =

∑
i∈D0

viXit. Similarly, let wl
t =

∑
i∈N\D0

vix
∗
it, and

ws
t =

∑
i∈D0

vix
∗
it.

Claim 4.7. With probability 1, we have W l
t = wl

t.

The proof of this result is a direct application of the degree preservation property, and is

deferred to Appendix B.3.

• If ws
t ≤ ϵ ·

∑
i∈N vix

∗
it, then intuitively, the contribution of the products in D0 represent

an ϵ-fraction of the total contribution and can therefore be neglected. Formally, we have

with probability 1

V (St) ≥ W l
t = wl

t =
∑
i∈N

vix
∗
it − ws

t ≥ (1− ϵ) ·
∑
i∈N

vix
∗
it.

The first equality is a consequence of Claim 4.7, and the second inequality follows from

the case hypothesis. Therefore, by the monotonicity of x 7→ x/(1 + x), we have with

probability 1
V (St)

1 + V (St)
≥ (1− ϵ) ·

∑
i∈N vix

∗
it

1 +
∑

i∈N vix∗it
. (10)

• Otherwise, we have

P [W s
t ≤ (1− ϵ) · ws

t ] = P

∑
i∈D0

vi
ϵ5
Xit ≤ (1− ϵ) ·

∑
i∈D0

vi
ϵ5
x∗it


≤ exp

(
−
ϵ2 ·
∑

i∈D0
vix

∗
it

2ϵ5

)

≤ exp

(
−
ϵ ·
∑

i∈N vix
∗
it

2ϵ3

)
≤ exp

(
− 1

2ϵ

)
≤ ϵ. (11)

The first inequality follows from Lemma 4.5. The second inequality is a consequence of

the case hypothesis, and third one follows from the fact that t is not light, and hence

that
∑

i∈N vix
∗
it ≥ ϵ. Therefore, by conditioning on the event {W s

t ≤ (1 − ϵ) · ws
t } and

neglecting one of the terms, we have

E
[

V (St)

1 + V (St)

]
≥ P [W s

t > (1− ϵ) · ws
t ] · E

[
V (St)

1 + V (St)
| W s

t > (1− ϵ) · ws
t

]
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= P [W s
t > (1− ϵ) · ws

t ] · E
[

wl
t +W s

t

1 + wl
t +W s

t

| W s
t > (1− ϵ) · ws

t

]
≥ (1− ϵ) · wl

t + (1− ϵ) · ws
t

1 + wl
t + (1− ϵ) · ws

t

≥ (1− ϵ)2.

∑
i∈N vix

∗
it

1 +
∑

i∈N vix∗it

≥ (1− 2ϵ).

∑
i∈N vix

∗
it

1 +
∑

i∈N vix∗it
.

In the equality, we apply Lemma 4.7. In the second inequality, we use Equation (11), as well

as the monotonicity of x 7→ x/(1 + x).

Case 3: If t is light.

Claim 4.8. We have

E
[

V (St)

1 + V (St)

]
≥ (1− 2ϵ) ·

∑
i∈N vix

∗
it

1 +
∑

i∈N vix∗it
.

Let us present the high level idea for the proof of Claim 4.8. If t ∈ [T ] is a light customer then∑
i∈N vix

∗
it ≤ ϵ. Therefore, the denominator 1+V (St) is in expectation equal to 1+

∑
i∈N vix

∗
it ≤

1 + ϵ. The high level idea is to use this remark to approximate V (St)/(1 + V (St)) to simply

V (St), which in expectation is equal to
∑

i∈N vix
∗
it. Finally, this last term is trivially lower

bounded by
∑

i∈N vix
∗
it/(1 +

∑
i∈N vix

∗
it). The formal proof is deferred to Appendix B.3.

Combining cases 1, 2 and 3, and by linearity of expectation, we have

E

[
T∑
t=1

V (St)

1 + V (St)

]
≥ (1− 2ϵ) ·

T∑
t=1

∑
i∈N vix

∗
it

1 +
∑

i∈N vix∗it

≥ (1− 2ϵ) · (1− ϵ) ·
T∑
t=1

V (S∗
t )

1 + V (S∗
t )

≥ (1− 3ϵ) ·
T∑
t=1

V (S∗
t )

1 + V (S∗
t )

= (1− 3ϵ) · OPT↓,

where the second inequality is an application of Lemma 4.4.

5 Price of Visibility

In this section, we investigate the impact of visibility constraints on the total expected revenue,

comparing it to the unconstrained setting where there are no visibility constraints. In Section

5.1, we quantify the loss resulting from enforcing the visibility constraints. In Section 5.2, we

introduce a novel method to distribute the loss among different products in proportion to their

contribution to the overall loss. Finally, in Section 5.3, we illustrate our method through a

series of numerical experiments.
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5.1 The loss due to Visibility constraints

Consider the unconstrained assortment optimization AP and let S∗ be its optimal solution. It

is known that there exists an optimal assortment that is price-ordered. This is a standard

result in assortment optimization under the MNL model (see Talluri and Van Ryzin Talluri

and Van Ryzin (2004)).2 In the absence of visibility constraints and with T customers, it is

optimal to offer assortment S∗ to each customer. Consequently, the total expected revenue in

the unconstrained setting can be expressed as T ·R(S∗). As the unconstrained problem serves

as a relaxation of APV, it possesses a higher objective function. In the following example, we

show that enforcing the visibility constraints can imply a gap that is arbitrary bad as compared

to the unconstrained setting.

