

Sequential Detection of Convexity from Noisy Function Evaluations

Nanjing Jian[†] Shane G. Henderson[†] Susan R. Hunter[‡] † School of Operations Research and Information Engineering, Cornell University ‡ School of Industrial Engineering, Purdue University

> 2014 Winter Simulation Conference, Savannah, GA December 9, 2014 Supported in Part by NSF CMMI-1200315

ENT

Problem Statement

- Consider a function $g: S \subseteq \mathbb{R}^d \to \mathbb{R}$ that can only be evaluated with the presence of noise at r points $\boldsymbol{x} = (\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_r) \in \mathbb{R}^d$. Let the true values of the function g at \boldsymbol{x} be denoted $\boldsymbol{g} = (g(\boldsymbol{x}_1), g(\boldsymbol{x}_2), \dots, g(\boldsymbol{x}_r))^T$.
- We wish to determine the convexity/non-convexity of g with some probabilistic guarantee, using only estimates of its values obtained through simulation at the points x.
- $\blacklozenge \ g \text{ is convex if a convex function exists that coincides with } g \\ \text{ at those points.}$

2 Algorithm

- **3** Subroutine Alternatives
- **4** Numerical Experiments
- **5** Conclusion

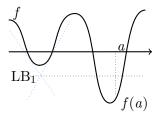
• Learning about black-box functions

"Sorry, it's curiosity"

• Learning about black-box functions

• Stopping rule for global (stochastic) optimization algorithms

"Sorry, it's curiosity"



MOTIVATION
Algorithm
Subroutine Alternatives
Numerical Experiments
Conclusion
References
4/29

•••
•••
•••
•••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••

Previous research: One-shot frequentist hypothesis test, with the number of samples predetermined.

Dim	Distance	Regression parameters
1	Juditsky and Nemirovski [2002]	Baraud et al. [2005]
		Diack and Thomas-Agnan [1998]
		Meyer [2012]
		Wang and Meyer [2011]
> 1	Silvapulle and Sen [2001]	Lau [1978]
		Abrevaya and Jiang [2005]

Previous research: One-shot frequentist hypothesis test, with the number of samples predetermined.

Dim	Distance	Regression parameters
1	Juditsky and Nemirovski [2002]	Baraud et al. [2005]
		Diack and Thomas-Agnan [1998]
		Meyer [2012]
		Wang and Meyer [2011]
> 1	Silvapulle and Sen [2001]	Lau [1978]
		Abrevaya and Jiang [2005]

Our Goal: A sequential algorithm in the Bayesian setting with indefinite number of samples and can be stopped at any time.

2 Algorithm

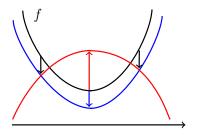
- 3 Subroutine Alternatives
- 4 Numerical Experiments
- **5** Conclusion

Assumptions

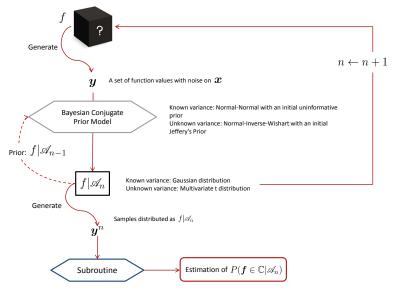
- 1. We obtain realizations of a random vector $\boldsymbol{Y} = \boldsymbol{f} + \boldsymbol{\xi}$, where $\boldsymbol{\xi} \sim N(\boldsymbol{0}, \Gamma) \in \mathbb{R}^r$, and Γ positive-definite if known.
- 2. Conditional on f, the samples $(y_n : n = 1, 2, ...)$ in each iteration consists of i.i.d. random

vectors.

Note that Γ is not necessarily diagonal because using Common Random Numbers can maintain the function structural properties (e.g. Chen et al. [2012]).



