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ESTIMATING THE PROBABILITY OF CONVEXITY OF A FUNCTION OBSERVED WITH NOISE JIAN AND HENDERSON

Problem Statement

e Consider a function g : compact S € R? — R that can
only be evaluated with the presence of noise at r points
x = (x1,x,...,2,) € R Let the true values of the
function g at = be denoted g = (g(x1), g(x2), ..., g(z,))T.
e We wish to determine the convexity/non-convexity of g
with some probabilistic guarantee, using only estimates of
its values obtained through simulation at the points @.
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The Definition of "Convexity"

Is g(-) convex?
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3. Not computationally
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working on the
theories.
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The Definition of "Convexity'

Is g(+) convex? In this talk: Is g convex?

1. Infinite-dimensional
Hilbert Space

2. Usual definition

3. Not computationally
tractable: we are
working on the
theories.

Not in this talk!
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1. Finite-dimensional Euclidean
Space

2. g is convex if a convex function
exists that coincides with g at
those points.
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The Definition of "Convexity'

Is g(+) convex? In this talk: Is g convex?
1. Infinite-dimensional 1. Finite-dimensional Euclidean
Hilbert Space Space
2. Usual definition 2. g is convex if a convex function

exists that coincides with g at
those points.

3. Not computationally 3. More tractable
tractable: we are
working on the
theories.

Not in this talk!
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STIMATING THE PROBABILITY OF CO TY OF A FUNCTION OBSERVED WITH NOISE

Vector Convexity and Cone of C
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Motivation

e Curiosity towards black-box
functions

“Sorry, it’s curiosity”
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Motivation

e Curiosity towards black-box

functions
“Sorry, it’s curiosity”
y=yl
yey2 Optimal variable
imi 1 - =7
e Ease of Optimization S
y=y3
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Motivation

e Curiosity towards black-box

functions
“Sorry, it’s curiosity”
—_— Optimal variable
e Kase of Optimization x=m
f
e Stopping rule for global \ /\
(stochastic) optimization - : al
N\ i

algorithms

/ f(a)
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Motivation

Previous research: One-shot frequentist hypothesis test, with
the number of samples predetermined [sian, Henderson, and Hunter, 2014].

Distance Regression paramete

1 Juditsky and Nemirovski [2002] Baraud et al. [2005]
Diack and Thomas-Agnan [1998]
Meyer [2012]

Wang and Meyer [2011]

> 1 Silvapulle and Sen [2001] Lau [1978]

Abrevaya and Jiang [2005]
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Motivation

Previous research: One-shot frequentist hypothesis test, with
the IlumbeI‘ Of Samples predetermined [Jian, Henderson, and Hunter, 2014].

Distance Regression parameters

1 Juditsky and Nemirovski [2002] Baraud et al. [2005]
Diack and Thomas-Agnan [1998]
Meyer [2012]

Wang and Meyer [2011]

> 1 Silvapulle and Sen [2001] Lau [1978]

Abrevaya and Jiang [2005]

Our Goal: A sequential algorithm in the Bayesian setting with
indefinite number of samples and can be stopped at any time.
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Assumptions

1. We obtain realizations of a f
random vector Y = f + &, where
&~ N(0,T) e R\,with T
positive-definite.

2. Conditional on f, the samples
(yn:n=1,2,...) in each
iteration consists of i.i.d. random
vectors.

Note that I' is not necessarily diagonal because using Common

Random Numbers can maintain the function structural properties
(e.g. Chen et al. [2012]).

+
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Main Idea

n+<n+1

Generate

A set of function values with noise on &

Yy

Known variance: Normal-Normal with an initial uninformative

prior (0 mean infinite variance)
Unknown variance: Normal-Inverse-Wishart with an initial

Bayesian Conjugate
Prior Model

/
/
B Jeffery’s Prior
'

Prior: f|v—dn—1

\
N
Tl f|<,(2{ Known variance: Gaussian distribution
n Unknown variance: Multivariate t distribution
Generate
Samples distributed as f|-<,
yn
m [ ftimation of P(f c (Cl'p‘(")]
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ESTIMATING THE PROBABILITY OF CONVEXITY OF A FUNCTION OBSERVED WITH NOISE JIAN AND HENDERSON

Convergence

Let p, = P(f € C|4,) be the n-iteration posterior probability
that f is convex. As n — oo, p, — 1{f € C} — 0 a.s.