Example. Consider an instance of APV with two products n = 2 and T customers. Let

p1 = 1, v1 = 1, ℓ1 = 0 and p2 = 0, v2 = M, ℓ2 = T . We consider the setting where M is large.

To compute the optimal assortment for AP. As mentioned earlier, it sufficient to evaluate the

revenue of the price-ordered assortments and choose the one with the highest revenue. We have

R({1}) = 1
2 and R({1, 2}) = 1

2+M < R({1}) . Therefore, the optimal assortment is S∗ = {1}
and R(S∗) = 1

2 .

On the other hand, let (S1, S2, . . . , ST ) be a feasible solution for APV. Because, ℓ2 = T , we

have to include product 2 in every assortment St. Adding product 1 to an assortment only

increases the revenue because R({1, 2}) = 1
2+M > R({2}) = 0. Therefore, it is optimal to offer

product 1 and 2 in every assortment St in an optimal solution of APV. Therefore, S∗
t = {1, 2}

for all t = 1, . . . , T . Now, consider the ratio

TR(S∗)∑T
t=1R(S∗

t )
=

T 1
2

T 1
2+M

=
M

2
+ 1,

which goes to infinity as M increases. Hence the gap can be arbitrarily large. While in this

pathological example, we see that enforcing products with very low price and high weight can

drive the revenue very low, our numerical experiments in Section 5.3 will illustrate how more

common distributions of the prices and weight react to the enforcement of visibility constraints.

5.2 Sharing the loss

In this section, we explore a scenario where each product within our universe is associated with a

specific vendor. As mentioned earlier, vendors can impose visibility constraints on their products

within the platform. These constraints can be established through service level agreements or

product sponsorships. However, it is important to note that enforcing these constraints may

result in a decrease in the platform’s revenue. To address this issue, the platform can implement

a fee structure based on the vendors’ contributions to the revenue loss. Let S∗ be an optimal

solution for AP and let (S∗
1 , S

∗
2 , . . . , S

∗
T ) be an optimal solution for APV. We denote the revenue

2We refer the reader to Appendix A for further discussion of assortment optimization under MNL.
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loss due to the visibility constraints as

∆ := T ·R(S∗)−
T∑
t=1

R(S∗
t ). (12)

A first naive approach. One approach is to allocate the loss based solely on the parameters ℓi.

In this case, the proportion of the loss assigned to the vendor of product i would be determined

by ℓi∑n
j=1 ℓj

. However, this distribution would not be equitable in the sense that we should not

impose any charges on a product that already belongs to the optimal set S∗, even if it satisfies

the constraint ℓi > 0. Moreover, this allocation fails to consider the impact of each product on

the overall loss. For example, if there is a product with exceptionally high preference weight vi

but a significantly lower price pi, while other products have higher prices and lower preference

weights, enforcing the visibility of the first product would drive the revenue down, whereas the

others would have a lesser impact. In this scenario, the former product should be responsible

for covering almost the entire revenue loss.

Our approach. Let S∗
1 , . . . , S

∗
T be an optimal solution to APV. First observe that R(S∗

t ) =∑
i∈S∗

t
pivi

1+
∑

i∈S∗
t
vi
, implies that

R(S∗
t ) =

∑
i∈S∗

t

(pi −R(S∗
t ))vi

for every set S∗
t . This decomposition of the revenue gives us which products drive the revenue

down (the ones with pi < R(S∗
t )) and which products increase the revenue (pi > R(S∗

t )). It

also shows that the contribution of product i to the revenue is proportional to the difference

between the price of product i and the actual revenue, as well as proportional to the preference

weight vi. We can then rewrite the total revenue of the assortments (S∗
1 , S

∗
2 , . . . , S

∗
T ) as

T∑
t=1

R(S∗
t ) =

T∑
t=1

∑
i∈S∗

t

(pi −R(S∗
t ))vi =

n∑
i=1

T∑
t=1

1(i ∈ S∗
t )(pi −R(S∗

t ))vi.

Therefore, we view the contribution of product i ∈ N to the total revenue as

Ci :=
T∑
t=1

1(i ∈ S∗
t )(pi −R(S∗

t ))vi.

Pricing the loss. For each product i ∈ N , we propose to charge its vendor the fraction of

the loss corresponding to the negative contribution of this product, divided by the sum of the

negative contributions of all the products:

Γi :=
C−
i∑n

j=1C
−
j

·∆ (13)

where x− = max(−x, 0) is the negative part of x, and recalling that ∆ is the total loss in

revenue due to enforcing visibility constraints.

Next, we discuss three important properties of this strategy:
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(a) Fair distribution of fees. First, it is worth noting that the loss in revenue is exactly

shared between the products whose contribution to the total revenue is negative as on one hand

we have
∑

i∈N Γi = ∆, and on the other hand we have Γi > 0 if and only if C−
i > 0, i.e.,

the product’s contribution to the revenue is negative. Moreover, the fee Γi for each product

takes into account its actual impact on the revenue: the first observation is that the products in

S∗ all have a nonnegative contribution, and their vendors are consequently exempt from a fee

as expected. The second observation is that for any product with a negative contribution, its

impact on the revenue is magnified by a lower price and a greater preference weight. It turns out

that our policy does take this observation into account, as the lower/greater the price/weight

of such a product, the greater the loss it incurs to the total revenue, and thus the greater the

fee imposed on the vendor. The third observation is that even if a products i /∈ S∗ and/or if

there exists some t ∈ [T ] such that i ∈ S∗
t and pi ≤ R(S∗

t ), such a product can still have a

positive contribution, in which case Γi = 0, concurring with a product whose impact overall is

positive. The final observation is that this pricing strategy guarantees a fair treatment of equal

products. Indeed, if two distinct products i and j have identical prices and preference weights,

then imposing similar visibility constraints for the two products implies a similar fee for the

vendors.