Main Idea



Convergence

Theorem

Let $p_n = P(\mathbf{f} \in \mathbb{C} | \mathscr{A}_n)$ be the *n*-iteration posterior probability that \mathbf{f} is convex. As $n \to \infty$, $p_n - \mathbb{1}{\{\mathbf{f} \in \mathbb{C}\}} \to 0$ a.s.

Motivation Algorithm Subroutine Alternatives Numerical Experiments Conclusion References 9/29

Convergence

Theorem

Let $p_n = P(\mathbf{f} \in \mathbb{C} | \mathscr{A}_n)$ be the *n*-iteration posterior probability that \mathbf{f} is convex. As $n \to \infty$, $p_n - \mathbb{1}{\{\mathbf{f} \in \mathbb{C}\}} \to 0$ a.s.

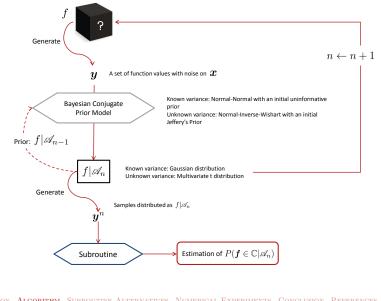
Proof sketch (assume Γ known):

- **1.** $P(f \in \partial \mathbb{C}) = 0$ leaves cases $f \notin \mathbb{C}$ and $f \in \mathbb{C}^{\circ}$.
- **2.** $\mu_n \boldsymbol{f} \to 0$ in probability and $\Lambda_n \sim \Gamma/n \to \boldsymbol{0}$ as $n \to \infty$.
- **3.** When $f \notin \mathbb{C}$, define $D_f = \min_{h \in \mathbb{C}} ||f h||$, then $p_n - \mathbb{1} \{ f \in \mathbb{C} \} = P(\mu_n + \Lambda_n^{1/2} Z \in \mathbb{C} | \mathscr{A}_n) \leq P(||\mu_n + \Lambda_n^{1/2} Z - f|| \geq D_f | \mathscr{A}_n) \leq P(||\mu_n - f|| \geq D_f / 2 | \mathscr{A}_n) + P(||\Lambda_n^{1/2} Z|| \geq D_f / 2 | \mathscr{A}_n) \to 0$ in probability by Markov's Inequality. A lower bound of 0 can be given when $f \in \mathbb{C}^\circ$ similarly.
- 4. $(p_n : n \ge 0)$ is a uniformly integrable martingale, so the convergence is almost surely.

For the unknown Γ case, a similar proof can be constructed by conditioning on $\Gamma.$

Motivation Algorithm Subroutine Alternatives Numerical Experiments Conclusion References 9/29 oo oooo oooo o

Main Idea



MOTIVATION ALGORITHM SUBROUTINE ALTERNATIVES NUMERICAL EXPERIMENTS CONCLUSION REFERENCES 10/29

2 Algorithm

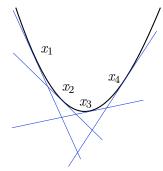
3 Subroutine Alternatives

4 Numerical Experiments

5 Conclusion

Motivation Algorithm Subroutine Alternatives Numerical Experiments Conclusion References 11/29

Convexity



 $oldsymbol{g} \in \mathbb{C}$ if and only if each of the following $\mathrm{LS}(i), i \in \{1, \dots, r\}$

$$\boldsymbol{a}_i^T \boldsymbol{x}_i + b_i = g(\boldsymbol{x}_i) \\ \boldsymbol{a}_i^T \boldsymbol{x}_j + b_i \leq g(\boldsymbol{x}_j), \ \forall j \in \{1, \dots, r\} \setminus \{i\}.$$

is feasible in the variables $\boldsymbol{a}_i \in \mathbb{R}^d$ and $b_i \in \mathbb{R}_{(\text{Murty [1988]})}$.