Proof sketch (assume T' known):
1. P(f € 9C) =0 leaves cases f ¢ C and f € C° .
2. pn — f — 0 in probability and A, ~T'/n — 0 as n — oo (CLT).
3. When f ¢ C, define Dy = minpec ||f — h||, then
pn—1{f €C} = P(u, + AY/*Z € C|la7,,) <
P(|lptn + Ai/?Z — £|| > Dyle) < P(|lpn — £I| >
Dy /2|,) + P(|AY?Z| > Dy /2|9,) —, 0 by Markov’s
Inequality. A lower bound of 0 can be given when f € C°.

4. (pp :m > 0) is a uniformly integrable martingale, so the
convergence is almost surely.

For the unknown I' case, a similar proof can be constructed by

conditioning on I
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A set of function values with noise on 2

Yy

Known variance: Normal-Normal with an initial uninformative

prior (0 mean infinite variance)
Unknown variance: Normal-Inverse-Wishart with an initial

Bayesian Conjugate
Prior Model

Jeffery’s Prior

N
\‘~___ f‘ﬂ Known variance: Gaussian distribution
n Unknown variance: Multivariate t distribution
Generate
Samples distributed as f1.7,
n
Yy
m [Estimation of P(f € CLQ/,,)]
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® Monte Carlo
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ESTIMATING THE P LITY O / OF A FUNCTION C VED WITH NOISE J1s ND HENDERS

Convexity
g € C if and only if each of the
following linear system
x1
T4 alz; +b; = g(x;)
3321; alz;+b; < g(x;), Vi € {1,...,r}\{i}
3

is feasible in the variables a; € R and
bi € R (Murty [1088)).
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MATING THE PROBABILITY OF TY OF A FUNC

Vanilla Monte Carlo Method

In each iteration of the main algorithm, after updating the
hyper-parameters of the posterior distribution,

1. Simulate m i.i.d. samples y;' from the predictive
distribution f|<,.
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Vanilla Monte Carlo Method

In each iteration of the main algorithm, after updating the
hyper-parameters of the posterior distribution,
1. Simulate m i.i.d. samples y;' from the predictive
distribution f|<,.
2. For each sample y}, set g =y in LS(3),i =1,...,7.
Obtain an indicator 1 {y; € C} that is 0 if any of
LS(i),i = 1,...,r is infeasible and 1 otherwise.

ORITHM MONTE CARLO CONDITIONAL MC LR BASED METHODS IMPLEMENTATIONS CONCLUSION REFEREN(
fe] Yo C o

"a/42



ESTIMATING THE PROBABILITY OF CONVEXITY OF A FUNCTION OBSERVED WITH NOISE JIAN AND HENDERSON

Vanilla Monte Carlo Method

In each iteration of the main algorithm, after updating the
hyper-parameters of the posterior distribution,

1. Simulate m i.i.d. samples y;' from the predictive
distribution f|<,.

2. For each sample y}, set g =y in LS(3),i =1,...,7.
Obtain an indicator 1 {y; € C} that is 0 if any of
LS(i),i = 1,...,r is infeasible and 1 otherwise.

3. Output the estimator p,, = L 27, 1 {y} € C} as the
average of all indicators.
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ESTIMATING THE PROBABILITY OF XITY OF A FUNCTION OBSERVED WITH NOISE JIAN AND HENDERSON

Challenge: Variance Reduction

Vanilla Monte Carlo estimation converges slowly with wide
confidence interval width:

VANILLA MONTE CARLO METHOD
1r A
7 ‘,/‘\/\IV\AV/“

o
o

Estimated probability of convex
o o o
w S n

o
N

o
o
-

o

\
0 20 40 60 80 100
Number of iteration

Figure: 3-d sphere function with 12 sample points.
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ESTIMATING THE PROBABILITY OF CONVEXITY OF A FUNCTION OBSERVED WITH NOISE JIAN AND HENDERSON