(b) Monotonicity of the fee. For every product i, the fee Γi is nondecreasing as a function

of ℓi. In other words, if a vendor wishes to display her product more often to customers, her fee

gets higher. Let us show this intuitive result mathematically. Recall that an optimal solution

to APV is given by S∗
t = Lt ∪ · · · ∪ LT for t ∈ [T ], as shown in Theorem 3.7. Similarly, let S̃t

be the optimal solution given by Equations (6) when ℓi is increased by 1. Note that a direct

consequence of the formula giving these optimal solution, we have S̃t = S∗
t for all t ̸= ℓi + 1,

and S̃ℓi+1 = Lt ∪ · · · ∪ Lℓi+1 ∪ {i}. First, if i ∈ S∗
ℓi+1, then nothing changes and we have

C̃i = Ci, where C̃i :=
∑T

t=1 1(i ∈ S̃t)(pi − R(S̃t))vi is product i’s contribution to the loss after

increasing ℓi. Otherwise, Ci ≥ C̃i, and therefore C−
i ≤ C̃i

−
. Furthermore, for every j ̸= i, since

R(S∗
ℓi+1) ≥ R(S̃ℓi+1), we have C̃j ≥ Cj , since the term associated with t = ℓi+1 in the definition

of Cj can only increase when ℓi is increased, while all the other terms remain unchanged. Letting

∆̃ and Γ̃i be the total loss incurred and the fee imposed on vendor i respectively, after ℓi is

increased by 1, we have

Γ̃i =
C̃i

C̃i +
∑

j ̸=i C̃j

· ∆̃

≥ C̃i

C̃i +
∑

j ̸=iCj

·∆

≥ Ci

Ci +
∑

j ̸=iCj
·∆

= Γi.

The third line follows from the fact that the map x 7→ x/c+ x is nondecreasing on [0,+∞), for

any c > 0.

(c) Computational tractability. The fees charged are easy to compute: each of them can

be computed in polynomial time O(nT ) since they only require to solve APV. Additionally,

28



consider the situation where a vendor is interested in knowing the fee that she needs to pay

in order to increase the visibility of the product by one customer. This corresponds to the

situation where we change ℓi to ℓi + 1 (without changing any other ℓj). In this case, we only

have to recompute S∗
ℓi+1, because the others assortments S∗

t stay the same, as explained in the

previous paragraph. Therefore, for a fixed product i, can compute efficiently the value of the

fee Γi for all the values of ℓi ∈ [T ] ∪ {0}.

5.3 Numerical Study

To illustrate our theoretical contributions, we perform some numerical experiments on randomly

generated data.

Our experimental setup. We fix the number of products equal to n = 20, and fix the number

of customers to T = 30. We generate the weights vi, prices pi and visibility constraints ℓi from

several distributions. Namely, to generate the weights vi and prices pi we used uniform and

exponential distributions with varying parameters. For the visibility constraints ℓi, we ran our

experiments using three distributions: we used a standard integer uniform U({0} ∪ [T ]), then

an integer uniform ℓi ∼ U({⌊ i
nT ⌋, . . . , T}), and finally the constant ℓi = T , for all i ∈ N .

Recalling that products are ordered by non-increasing price values, the intuition behind the

second distribution is that products with lower prices are likelier to receive higher visibility

constraints.

For each set of parameters, we generate 1000 samples, then we compute ratio of the optimal

solution of APV divided by T ·R(S∗), i.e., the unconstrained optimal expected revenue (without

any visibility constraints), namely

η :=

∑T
t=1R(S∗

t )

T ×R(S∗)
.

This captures the fraction of the revenue that we conserve once visibility constraints are enforced.

We compute statistics on ratio η: mean, standard deviation, minimum and maximum values. 3

Overall results and analysis. Our results are gathered in Table 1.

As expected, the ratio η decreases when we give higher visibility ℓi to the products with

smaller prices pi. Furthermore, we observe that the higher the range of fluctuation of the

weights vi and prices pi, the lower the revenue becomes once we enforce visibility constraints.

This is rather intuitive, because we saw previously that the cases in which the visibility

constraints can severely harm the revenue are when there are some products with extreme

value of the price or weight compared to the others. However, we observe that extreme events

when the revenue of APV becomes very low are really rare since the standard deviation is

rather small compared to the range of fluctuation of η. Based on our results, it seems that in

most cases, as long as there are no abnormally extreme values of the weights and prices, we can

always hope to keep a fraction close to half of the revenue after enforcing visibility constraints.

3Initially, we made T vary, but we observed that the results where almost independent of T compared to the
randomness of the generation of the parameters, so we kept only T = 30. Indeed, varying T just extends the
stream of customers, and if the visibility constraints are extended by the same factor, it seems natural that the
ratio of conserved revenue remains constant.
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Table 1: For each distribution of pi, vi and ℓi, we compute the ratio η between the optimal
assortment of APV and the optimal assortment of the unconstrained problem AP on 1000
samples. We provide its mean, standard deviation, minimum and maximum values.