MOTIVATION ALGORITHM SUBROUTINE ALTERNATIVES NUMERICAL EXPERIMENTS CONCLUSION REFERENCES 12/29

Vanilla Monte Carlo Method

In each iteration of the main algorithm, after updating the hyper-parameters of the posterior distribution,

1. Simulate *m* i.i.d. samples y_k^n from the predictive distribution $f|\mathscr{A}_n$.

Vanilla Monte Carlo Method

In each iteration of the main algorithm, after updating the hyper-parameters of the posterior distribution,

- 1. Simulate *m* i.i.d. samples y_k^n from the predictive distribution $f|\mathscr{A}_n$.
- 2. For each sample \boldsymbol{y}_k^n , set $\boldsymbol{g} = \boldsymbol{y}_k^n$ in $\mathrm{LS}(i), i = 1, \ldots, r$. Obtain an indicator $\mathbbm{1} \{ \boldsymbol{y}_k^n \in \mathbb{C} \}$ that is 0 if any of $\mathrm{LS}(i), i = 1, \ldots, r$ is infeasible and 1 otherwise.

Vanilla Monte Carlo Method

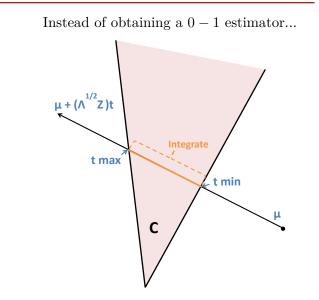
In each iteration of the main algorithm, after updating the hyper-parameters of the posterior distribution,

- 1. Simulate *m* i.i.d. samples y_k^n from the predictive distribution $f|\mathscr{A}_n$.
- 2. For each sample \boldsymbol{y}_k^n , set $\boldsymbol{g} = \boldsymbol{y}_k^n$ in $\mathrm{LS}(i), i = 1, \ldots, r$. Obtain an indicator $\mathbbm{1} \{ \boldsymbol{y}_k^n \in \mathbb{C} \}$ that is 0 if any of $\mathrm{LS}(i), i = 1, \ldots, r$ is infeasible and 1 otherwise.
- **3.** Output the estimator $\hat{p}_n = \frac{1}{m} \sum_{k=1}^m \mathbb{1} \{ \boldsymbol{y}_k^n \in \mathbb{C} \}$ as the average of all indicators.

MOTIVATION ALGORITHM SUBROUTINE ALTERNATIVES NUMERICAL EXPERIMENTS CONCLUSION REFERENCES 13/29

SEQUENTIAL DETECTION OF CONVEXITY FROM NOISY FUNCTION EVALUATIONS

Conditional Monte Carlo Method



MOTIVATION ALGORITHM SUBROUTINE ALTERNATIVES NUMERICAL EXPERIMENTS CONCLUSION REFERENCES 14/29

Why would this work?

 $P(\boldsymbol{f} \in \mathbb{C}|\mathscr{A}_n)$

MOTIVATION ALGORITHM SUBROUTINE ALTERNATIVES NUMERICAL EXPERIMENTS CONCLUSION REFERENCES 15/29

Why would this work?

$$P(\boldsymbol{f} \in \mathbb{C} | \mathscr{A}_n) = E_n \left(\mathbb{1} \left\{ \Lambda_n^{1/2} X + \mu_n \in \mathbb{C} \right\} \right), \text{ for } X \sim N(0, I) \text{ or } t_{\nu_n}(0, I)$$

Why would this work?

$$P(\boldsymbol{f} \in \mathbb{C} | \mathscr{A}_n)$$

= $E_n \left(\mathbb{1} \left\{ \Lambda_n^{1/2} X + \mu_n \in \mathbb{C} \right\} \right), \text{ for } X \sim N(0, I) \text{ or } t_{\nu_n}(0, I)$
= $E_n \left(\mathbb{1} \left\{ T \Lambda_n^{1/2} Z + \mu_n \in \mathbb{C} \right\} \right), \text{ for } Z \text{ uniform on } S^{r-1}$

Why would this work?