Conditional Monte Carlo Method

Let Q = AY*Z where Z ~ Uniform(S™1). Instead of
obtaining a 0 — 1 estimator...

w1+ Q1

M1
p3 + Qst

0

ConbITIONAL MC 17/42
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ESTIMATING THE PROBABILITY OF CONVEXITY OF A FUNCTION OBSERVED WITH NOISE JIAN AND HENDERSON

Conditional Monte Carlo Method

How does this work?
P(f € Clay,)
=FE, ( {AUZX + i € (C}) , for X ~ N(0,I) or t,,(0,1)
=F, ( { AI/ZZ + pn € (C}) , for Z uniform on S" !
= B, (B (1{TA?Z + pn € C}|2))
= En(P(T € [tmin(2), tmax(2)] | 2))
= En(Friz(tmax(2)) — Friz(tmin(2)))
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Distribution of T'|Z

Known variance: Frjz(t) = 5 + sign(t) Fyz (7).
Unknown variance: Frz(t) = T+ sign(t)Fp(ry,,n)(tz/r).

Proof sketch:

Friz(t) = P(T < t|Z)
=P(T <0|Z)+ P(0<T <t|Z), whent >0
=1/2+ 1/2P(||X||? < ?|2), for X =TZ

Known variance: X ~ N(0,1), so || X][]* ~ x2.

Unknown variance: X ~t,, (0,1) = \/;V/i for N ~ N(0,I) and

Y ~ x2 . Therefore || X||> = SJY;UN where NTN ~ 2, so
I X[[2/r ~ F(r,vm).
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ESTIMATING THE PROBABILITY OF CONVEXITY OF A FUNCTION OBSERVED WITH NOISE JIAN AND HENDERSON

Finding ¢, and .«

tmin = mint  (tymax = maxt)

st. alz+b; = p+ (AV22)t, Vi
alx;+b; < pj+ (AY22),t, Vi, Vj #i
a; cR" b, e Rt €R, Vi

Similarly, this can be decomposed into r subproblems:

. . d
t} iy, = min t* an
(tinax = max tz) tmin = 111ng tfnin’
i=1,2,...,r
T, o 1/2 % ;
s.t. a; &; + bz = Wi + (A Z)t tmax = min tinax‘

T 1/2 i i=1,2,...,7
a; xj + b < pj+ (A72);t,
Vi # i,
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ESTIMATING THE PROBABILITY OF C TY OF A FUNCTION OBSERVED WITH NOISE JIAN AND HENDERSON

Conditional Monte Carlo Method

At each iteration n, to estimate
Pn = En(FT|Z(tmaX(Z)) - FT|Z(tmin(Z)))a
1. Simulate m i.i.d. samples z; uniformly on the unit shell
STt
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Conditional Monte Carlo Method

At each iteration n, to estimate
Pn = En(FT|Z(tmaX(Z)) - FT|Z(tmin(Z)))a
1. Simulate m i.i.d. samples z; uniformly on the unit shell
STt

2. For each sample zj, solve for tuyin(2x) and tmax(2k)-
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Conditional Monte Carlo Method

At each iteration n, to estimate
Pn = En(FT|Z(tmaX(Z)) - FT|Z(tmin(Z)))a
1. Simulate m i.i.d. samples z; uniformly on the unit shell
STt
2. For each sample zj, solve for tuyin(2x) and tmax(2k)-
3. Calculate Frpjz(tmax(2k)) — Friz(tmin(21))-
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Conditional Monte Carlo Method

At each iteration n, to estimate
Pn = En(FT|Z(tmaX(Z)) - FT|Z(tmin(Z)))a
1. Simulate m i.i.d. samples z; uniformly on the unit shell
STt
2. For each sample zj, solve for tuyin(2x) and tmax(2k)-
3. Calculate Frpjz(tmax(2k)) — Friz(tmin(21))-

4. Output the estimator p,, as a sample average of such
integrations obtained from m samples.
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Conditional Monte Carlo Method

At each iteration n, to estimate
Pn = En(FT|Z(tmaX(Z)) - FT|Z(tmin(Z)))a
1. Simulate m i.i.d. samples z; uniformly on the unit shell
STt
2. For each sample zj, solve for tuyin(2x) and tmax(2k)-
3. Calculate Frpjz(tmax(2k)) — Friz(tmin(21))-
4. Output the estimator p,, as a sample average of such
integrations obtained from m samples.