η (in %)

Distribution of vi and pi Distribution of ℓi Mean Standard deviation Min Max

U({0} ∪ [T ]) 82.9 5.7 58.8 96.8
vi ∼ U(0, 1), pi ∼ U(0, 1) U({⌊ i

nT ⌋, . . . , T}) 73.7 6.4 51.9 91.3
ℓi = T 71.6 6.9 47.4 91.6

U({0} ∪ [T ]) 71.0 7.3 43.9 89.2
vi ∼ U(0, 10), pi ∼ U(0, 10) U({⌊ i

nT ⌋, . . . , T}) 60.3 7.1 39.5 81.6
ℓi = T 58.1 7.6 33.0 81.0

U({0} ∪ [T ]) 64.3 9.4 34.5 88.1
vi ∼ E(1), pi ∼ E(1) U({⌊ i

nT ⌋, . . . , T}) 50.9 9.4 24.8 87.6
ℓi = T 48.2 10.1 20.0 89.1

U({0} ∪ [T ]) 49.4 11.2 16.1 79.1
vi ∼ E(1/10), pi ∼ E(1/10) U({⌊ i

nT ⌋, . . . , T}) 37.2 9.8 13.4 63.7
ℓi = T 34.7 9.4 11.3 67.1

Figure 1: Comparison between the ratios of revenue decrease and of sales increase as ℓ goes from 0 to
T and ℓi = ℓ, ∀i ∈ N .

Revenue vs market shares. To assess the influence of the visibility constraints on the market

share, we compute the optimal value of APV for all visibility constraints (ℓi)1≤i≤n equal to a same

value ℓ going from 0 to T (for vi ∼ U(0, 1), pi ∼ U(0, 1)). We then compute the expected sales

associated to this expected revenue, and plot in Figure 1 the ratio of revenue decrease versus

the ratio of sales increase by dividing them by their unconstrained value, for normalization.

It is interesting to see that, while the revenue decreases as we enforce more visibility con-

straints on products, on the contrary, the sales increase. Indeed, based on the structure of the

optimal nested solution we identified, S∗
t = Lt ∪ . . . ∪ LT , we see that the sizes of the S

∗
t increase

when the ℓi’s increase. Furthermore, if we take a look at the sales optimization problem

max
S1,...,ST

T∑
t=1

V (St)

1 + V (St)
,

that corresponds to pi = 1 for all i ∈ N , we can see that the more products we add to each St,

the higher the sales since the function x 7→ x
1+x is increasing with respect to x.
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Therefore, we can see that while visibility constraints decrease the revenue, they increase the

sales, which can be interesting if the objective of the platform is to capture market shares.

Marginal study of one product. Finally, it is interesting to illustrate the marginal effect of

the visibility constraints on one product. For this purpose, we take an instance of our generated

data with vi ∼ E(1), pi ∼ E(1), ℓi ∼ U([[0, T ]]). Then, we select a particular i ∈ N , and vary ℓi

from 0 to T while the others ℓj stay fixed at their generated value ℓj . In Figure 2, we plot the

variation of the revenue loss with respect to ℓi

Figure 2: Expected revenue loss as ℓi goes from 0 to T for a specific product i.

We remark that the loss is convex with respect to ℓi. Indeed, let (S∗
t )1≤t≤T =

(LT ∪ . . . ∪ Lt)1≤t≤T be the nested solution for constraint ℓi, and ℓi 7→ ∆(ℓi) the revenue loss

function, as defined in (12), and considered as a function of constraint ℓi when all the other

visibility constraints (ℓj)j ̸=i are fixed. We have

∆(ℓi + 1)−∆(ℓi)− (∆(ℓi)−∆(ℓi − 1)) = R(S∗
t+1 ∪ {i}) +R(S∗

t )−R(S∗
t ∪ {i})−R(S∗

t+1) ≥ 0,

where the inequality holds by supermodularity and S∗
t ⊆ S∗

t+1, which shows ℓi 7→ ∆(ℓi) is

convex.

We can then, in the case where all the revenue from the sales of a product comes to its vendor,

compute the expected revenue of product i versus the fee its vendor will pay as the visibility

constraint ℓi increases. The expected revenue of product i is given by:
∑T

t=1 1(i ∈ S∗
t )pi

vi
1+V (S∗

t )
,

while the fee charged Γi is defined in (13). This is depicted in Figure 3.

For this particular product, we can see that enforcing a visibility constraint ℓi is profitable

until ℓi = 17 (with respect to T = 30), and becomes non profitable after. The profit associated

with this constraint is the difference between the revenue and the fee, and is maximized for

the value ℓi = 7 (see Figure 3). This is an example of a product that does not belong to the

optimal unconstrained set S∗ (since the revenue is 0 when ℓi = 0, it means the product was not

included), but for which adding a visibility constraint allows to boost sales and the revenue of

the vendor, while paying a small fee to compensate the platform’s revenue loss.

One interesting observation here is that the fee paid by the vendor of product i (0.8 when

ℓi = T = 30 on Graph 3) is higher than the loss caused by the introduction of ℓi = T = 30 while

the others products were enforced previously (loss of 0.5 as we can read on Graph 2). However,
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Figure 3: Expected revenue of product i versus fee paid by product i as ℓi goes from 0 to T .

this can be explained: as the expanded revenue function is supermodular and decreasing, the

revenue decreases most when the first products are enforced, and then decreases less. Therefore,

enforcing visibility constraints on product i decreases less the revenue if we already have some

visibility constraints on the other products than if i is the first product on which the constraints

are enforced. However, our pricing policy Γi does not take into account such sequential order of

arrival, and prices each product globally, so that two products with the same price and weight

pay the same fee for identical visibility constraints.