$$P(\boldsymbol{f} \in \mathbb{C} | \mathscr{A}_n)$$

= $E_n \left(\mathbb{1} \left\{ \Lambda_n^{1/2} X + \mu_n \in \mathbb{C} \right\} \right), \text{ for } X \sim N(0, I) \text{ or } t_{\nu_n}(0, I)$
= $E_n \left(\mathbb{1} \left\{ T \Lambda_n^{1/2} Z + \mu_n \in \mathbb{C} \right\} \right), \text{ for } Z \text{ uniform on } S^{r-1}$
= $E_n \left(E \left(\mathbb{1} \left\{ T \Lambda_n^{1/2} Z + \mu_n \in \mathbb{C} \right\} | Z \right) \right)$

Motivation Algorithm Subroutine Alternatives Numerical Experiments Conclusion References 15/29

Why would this work?

$$P(\boldsymbol{f} \in \mathbb{C}|\mathscr{A}_n)$$

= $E_n\left(\mathbbm{1}\left\{\Lambda_n^{1/2}X + \mu_n \in \mathbb{C}\right\}\right), \text{ for } X \sim N(0, I) \text{ or } t_{\nu_n}(0, I)$
= $E_n\left(\mathbbm{1}\left\{T\Lambda_n^{1/2}Z + \mu_n \in \mathbb{C}\right\}\right), \text{ for } Z \text{ uniform on } S^{r-1}$
= $E_n\left(E\left(\mathbbm{1}\left\{T\Lambda_n^{1/2}Z + \mu_n \in \mathbb{C}\right\}|Z\right)\right)$
= $E_n(P(T \in [t_{\min}(Z), t_{\max}(Z)]|Z))$

MOTIVATION ALGORITHM SUBROUTINE ALTERNATIVES NUMERICAL EXPERIMENTS CONCLUSION REFERENCES 15/29

Why would this work?

$$P(\boldsymbol{f} \in \mathbb{C} | \mathscr{A}_n)$$

= $E_n \left(\mathbb{1} \left\{ \Lambda_n^{1/2} X + \mu_n \in \mathbb{C} \right\} \right), \text{ for } X \sim N(0, I) \text{ or } t_{\nu_n}(0, I)$
= $E_n \left(\mathbb{1} \left\{ T \Lambda_n^{1/2} Z + \mu_n \in \mathbb{C} \right\} \right), \text{ for } Z \text{ uniform on } S^{r-1}$
= $E_n \left(E \left(\mathbb{1} \left\{ T \Lambda_n^{1/2} Z + \mu_n \in \mathbb{C} \right\} | Z \right) \right)$
= $E_n(P(T \in [t_{\min}(Z), t_{\max}(Z)] | Z))$
= $E_n(F_{T|Z}(t_{\max}(Z)) - F_{T|Z}(t_{\min}(Z)))$

MOTIVATION ALGORITHM SUBROUTINE ALTERNATIVES NUMERICAL EXPERIMENTS CONCLUSION REFERENCES 15/29

Why would this work?

$$P(\boldsymbol{f} \in \mathbb{C}|\mathscr{A}_n)$$

= $E_n \left(\mathbb{1} \left\{ \Lambda_n^{1/2} X + \mu_n \in \mathbb{C} \right\} \right), \text{ for } X \sim N(0, I) \text{ or } t_{\nu_n}(0, I)$
= $E_n \left(\mathbb{1} \left\{ T\Lambda_n^{1/2} Z + \mu_n \in \mathbb{C} \right\} \right), \text{ for } Z \text{ uniform on } S^{r-1}$
= $E_n \left(E \left(\mathbb{1} \left\{ T\Lambda_n^{1/2} Z + \mu_n \in \mathbb{C} \right\} | Z \right) \right)$
= $E_n(P(T \in [t_{\min}(Z), t_{\max}(Z)]|Z))$
= $E_n(F_{T|Z}(t_{\max}(Z)) - F_{T|Z}(t_{\min}(Z)))$

Known variance: $F_{T|Z}(t) = \frac{1}{2} + \operatorname{sign}(t)F_{\chi_r^2}(t^2)$. Unknown variance: $F_{T|Z}(t) = \frac{1}{2} + \operatorname{sign}(t)F_{F(r,\nu_n)}(t^2/r)$.