This method achieves variance reduction compared to the
vanilla Monte Carlo estimator.
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ESTIMATING THE PROBABILITY OF CONVEXITY OF A FUNCTION OBSERVED WITH NOISE JIAN AND HENDERSON

Reduced Variance and New Challenge

VANILLA MONTE CARLO METHOD [ —

Estimated probability of convex

0 60
Number of iteration

Figure: Vanilla Monte Carlo Figure: Conditional Monte Carlo
method. method.

... but doubled the computational time to check the convexity
for each sample!
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ESTIMATING THE PROBABILITY OF CONVEXITY OF A FUNCTION OBSERVED WITH NOISE JIAN AND HENDERSON

Can we reuse samples?

(,251 ¢2 ¢n

N
?

Maybe yes: as n grows large, we might expect ¢—";L"—1 to become
close to 1, where ¢, is the density of f|<%,. Thus p,+; may be
estimated by y!,k = 1,...,m, for which 1 {y;; € C} has been
calculated in iteration n.
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ESTIMATING THE PROBABILITY OF C ITY OF A FUNCTION OBSERVED WITH NOISE JIAN AND HENDERSON

LR Based Methods

At iteration n, calculate p,, using the vanilla Monte Carlo
method with samples y;',k = 1,...,m. In iteration n + ¢,
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ESTIMATING THE PROBABILITY OF C TY OF A FUNCTION OBSERVED WITH NOISE JIAN AND HENDERSON

LR Based Methods

At iteration n, calculate p,, using the vanilla Monte Carlo
method with samples y;',k = 1,...,m. In iteration n + ¢,

Change of Measure: Reuse all the samples y}' in the n-th
iteration. Output p,4p = = Zk 1 {yk c C} ¢n+e E))
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JIAN AND HENDERSON

ESTIMATING THE PROBABILITY OF CONVEXITY OF A FUNCTION OBSERVED WITH NOISE

LR Based Methods

At iteration n, calculate p,, using the vanilla Monte Carlo
method with samples y;',k = 1,...,m. In iteration n + ¢,

Change of Measure: Reuse all the samples y} in the n-th
iteration. Output p,4p = = Zk 1 {yk c C} ¢n+e z )

Generalized Acceptance/Rejection: Reuse part of the samples

by accepting y; with probability "’"%%)’, then generate new

samples as needed:

Prve = o= (Zkes 1{yp e+ {yl?% < C})

90000
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ESTIMATING THE PROBABILITY OF CONVEXITY OF A FUNCTION OBSERVED WITH NOISE JIAN AND HENDERSON

LR Based Methods

At iteration n, calculate p,, using the vanilla Monte Carlo
method with samples y;',k = 1,...,m. In iteration n + ¢,

Change of Measure: Reuse all the samples y} in the n-th
iteration. Output p,4p = = Zk 1 {yk c C} ¢n+e z )

Generalized Acceptance/Rejection: Reuse part of the samples
by accepting y; with probability "’"%%)’, then generate new

samples as needed:

Prve = o= (Zkes 1{yp e+ {yl?% < C})

By utilizing the samples and results in an earlier iteration, these
two methods saves computational time.

MC LR BASED METHODS IMPLEMENTATIONS CONCLUSION REFERENC L5 /42
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HENDERSON

Theory vs. Reality

Estimated probability of convex

°
®

°

>

°
IS

Change of Measure Method for Convex Function

70 80 100

0 50 60
Number of iteration

ALGORITHM
0000

Figure: The probability of convex is
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ESTIMATING THE PROBABILITY OF CONVEXITY OF A FUNCTION OBSERVED WITH NOISE JIAN AND HENDERSON

Theory vs. Reality

small

= >
Yy
Figure: When 221 g hyge.
g When =3 5= is huge
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ESTIMATING THE PROBABILITY O Y OF A FUNCTION

How likely does this happen?