6 Conclusions and future directions

In this paper, we introduced the problem of assortment optimization with visibility constraints

APV, motivated by situations in e-commerce and online advertising in which a platform aims

at ensuring a minimal exposure for some or all products. We prove that this problem can be

solved in polynomial time, and devise an efficient algorithm to compute an optimal solution. Our

algorithm leverages the supermodularity of an altered version of the expected revenue function,

that allows us to identify the nested structure of an optimal solution. We also consider an

extension of the problem with cardinality constraints on the assortments offered. We prove that

the problem becomes strongly NP-hard even under uniform prices, and that in particular, it

admits no FPTAS, unless P = NP . We then devise a PTAS for the special case of equal prices.

Finally, we evaluate the revenue loss caused by the visibility constraints enforced, and propose a

fair pricing strategy to charge each vendor a fee proportional to the contribution of its product

to the revenue loss. Finally,

Future directions. A promising future research direction involves developing an approxi-

mation algorithm for the assortment optimization problem with visibility and cardinality con-

straints, considering general prices. Furthermore, exploring the assortment problem with visi-

bility using alternative choice models such as the Markov Chain choice model or Nested Logit

represents another fruitful avenue for investigation.
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A Revenue Maximization Under MNL

In this appendix, we present for completeness two standard known results about assortment

optimization under MNL. Lemma A.1, shows that the optimal assortment for AP is revenue-

ordered. This is a standard result in assortment optimization under MNL (Proposition 6 Talluri

and Van Ryzin, 2004, 25). Lemma A.2 provides a necessary and sufficient conditions under

which adding a given product to a given assortment increases the overall revenue. Consider the

classic unconstrained revenue maximization problem under MNL, defined as follows

max
S⊆N

R(S). (AP)

Lemma A.1. Let R∗ = maxS⊆N R(S) be the optimal value of AP. There exists a revenue ordered

optimal solution to AP, given by S∗ = {i ∈ N , pi ≥ R∗}.

Before proving Lemma A.1, we state and prove the following more general lemma, which

shows that adding a product i to any given assortment S increases the objective if and only if

the price of the added product i is greater than or equal to the original revenue R(S).

Lemma A.2. For any assortment S ⊆ N and any product k ∈ N \ S, the three following

propositions are equivalent:

(i) R(S ∪ {k}) ≥ R(S), (ii) pk ≥ R(S), (iii) pk ≥ R(S ∪ {k}).

Proof of Lemma A.2. We simply show that R(S ∪ {k}) is a convex combination of R(S) and

pk. In fact, simple algebra gives

R (S ∪ {k}) =
∑
i∈S

pi · ϕ (i, S ∪ {k}) + pk · ϕ (k, S ∪ {k}) = R(S) · α+ pk · (1− α),

where α = (1 + V (S))/(1 + V (S ∪ {k})). It is easy to see that α ∈ (0, 1), which proves that

R(S ∪ {k}) is a convex combination of R(S) and pk. Consequently, R(S ∪ {k}) belongs to the

closed interval whose extremities are R(S) and pk. In particular, we have R(S ∪ {k}) ≥ R(S)

if and only if pk ≥ R(S), and if and only if pk ≥ R(S ∪ {k}).

Proof of Lemma A.1. Let S̃ be the optimal assortment of AP with maximal cardinality. In the

case of ties, let S̃ be any arbitrary such assortment. In the following, we show that S∗ = S̃

(which in particular implies that there can be no ties). Let i ∈ S∗, and assume by contradiction

that i /∈ S̃. One one hand, we know by optimality of S̃ that R(S̃) = R∗. On the other hand,
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we know that pi ≥ R∗ by definition of S∗. Therefore, pi ≥ R(S̃) and we can apply lemma A.2,

which implies that R(S̃ ∪ {i}) ≥ R(S̃), and hence that S̃ ∪ {i} is also an optimal assortment.

Since S̃ ⊊ S̃ ∪{i}. This contradicts the definition of S̃ as the optimal assortment with maximal

cardinality, and therefore shows that i ∈ S̃. Now, let i ∈ S̃. Assume by contradiction that i /∈ S∗,

i.e., pi < R∗ = R(S̃). In particular, this implies using Lemma A.2 that R(S̃ \ {i}) > R(S̃),

which contradicts the optimality of S̃, and therefore shows that i ∈ S∗. This proves the second

inclusion, and thereby completes the proof of the lemma.

B Additional Proofs from Section 4

B.1 Proof of Theorem 4.1

In order to show the result, we reduce the 3-partition problem to APVC. In the 3-PARTITION

problem, the input consists on an integer T , and a set of 3T integers A = {a1, . . . , a3T } such

that
∑3T

i=1 ai = BT for some B ≥ 0, and seeks to determine whether A can be partitioned into

T triplets A1, . . . , AT , and such that the sum of elements of each triplet is B. This problem

is known to be strongly NP-hard (see Garey and Johnson (1975) for example, 3-PARTITION is

referred to there as P [3, 1]).

Given an arbitrary instance of 3-PARTITION, we construct the following instance of APVC.