At each iteration n,

1. Simulate *m* i.i.d. samples z_k uniformly on the unit shell S^{r-1} .

At each iteration n,

- 1. Simulate *m* i.i.d. samples z_k uniformly on the unit shell S^{r-1} .
- 2. For each sample z_k , set $\boldsymbol{g} = \mu_n + (\Lambda_n^{1/2} z_k) t_i$ in $\mathrm{LS}(i), i = 1, \ldots, r$, and use $\mathrm{LS}(i)$ as constraints to solve linear programs with optimal objective values $t_{\min}(i) = \min t_i$ and $t_{\max}(i) = \max t_i$.

At each iteration n,

- 1. Simulate *m* i.i.d. samples z_k uniformly on the unit shell S^{r-1} .
- 2. For each sample z_k , set $\boldsymbol{g} = \mu_n + (\Lambda_n^{1/2} z_k) t_i$ in $\mathrm{LS}(i), i = 1, \ldots, r$, and use $\mathrm{LS}(i)$ as constraints to solve linear programs with optimal objective values $t_{\min}(i) = \min t_i$ and $t_{\max}(i) = \max t_i$.

3. Set
$$t_{\min}(z_k) = \max_{i=1,2,\dots,r} t_{\min}(i), \ t_{\max}(z_k) = \min_{i=1,2,\dots,r} t_{\max}(i).$$

At each iteration n,

- 1. Simulate *m* i.i.d. samples z_k uniformly on the unit shell S^{r-1} .
- 2. For each sample z_k , set $\boldsymbol{g} = \mu_n + (\Lambda_n^{1/2} z_k) t_i$ in $\mathrm{LS}(i), i = 1, \ldots, r$, and use $\mathrm{LS}(i)$ as constraints to solve linear programs with optimal objective values $t_{\min}(i) = \min t_i$ and $t_{\max}(i) = \max t_i$.

3. Set
$$t_{\min}(z_k) = \max_{i=1,2,\dots,r} t_{\min}(i), \ t_{\max}(z_k) = \min_{i=1,2,\dots,r} t_{\max}(i).$$

4. Calculate $F_{T|Z}(t_{\max}(z_k)) - F_{T|Z}(t_{\min}(z_k))$.

At each iteration n,

- 1. Simulate *m* i.i.d. samples z_k uniformly on the unit shell S^{r-1} .
- 2. For each sample z_k , set $\boldsymbol{g} = \mu_n + (\Lambda_n^{1/2} z_k) t_i$ in $\mathrm{LS}(i), i = 1, \ldots, r$, and use $\mathrm{LS}(i)$ as constraints to solve linear programs with optimal objective values $t_{\min}(i) = \min t_i$ and $t_{\max}(i) = \max t_i$.

3. Set
$$t_{\min}(z_k) = \max_{i=1,2,\dots,r} t_{\min}(i), \ t_{\max}(z_k) = \min_{i=1,2,\dots,r} t_{\max}(i).$$

- **4.** Calculate $F_{T|Z}(t_{\max}(z_k)) F_{T|Z}(t_{\min}(z_k))$.
- 5. Output the estimator $\hat{p_n}$ as a sample average of such integrations obtained from *m* samples.