It can be shown that p, .1, is unbiased and has finite variance

[Jian et al., 2014] . However, when n becomes large,

maxyn %ﬁ;) = ¢ has infinite expectation.

Proof sketch: For example, assume r = 1, and I' = A\~ 7 is known, so
the n-iteration posterior precision is 0;2 =0, 2 4 n)2. Let
y~ N(0,272), and y™ ~ N(pn,02).

. ‘ b1 (y") 2 -2 1 on
max,» 21n Sy = ([L” — ,u,,,+l) (0pi1 T 5z(o 71+1)) +1In

Oniy1’

(/1'1/ — Hn+ l>2 - ((l o n+1 >/1'7 — 0y \ 1A2{/) ( n+ 1/\ 1/) and

On/0ny1 — 1. So maxn 2111 % — A2y2 ~ 2,

2,2
Thus ¢ > exp ATy ~ exp % with expectation oo.
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ESTIMATING THE PROBABILITY OF CONVEXITY OF A FUNCTION OBSERVED WITH NOISE JIAN AND HENDERSON

The Combination of Methods

Combining the Conditional Monte Carlo method with the
Change of Measure method, we get an hybrid algorithm:

1. At every iteration n, simulate m i.i.d. samples z; uniformly
on the unit shell S™~1. Solve for tyin(2x) and tmax(zx) and
output the Conditional Monte Carlo estimator p,.
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ESTIMATING THE PROBABILITY OF CONVEXITY OF A FUNCTION OBSERVED WITH NOISE JIAN AND HENDERSON

The Combination of Methods

Combining the Conditional Monte Carlo method with the
Change of Measure method, we get an hybrid algorithm:

1. At every iteration n, simulate m i.i.d. samples z; uniformly
on the unit shell S™~1. Solve for tyin(2x) and tmax(zx) and
output the Conditional Monte Carlo estimator p,.

2. Let yr = pn, + (A}/sz)tk, where tj, is sampled from
T\Z = z. If ty, € [tmin(2k), tmax(2)], then 1{y} € C} = 1;
otherwise, 1 {y} € C} = 0.
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The Combination of Methods

Combining the Conditional Monte Carlo method with the
Change of Measure method, we get an hybrid algorithm:

1. At every iteration n, simulate m i.i.d. samples z; uniformly
on the unit shell S™~1. Solve for tyin(2x) and tmax(zx) and
output the Conditional Monte Carlo estimator p,.

2. Let yr = pn, + (A}L/sz)tk, where tj, is sampled from
T\Z = z. If ty, € [tmin(2k), tmax(2)], then 1{y} € C} = 1;
otherwise, 1 {y} € C} = 0.

3. In the next /¢ iterations, output
N Pne(Yp)
Pnie = % 221:1 1 {y;c1 € (C} ¢:(eygl§ .
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The Combination of Methods

Combining the Conditional Monte Carlo method with the
Change of Measure method, we get an hybrid algorithm:

1. At every iteration n, simulate m i.i.d. samples z; uniformly
on the unit shell S™~1. Solve for tyin(2x) and tmax(zx) and
output the Conditional Monte Carlo estimator p,.

2. Let yr = pn, + (A}L/sz)tk, where tj, is sampled from
T\Z = z. If ty, € [tmin(2k), tmax(2)], then 1{y} € C} = 1;
otherwise, 1 {y} € C} = 0.