We consider 3T products, simply denoted by the universe N = {1, . . . , 3T}, and such that

for all i ∈ N , vi = ai, pi = 1 and ℓi = 1. In particular, note that V (N ) = BT . Finally,

let k = 3 in our instance, the upper bound on the cardinality of any offered assortment. A

first important observation is that any feasible solution for this instance of APVC shows each

product to exactly one customer. In other words, if S1, . . . , ST is a feasible solution for this

instance of APVC, then for any product i ∈ N , there exists a unique t ∈ [T ] such that i ∈ St.

Indeed, one one hand, the visibility constraints impose that each product be shown at least

once, and on the other hand, since each assortment can contain at most k = 3 products and

there are 3T products in our universe, this implies that each product must be shown at most

once, which shows the observation. A natural consequence of this observation is that for any

feasible solution S1, . . . , ST of our instance of APVC, we have
∑T

t=1 V (St) = V (N ) = BT. We

denote by S∗ = (S∗
1 , . . . , S

∗
T ) an optimal sequence of assortments for this instance of APVC. In

order to show the strong NP-hardness, we introduce the following claim.

Claim B.1. The answer to the 3-PARTITION is yes if and only if
∑T

t=1R(S∗
t ) = T ·B/(1 +B).

Before proving the claim, note that it directly implies the strong NP-hardness of APVC, even

in the special case of equal prices and integer preference-weights, as it shows that 3-PARTITION

reduces to this special case of APVC (see (Observation 5 Garey and Johnson, 1978, 504)). Let

us now prove the claim.

Proof of Claim B.1.

Direct implication. Suppose that a valid 3-PARTITION exists, which we denote by A1, . . . , AT ,
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and let St = {i : ai ∈ At} for t ∈ [T ]. On one hand, we have

T∑
t=1

R(S∗
t ) ≥

T∑
t=1

R(St) = T · B

1 +B
,

and on the other hand, we have using Jensen’s inequality and the concavity of the map x 7→
x/(1 + x),

T∑
t=1

R(S∗
t ) = T

T∑
t=1

1

T
· V (S∗

t )

1 + V (S∗
t )

≤ T ·
∑T

t=1
V (S∗

t )
T

1 +
∑T

t=1
V (S∗

t )
T

= T · B

1 +B
.

This implies that
∑T

t=1R(S∗
t ) = T ·B/(1 +B) and proves the direct implication.

Indirect implication. Assume that

T∑
t=1

R(S∗
t ) = T · B

1 +B
.

On one hand, we have according to Cauchy-Schwarz inequality,

T∑
t=1

(1 + V (S∗
t )) ·

T∑
t=1

1

1 + V (S∗
t )

≥ T 2,

with equality if and only if there exists some λ such that for all t ∈ [T ], 1 + V (S∗
t ) = λ/(1 +

V (S∗
t )), which in turn is equivalent to V (S∗

1) = V (S∗
2) = · · · = V (S∗

T ) =
√
λ− 1.

On the other hand, it is easy to see that

T∑
t=1

R(S∗
t ) = T −

T∑
t=1

1

1 + V (S∗
t )
.

Therefore,

T∑
t=1

(1 + V (S∗
t )) ·

T∑
t=1

1

1 + V (S∗
t )

= (T + V (N )) ·

(
T −

T∑
t=1

R(S∗
t )

)

= (T + TB) ·
(
T − T · B

1 +B

)
= T 2,

This proves the equality case in Cauchy-Schwarz inequality, and consequently that V (S∗
1) =

V (S∗
2) = · · · = V (S∗

T ). Finally, taking At = {ai : i ∈ S∗
t } for t ∈ [T ], it is easy to see that

A1, . . . , AT is a valid 3-PARTITION, which concludes the proof of the claim.

In the remainder of this proof, we show that the problem does not admit an FPTAS, relying

on the following claim.
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Claim B.2. If the answer to the 3-PARTITION is no, then

T∑
t=1

R(S∗
t ) ≤ (1− δ) · T · B

1 +B
,

where δ = 2
TB2(B+2)

.

Finally, the non-existence of an FPTAS for this problem follows naturally. Indeed, assume

for the sake of contradiction that an FPTAS exists for APV. Then by taking ϵ < δ, say ϵ = δ/2

for example, the FPTAS would return a solution (S∗
1 , . . . , S

∗
T ) with an objective greater than or

equal to (1− ϵ) ·TB/(1+B) if an only if a valid partition exists. This yields an algorithm that

solves the 3-PARTITION problem in pseudo-polynomial time, thereby contradicting its strong

NP-hardness.

Conclusion. APV is strongly NP-hard, and admits no FPTAS.

Proof of Claim B.2. Suppose the answer to the 3-PARTITION problem is no. Consider the fol-

lowing integer program:

max
b∈NT

T∑
t=1

bt
1 + bt

s.t.

T∑
t=1

bt = BT

b ̸= (B,B, . . . , B).

(14)

Intuitively, this program’s objective is to partition a budget of BT into T bins, under the

constraint that not all the bins receive the same fraction of budget, and such that each bin

t ∈ [T ] yields a return of bt/(1 + bt). Let b
∗ be the optimal solution of this problem. The idea

of the proof is to show that:

T∑
t=1

R(S∗
t ) ≤

T∑
t=1

b∗t
1 + b∗t

= (1− δ) · TB

1 +B
. (15)

The inequality. Let b = (V (S∗
1), . . . , V (S∗

T )). We have
∑T

t=1 V (S∗
t ) = BT , and since a

valid partition does not exist, then b ̸= (B,B, . . . , B) (see Claim B.1). Therefore b is feasible

for (14), and we have:
T∑
t=1

R(S∗
t ) =

T∑
t=1

bt
1 + bt

≤
T∑
t=1

b∗t
1 + b∗t

,

by the optimality of b∗.