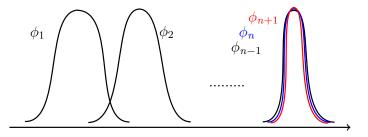
At each iteration n,

- 1. Simulate *m* i.i.d. samples z_k uniformly on the unit shell S^{r-1} .
- 2. For each sample z_k , set $\boldsymbol{g} = \mu_n + (\Lambda_n^{1/2} z_k) t_i$ in $\mathrm{LS}(i), i = 1, \ldots, r$, and use $\mathrm{LS}(i)$ as constraints to solve linear programs with optimal objective values $t_{\min}(i) = \min t_i$ and $t_{\max}(i) = \max t_i$.

3. Set
$$t_{\min}(z_k) = \max_{i=1,2,\dots,r} t_{\min}(i), \ t_{\max}(z_k) = \min_{i=1,2,\dots,r} t_{\max}(i).$$

- **4.** Calculate $F_{T|Z}(t_{\max}(z_k)) F_{T|Z}(t_{\min}(z_k))$.
- 5. Output the estimator $\hat{p_n}$ as a sample average of such integrations obtained from *m* samples.

This method achieves variance reduction compared to the vanilla Monte Carlo estimator.



As *n* grows large, we would expect $\frac{\phi_{n+1}}{\phi_n}$ to become close to 1, where ϕ_n is the density of $\boldsymbol{f}|\mathscr{A}_n$. Thus p_{n+1} may be estimated by $\boldsymbol{y}_k^n, k = 1, \ldots, m$, for which $\mathbb{1} \{ \boldsymbol{y}_k^n \in \mathbb{C} \}$ has been calculated in iteration *n*.

MOTIVATION ALGORITHM SUBROUTINE ALTERNATIVES NUMERICAL EXPERIMENTS CONCLUSION REFERENCES 17/29

At iteration n, calculate \hat{p}_n using the vanilla Monte Carlo method with samples $\boldsymbol{y}_k^n, k = 1, \ldots, m$. In iteration $n + \ell$,

Motivation Algorithm Subroutine Alternatives Numerical Experiments Conclusion References 18/29

At iteration n, calculate \hat{p}_n using the vanilla Monte Carlo method with samples $\boldsymbol{y}_k^n, k = 1, \ldots, m$. In iteration $n + \ell$,

Change of Measure: Reuse all the samples \boldsymbol{y}_k^n in the *n*-th iteration. Output $\hat{p}_{n+\ell} = \frac{1}{m} \sum_{k=1}^m \mathbb{1} \{ \boldsymbol{y}_k^n \in \mathbb{C} \} \frac{\phi_{n+\ell}(\boldsymbol{y}_k^n)}{\phi_n(\boldsymbol{y}_k^n)}$.

At iteration n, calculate \hat{p}_n using the vanilla Monte Carlo method with samples $\boldsymbol{y}_k^n, k = 1, \ldots, m$. In iteration $n + \ell$,

Change of Measure: Reuse all the samples \boldsymbol{y}_k^n in the *n*-th iteration. Output $\hat{p}_{n+\ell} = \frac{1}{m} \sum_{k=1}^m \mathbb{1} \{ \boldsymbol{y}_k^n \in \mathbb{C} \} \frac{\phi_{n+\ell}(\boldsymbol{y}_k^n)}{\phi_n(\boldsymbol{y}_k^n)}$.

Generalized Acceptance/Rejection: Reuse part of the samples by accepting \boldsymbol{y}_k^n with probability $\frac{\phi_{n+\ell}(\boldsymbol{y}_k^n)}{c\phi_n(\boldsymbol{y}_k^n)}$, then generate new samples as needed:

$$\hat{p_{n+\ell}} = \frac{1}{m} \left(\sum_{k \in S} \mathbb{1} \left\{ \boldsymbol{y}_k^n \in \mathbb{C} \right\} + \sum_{k=1}^{m-|S|} \mathbb{1} \left\{ \boldsymbol{y}_k^{n+\ell} \in \mathbb{C} \right\} \right)$$

Motivation Algorithm Subroutine Alternatives Numerical Experiments Conclusion References 18/29

Reusing Samples

At iteration n, calculate \hat{p}_n using the vanilla Monte Carlo method with samples $\boldsymbol{y}_k^n, k = 1, \ldots, m$. In iteration $n + \ell$,

Change of Measure: Reuse all the samples \boldsymbol{y}_k^n in the *n*-th iteration. Output $\hat{p}_{n+\ell} = \frac{1}{m} \sum_{k=1}^m \mathbb{1} \{ \boldsymbol{y}_k^n \in \mathbb{C} \} \frac{\phi_{n+\ell}(\boldsymbol{y}_k^n)}{\phi_n(\boldsymbol{y}_k^n)}$.