3. In the next /¢ iterations, output
N Pne(Yp)
Pnie = % 221:1 1 {y;c1 € (C} ¢:(eygl§ .

(Careful! ﬁ;—éﬁé’%ﬁ > 1 may happen.)
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Inverted Bowl

0.1r

0.04 - b

Estimated probability of convex

0 10 20 30 40 50 60 70 80 90 100
Number of iterations of posterior update

. ~ 2 30
Figure: p,, for g = — ||z|*, 2z € [— 1,1]”", » = 61, T has 10* on the
diagonal.
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Plane
3d Plane with 12 Sample Points
1,
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0 20 40 60 80 100
Number of iteration

Figure: g, for g =0,z € [— 1, 1]2, r =6, I has 1e — 18 on the
diagonal.
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MATING THE PROBABILITY OF TY OF A FUNC

ON OBSERVED WITH NOISE

J1s ND HENDERSON
Ambulances in a Square

A '"real" example from SimOpt.org: What does the long run

average response time behave like as a function of the
ambulance base location?

1
©
@\ ©
o
BASE
© ©
0

Figure: Problem illustration.
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www.simopt.org

Estimated probability of convex

0.2

0 5 10 15 20 25 30
Number of iterations of posterior update

Figure: p,, for one ambulance base
(d=2).

ALGORITHM MONTE CARLO CONDITIONAL MC LR BASED METHODS IMPLEMENTATIONS CONCLUSION H],I']ZH],\«'],34/42

0000 [e]e]e} 0000000 00000

[ele]e] }

o



x
$os o8-

2 5

s H

s g

2> s

£ 06 S

g 3

K] £

2 &

3 H

g o4 Eoary
£ H

7

w

0.2

\

(R
y

Lo,

0 5 10 15 20 25 30 o 1
Number of iterations of posterior update

Figure: p,, for one ambulance base Figure: p,, for two ambulance
(d=2). bases (d = 4).
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Conclusion

In this talk:

e a sequential Bayesian method for estimating the
probability of convex utilizing Monte Carlo simulation

e a Conditional Monte Carlo variance reduction method

e two likelihood-ratio-based variance reduction methods with
limitation
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Conclusion

In this talk:

e a sequential Bayesian method for estimating the
probability of convex utilizing Monte Carlo simulation

e a Conditional Monte Carlo variance reduction method
e two likelihood-ratio-based variance reduction methods with
limitation
On-going research:

e The asymptotic behavior of the probability that a function
is convex using a kriging model as the number of samples
goes to infinity.
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MATING THE PROBABILITY OF TY OF A FUNC N C VED WITH NOISE

Constant for the Generalized A/R

How to find ¢ in the generalized acceptance/rejection method,

so that ¢ > %5(415_?)/) for all y?

Known variance: ¢ >

1/2
Antel -1 —1, \T -1 -1 T -1 T -1
{ ‘XL exp 3 (A4 ppnge = A in) TTA L jipe = A pn) + i g i — i g A e .

Unknown variance: Intractable and needs numerical estimation.
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The Dual

JIAN AND HENDERSON

Q=AM\"22Z.
Primal: ¢, = mint
st. alx+b; =+ Qit, Vi
alz;+b; < pj+Qyt,
Vi,V #i
a; eR". b, eR,teR, Vi

Meaning

Dual:  tyjn = —min)_, Zj Vij b min distance from p to C

S.t. zl Zj ’Uiij = 1, (1
zj TjVi5 = Od, Vi, (
Z]’ Vij = 0", Vi, (3

ALGORITHM MONTE CARLO CONDITIONAL MC LR BASED METHODS IMPLEMENT

(e} (e}

Viqj Viqj
H >0, Y.
—Vii J —Vi4

v;,. characterizes faces of C

) (vQ)i # 0 for the nearest face of C
2) ijj%:Od,Vi

)

)

=1
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Where to sample?

An interesting example for g = |||,z € [— 1,1]*°, » = 60, and
I" has 10* on the diagonal.
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S

Estimated probability of convex
Estimated probability of convex

°
N

o

0

80 90 100

0 20 30 4
Number of iterations of posterior update 0 10 20 0 7
Number of terations of posterior update

Figure: Sampling the 60 points

- ) Figure: Sampling along 20 random
uniformly at random in space.

lines with 3 points on each.
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Where to sample?

Consider a 2-dimensional concave function with the following
level sets (higher values in darker shades):

Convex? Not convex!
Figure: Sampling uniformly vs. Sampling along random lines.
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