The equality. We show that (B+1, B−1, B, . . . , B) is an optimal solution for (14). Towards

this purpose, we start by showing that the number of indices u for which b∗u ̸= B is at least two,

before showing by contradiction that it is exactly 2, then we show that the entries of these two

indices in b∗ are exactly B + 1 and B − 1. Since the indices are all interchangeable, this shows

that (B + 1, B − 1, B, . . . , B) is an optimal solution for (14).
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Let U ⊆ [T ] be the set of indices u such that b∗u ̸= B, i.e., U = {u ∈ [T ] : b∗u ̸= B}. First,

U ̸= ∅, by the second constraint of (14). Also, if we suppose by contradiction that |U| = 1, say

U = {1} without loss of generality, then
∑T

t=1 b
∗
t = b∗1 + (T − 1)B ̸= BT , which contradicts the

first constraint of (14). Therefore, |U| ≥ 2.

Suppose by contradiction that |U| > 2. Since the elements of U cannot all be smaller,

or all be greater than B (otherwise the second constraint in (14) does not hold), there exists

u1, u2 ∈ [T ] such that b∗u1
≥ B + 1 and b∗u2

≤ B − 1. Also, since |U| > 2, there exists some

u3 ̸= u1, u2, such that b∗u3
̸= B. For simplicity, we assume without loss of generality that u1 = 1,

u2 = 2 and u3 = 3. Let b̃ = (b∗1 − 1, b∗2 + 1, b∗3, . . . , b
∗
T ), in other words, we transfer a unit of the

budget from b∗1 to b∗2. First,
∑T

t=1 b̃t =
∑T

t=1 b
∗
t = BT . Moreover, since 3 ∈ U , b̃3 = b∗3 ̸= B,

which implies that b̃ is feasible for (14). Finally, we have

T∑
t=1

b̃t

1 + b̃t
=

b∗1 − 1

1 + b∗1 − 1
+

b∗2 + 1

1 + b∗2 + 1
+

T∑
t=3

b∗t
1 + b∗t

>
b∗1

1 + b∗1
+

b∗2
1 + b∗2

+

T∑
t=3

b∗t
1 + b∗t

=

T∑
t=1

b∗t
1 + b∗t

,

where the inequality in the second line is due to the fact that the map

f : x 7→ b∗1 − x

1 + b∗1 − x
+

b∗2 + x

1 + b∗2 + x

is monotonically (strictly) increasing on [0, 1] (which we show at the end of the proof for com-

pleteness). This contradicts the optimality of b∗, and thereby shows that |U| = 2.

Assume without loss of generality that U = {1, 2}, and that b∗1 = B+α, and b∗2 = B−α for

some α ∈ N \ {0}. Assume by contradiction that α ≥ 2, then using the same argument as the

contradiction above, the map

x 7→ b∗1 − x

1 + b∗1 − x
+

b∗2 + x

1 + b∗2 + x

is increasing, and we can therefore transfer a unit of the budget from 1 to 2, and strictly

increase the objective of the obtained solution. Moreover, since α ≥ 2, b∗1 − 1 ̸= B, and the

second constraint in (14) is valid, which proves the feasibility of the obtained solution, and

contradicts the optimality of b∗. Therefore, α = 1 and (B + 1, B − 1, B, . . . , B) is an optimal

solution for (14).

Going back to the seeked equality (15), we have

T∑
t=1

b∗t
1 + b∗t

=
B − 1

1 +B − 1
+

B + 1

1 +B + 1
+ (T − 2) · B

1 +B

=
TB

1 +B
· (1− δ) .
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The second equality follows from basic algebra operations. This proves Equation (15), which in

turn proves the claim.

Leftover: Proof of the strict monotonicity of f . For all x ∈ [0, 1], recall that

f(x) =
b∗1 − x

1 + b∗1 − x
+

b∗2 + x

1 + b∗2 + x
.

We differentiate f , and we have for all x ∈ [0, 1]

f ′(x) =
1

(1 + b∗2 + x)2
− 1

(1 + b∗1 + x)2

Therefore, it is easy to see that f ′(x) > 0 for all x < (b∗1−b∗2)/2. Since b
∗
1 ≥ B+1 and b∗2 ≤ B−1,

then (b∗1 − b∗2)/2 ≤ 1, which proves that f is monotonically strictly increasing on [0, 1].

B.2 Proof of Lemma 4.4

In this proof, we show separate inequalities for light, medium, and heavy customers. Combining

these inequalities then gives the desired result.

Heavy customers: If t ∈ [T ] is heavy then by the fifth constraint of ILP, we have

∑
i∈N

vix
∗
it ≥

1

ϵ
.