Generalized Acceptance/Rejection: Reuse part of the samples by accepting \boldsymbol{y}_k^n with probability $\frac{\phi_{n+\ell}(\boldsymbol{y}_k^n)}{c\phi_n(\boldsymbol{y}_k^n)}$, then generate new samples as needed: $p_{n+\ell} = \frac{1}{m} \left(\sum_{k \in S} \mathbb{1} \left\{ \boldsymbol{y}_k^n \in \mathbb{C} \right\} + \sum_{k=1}^{m-|S|} \mathbb{1} \left\{ \boldsymbol{y}_k^{n+\ell} \in \mathbb{C} \right\} \right)$

By utilizing the samples and results in an earlier iteration, this method saves computational time.

1 Motivation

2 Algorithm

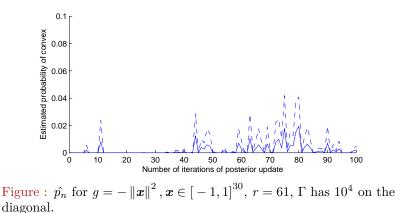
- 3 Subroutine Alternatives
- **4** Numerical Experiments

5 Conclusion

Motivation Algorithm Subroutine Alternatives Numerical Experiments Conclusion References 19/29 00 0000 0000000 000000 0

20/29

Inverted Bowl



TION ALGORITHM SUBROUTINE ALTERNATIVES NUMERICAL EXPERIMENTS CONCLUSION REFERENCES 0000 0000000 0

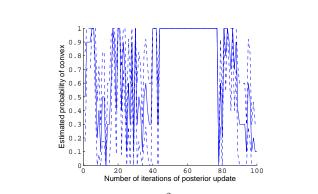


Figure : \hat{p}_n for $g = 0, \boldsymbol{x} \in [-1, 1]^2$, r = 5, Γ has 1 on the diagonal.

Motivation Algorithm Subroutine Alternatives Numerical Experiments Conclusion References 21/29

Where to sample?

An interesting example for $g = \|\boldsymbol{x}\|^2$, $\boldsymbol{x} \in [-1, 1]^{30}$, r = 60, and Γ has 10^4 on the diagonal.

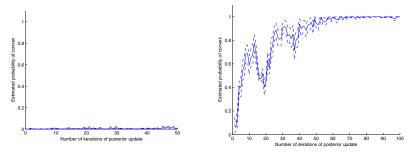


Figure : Sampling the 60 points uniformly at random in space.

Figure : Sampling along 20 random lines with 3 points on each.

What happened?

For easiness of illustration, consider a 2-dimensional function with the following level sets:

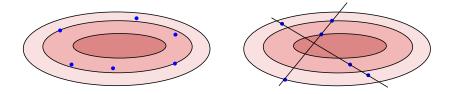


Figure : Sampling uniformly vs. Sampling along random lines.

MOTIVATION ALGORITHM SUBROUTINE ALTERNATIVES NUMERICAL EXPERIMENTS CONCLUSION REFERENCES 23/29

Ambulances in a Square

A "real" example from SimOpt.org: What does the long run average response time behave like as a function of the ambulance base location?

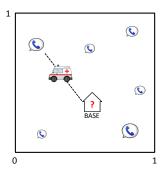


Figure : Problem illustration.

One Base, Two Bases

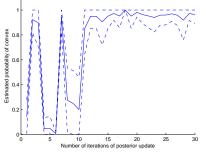
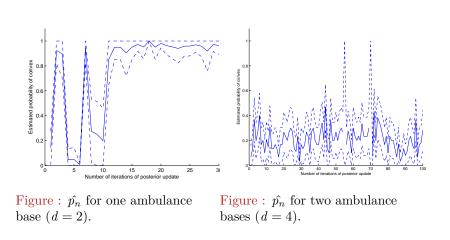


Figure : $\hat{p_n}$ for one ambulance base (d = 2).

MOTIVATION ALGORITHM SUBROUTINE ALTERNATIVES NUMERICAL EXPERIMENTS CONCLUSION REFERENCES 25/29

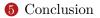
One Base, Two Bases



1 Motivation

2 Algorithm

- 3 Subroutine Alternatives
- **4** Numerical Experiments



Conclusion

We suggested

- a sequential method for detecting convexity/non-convexity of noisy functions
- a Monte Carlo method for estimating probability of convex
- three alternatives for efficiency improvement

Next steps:

- the number and locations of sampled points
- uneven sample size at each sampled point

Reference I

- Jason Abrevaya and Wei Jiang. A nonparametric approach to measuring and testing curvature. Journal of Business & Economic Statistics, 23:1-19, 2005. URL http://EconPapers.repec.org/RePEcibes:jnlbesiv:23;y:2005:p:1-19.
- Y. Baraud, S. Huet, and B. Laurent. Testing convex hypotheses on the mean of a Gaussian vector. application to testing qualitative hypotheses on a regression function. *The Annals of Statistics*, 33(1):214-257, 2005.
- Xi Chen, Bruce E. Ankenman, and Barry L. Nelson. The effects of common random numbers on stochastic kriging metamodels. ACM Trans. Model. Comput. Simul., 22(2):7:1-7:20, March 2012. ISSN 1049-3301. doi: 10.1145/2133390.2133391. URL http://doi.acm.org/10.1145/2133390.2133391.
- C. A. T. Diack and C. Thomas-Agnan. A nonparametric test of the non-convexity of regression. Nonparametric Statistics, 9:335–362, 1998.
- A. Juditsky and A. Nemirovski. On nonparametric tests of positivity/monotonicity/convexity. The Annals of Statistics, 30(2):498–527, 2002.
- Lawrence J Lau. Testing and imposing monoticity, convexity, and quasi-convexity constraints. Electronic Journal of Statistics, 1:409–453, 1978.
- Mary C. Meyer. Constrained penalized splines. Canadian Journal of Statistics, 40(1):190-206, 2012. ISSN 1708-945X. doi: 10.1002/cjs.10137. URL http://dx.doi.org/10.1002/cjs.10137.
- K. G. Murty. Linear Complementarity, Linear and Nonlinear Programming. Heldermann Verlag, Berlin, 1988.
- Huashuai Qu, Ilya O. Ryzhov, and Michael C. Fu. Ranking and selection with unknown correlation structures. In Proceedings of the Winter Simulation Conference, WSC '12, pages 12:1-12:12. Winter Simulation Conference, 2012. URL http://dl.acm.org/citation.cfm?id=2429759.2429774.

Reference II

- Mervyn J. Silvapulle and Pranab K. Sen. Constrained Statistical Inference: Order, Inequality, and Shape Restrictions, chapter 3, pages 59-141. John Wiley & Sons, Inc., 2001. ISBN 9781118165614. doi: 10.1002/9781118165614.ch3. URL http://dx.doi.org/10.1002/9781118165614.ch3.
- Jianqiang C. Wang and Mary C. Meyer. Testing the monotonicity or convexity of a function using regression splines. *Canadian Journal of Statistics*, 39(1):89-107, 2011. ISSN 1708-945X. doi: 10.1002/cjs.10094. URL http://dx.doi.org/10.1002/cjs.10094.