Therefore, ∑
i∈N vix

∗
it

1 +
∑

i∈N vix∗it
≥ 1

1 + ϵ
≥ (1− ϵ) · v(S∗

t )

1 + v(S∗
t )
. (16)

Medium customers: If t ∈ Gℓ for some ℓ ∈ {1, . . . , L}, then we have

∑
i∈N

vixit ≥ ϵ · (1 + ϵ)ℓ−1 ≥ 1

1 + ϵ
v(S∗

t ),

where the first inequality follows from the fifth constraint of ILP, and the second follows from

the fact that v(S∗
t ) ≤ ϵ · (1 + ϵ)ℓ by definition of customers of type ℓ. Therefore,∑

i∈N vix
∗
it

1 +
∑

i∈N vix∗it
≥ 1

1 + ϵ
· v(S∗

t )

1 + v(S∗
t )

= (1− ϵ) · v(S∗
t )

1 + v(S∗
t )
. (17)

Light customers: Let X∗ be the solution defined as follows, for every t ∈ [T ], and every i ∈ N ,

X∗
it = 1{i ∈ S∗

t }. It is easy to see that by construction of ILP, the solution X∗ is feasible for

ILP, and therefore, it is also feasible for its linear relaxation. Therefore, since x∗ is optimal for

ILP, we have ∑
t∈Glight

∑
i∈N

vix
∗
it ≥

∑
t∈Glight

∑
i∈N

viX
∗
it =

∑
t∈Glight

v(S∗
t ).
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We also have for all t ∈ Glight,
∑

i∈N vix
∗
it ≤ ϵ by the sixth constraint of ILP. Therefore,

∑
t∈Glight

∑
i∈N vix

∗
it

1 +
∑

i∈N vix∗it
≥ 1

1 + ϵ
·
∑

t∈Glight

∑
i∈N

vix
∗
it

≥
∑

t∈Glight

v(S∗
t )

≥
∑

t∈Glight

v(S∗
t )

1 + v(S∗
t )
. (18)

We conclude the proof by combining Equations (16), (17) and (18), as we have

T∑
t=1

∑
i∈N vix

∗
it

1 +
∑

i∈N vix∗it
≥ (1− ϵ) ·

T∑
t=1

v(S∗
t )

1 + v(S∗
t )
.

B.3 Proof of Claim 4.7

We have

W l
t =

Q∑
q=1

∑
i∈Dq

viXit

=

Q∑
q=1

ϵ5 · (1 + ϵ)q−1
∑
i∈Dq

Xit

=

Q∑
q=1

ϵ5 · (1 + ϵ)q−1
∑
i∈Dq

x∗it

=

Q∑
q=1

∑
i∈Dq

vix
∗
it

= wl
t,

where the second equality follows from the definition of Dq, and the third inequality follows

from the degree preservation property (P2).

B.4 Proof of Claim 4.8

First, note that the proof of Claim 4.7 holds even for the case where t is a light customer.

Therefore, we can decompose v(St) into a sum of a random variable W s
t representing the contri-

bution of products in D0, and a deterministic random variable W l
t
a.s
= wl

t (which will be treated

as a constant from this point on), i.e.,

v(St) = W s
t + wl

t.

For simplicity of notation, and only in this proof, we use the notation A := W s
t and b := wl

t. This

proof consists on two steps. In the first step, we lower bound the expectation of v(St)/(1+v(St))

with
∑

i∈N vix
∗
it, up to a constant α < 1, mainly using a convexity argument. In other words,
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we provide a constant α such that

v(St)/(1 + v(St)) ≥ α ·
∑
i∈N

vix
∗
it.

Then, in the second step, we show that α = (1−O(ϵ)).

Step 1: Let A be the support of the random variable A, i.e.,

A = {a ∈ R : P [A = a] > 0} .

We have

E
[

v(St)

1 + v(St)

]
= E

[
A+ b

1 +A+ b

]
=
∑
a∈A

a+ b

1 + a+ b
P [A = a]

=

(∑
a∈A

1

1 + a+ b
· (a+ b) · P [A = a]

b+ E [A]

)
· (b+ E [A]) .

For each a ∈ A, let f(a) = 1
1+a+b and let za = (a+b)·P[A=a]

b+E[A] . It is easy to see that
∑

a∈A za = 1,

and that f is a convex function on (0,+∞). Therefore, using Jensen’s inequality, and recalling

that E[A] + b = E[v(St)] we have

E
[

v(St)

1 + v(St)

]
≥ f

(∑
a∈A

za · y

)
· E [v(St)] = α · E [v(St)] ,

where α = f
(∑

a∈A za · a
)
.

Step 2. Let us now show that α = 1−O(ϵ). We have

α =
1

1 + b+
∑

a∈A(a+b)·P[A=a]·a
b+E[A]

=
1

1 + b+ bE[A]+E[A2]
b+E[A]

=
1

1 + b+ E[A] + V ar[A]
b+E[A]

. (19)

In order to show the desired property, we need to bound the denominator in Equation (19). To

this purpose we have

V ar[A] = V ar

∑
i∈D0

viXit


≤
∑
i∈D0

v2i · V ar[Xit]
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≤ ϵ5 ·
∑
i∈D0

vi · E[Xit]

= ϵ5 · E[A].

Therefore, by replacing in Equation (19), we have

α ≥ 1

1 + ϵ+ ϵ5
≥ 1

1 + 2ϵ
≥ 1− 2ϵ.

Finally, combining steps 1 and 2, we have

v(St)

1 + v(St)
≥ α · E[v(St)] ≥ (1− 2ϵ) ·

∑
i∈N

vix
∗
it ≥ (1− 2ϵ) ·

∑
i∈N vix

∗
it

1 +
∑

i∈N vix∗it
.
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