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Estimating the Probability of Convexity of a Function Observed with Noise Jian and Henderson

Problem Statement

• Consider a function g : compact S ⊆ Rd → R that can
only be evaluated with the presence of noise at r points
x = (x1,x2, . . . ,xr) ∈ Rd. Let the true values of the
function g at x be denoted g = (g(x1), g(x2), . . . , g(xr))T .

• We wish to determine the convexity/non-convexity of g
with some probabilistic guarantee, using only estimates of
its values obtained through simulation at the points x.
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Estimating the Probability of Convexity of a Function Observed with Noise Jian and Henderson

The Definition of "Convexity"

Is g(·) convex?

1. Infinite-dimensional
Hilbert Space

2. Usual definition

3. Not computationally
tractable: we are
working on the
theories.

Not in this talk!

In this talk: Is g convex?

1. Finite-dimensional Euclidean
Space

2. g is convex if a convex function
exists that coincides with g at
those points.

3. More tractable
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Vector Convexity and Cone of C

C(x) ⊆ R5

g1

g2

g3

g1

g2

g3

x1, . . . ,x5 ∈ R
0
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Motivation

• Curiosity towards black-box
functions

• Ease of Optimization

• Stopping rule for global
(stochastic) optimization
algorithms

LB1

a

f(a)

f
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Motivation

Previous research: One-shot frequentist hypothesis test, with
the number of samples predetermined [Jian, Henderson, and Hunter, 2014].

Dim Distance Regression parameters
1 Juditsky and Nemirovski [2002] Baraud et al. [2005]

Diack and Thomas-Agnan [1998]

Meyer [2012]

Wang and Meyer [2011]

> 1 Silvapulle and Sen [2001] Lau [1978]

Abrevaya and Jiang [2005]

Our Goal: A sequential algorithm in the Bayesian setting with
indefinite number of samples and can be stopped at any time.
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1 Algorithm

2 Monte Carlo

3 Conditional MC

4 LR Based Methods

5 Implementations

6 Conclusion
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Assumptions

1. We obtain realizations of a
random vector Y = f + ξ, where
ξ ∼ N(0,Γ) ∈ Rr,with Γ
positive-definite.

2. Conditional on f , the samples
(yn : n = 1, 2, . . .) in each
iteration consists of i.i.d. random
vectors.

f

Note that Γ is not necessarily diagonal because using Common
Random Numbers can maintain the function structural properties
(e.g. Chen et al. [2012]).
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Main Idea

Generate

Bayesian Conjugate 
Prior Model

Known variance: Normal-Normal with an initial uninformative 
prior (0 mean infinite variance)
Unknown variance: Normal-Inverse-Wishart with an initial 
Jeffery’s Prior

A set of function values with noise on

Generate

Known variance: Gaussian distribution
Unknown variance: Multivariate t distribution

Samples distributed as 

Subroutine Estimation of

Prior:
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Convergence

Theorem
Let pn = P (f ∈ C|An) be the n-iteration posterior probability
that f is convex. As n→∞, pn − 1{f ∈ C} → 0 a.s.

Proof sketch (assume Γ known):
1. P (f ∈ ∂C) = 0 leaves cases f /∈ C and f ∈ C◦ .
2. µn − f → 0 in probability and Λn ∼ Γ/n→ 0 as n→∞ (CLT).
3. When f /∈ C, define Df = minh∈C ||f − h||, then

pn − 1 {f ∈ C} = P (µn + Λ1/2
n Z ∈ C|An) ≤

P (‖µn + Λ1/2
n Z − f‖ ≥ Df |An) ≤ P (‖µn − f‖ ≥

Df/2|An) + P (‖Λ1/2
n Z‖ ≥ Df/2|An)→p 0 by Markov’s

Inequality. A lower bound of 0 can be given when f ∈ C◦.
4. (pn : n ≥ 0) is a uniformly integrable martingale, so the

convergence is almost surely.
For the unknown Γ case, a similar proof can be constructed by
conditioning on Γ.
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Convexity

x1

x2
x3

x4

g ∈ C if and only if each of the
following linear system

LS(i),i ∈ {1, . . . , r}
aTi xi + bi = g(xi)
aTi xj + bi ≤ g(xj), ∀j ∈ {1, . . . , r}\{i}

is feasible in the variables ai ∈ Rd and
bi ∈ R (Murty [1988]).
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Vanilla Monte Carlo Method

In each iteration of the main algorithm, after updating the
hyper-parameters of the posterior distribution,

1. Simulate m i.i.d. samples ynk from the predictive
distribution f |An.

2. For each sample ynk , set g = ynk in LS(i), i = 1, . . . , r.
Obtain an indicator 1 {ynk ∈ C} that is 0 if any of
LS(i), i = 1, . . . , r is infeasible and 1 otherwise.

3. Output the estimator p̂n = 1
m

∑m
k=1 1 {ynk ∈ C} as the

average of all indicators.
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Challenge: Variance Reduction
Vanilla Monte Carlo estimation converges slowly with wide
confidence interval width:
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VANILLA MONTE CARLO METHOD

Figure: 3-d sphere function with 12 sample points.
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Estimating the Probability of Convexity of a Function Observed with Noise Jian and Henderson

Conditional Monte Carlo Method
Let Q = Λ1/2

n Z where Z ∼ Uniform(Sr−1). Instead of
obtaining a 0− 1 estimator...

µ1 +Q1t

Integrate

tmin
tmax

µ1
tmin

µ2 +Q2t

µ2

µ3

µ3 +Q3t

C C

0 0
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Conditional Monte Carlo Method

How does this work?

P (f ∈ C|An)

= En
(
1
{

Λ1/2
n X + µn ∈ C

})
, for X ∼ N(0, I) or tνn(0, I)

= En
(
1
{
TΛ1/2

n Z + µn ∈ C
})

, for Z uniform on Sr−1

= En
(
E
(
1
{
TΛ1/2

n Z + µn ∈ C
}
|Z
))

= En(P (T ∈ [tmin(Z), tmax(Z)] |Z))
= En(FT |Z(tmax(Z))− FT |Z(tmin(Z)))
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Distribution of T |Z

Distribution of T |Z
Known variance: FT |Z(t) = 1

2 + sign(t)Fχ2
r
(t2).

Unknown variance: FT |Z(t) = 1
2 + sign(t)FF (r,νn)(t2/r).

Proof sketch:

FT |Z(t) = P (T ≤ t|Z)
=P (T ≤ 0|Z) + P (0 ≤ T ≤ t|Z), when t > 0
=1/2 + 1/2P (||X||2 ≤ t2|Z), for X = TZ

Known variance: X ∼ N(0, I), so ||X||2 ∼ χ2
r.

Unknown variance: X ∼ tνn
(0, I) = N√

Y/νn

for N ∼ N(0, I) and

Y ∼ χ2
νn
. Therefore ||X||2 = NTN

Y/νn
where NTN ∼ χ2

r, so
||X||2/r ∼ F (r, νn).
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Estimating the Probability of Convexity of a Function Observed with Noise Jian and Henderson

Finding tmin and tmax

LP for tmin and tmax

tmin = min t (tmax = max t)
s.t. aTi x+ bi = µi + (Λ1/2Z)it, ∀i

aTi xj + bi ≤ µj + (Λ1/2Z)jt, ∀i,∀j 6= i

ai ∈ Rr, bi ∈ R, t ∈ R, ∀i

Similarly, this can be decomposed into r subproblems:

timin = min ti

(timax = max ti)
s.t. aTi xi + bi = µi + (Λ1/2Z)ti

aTi xj + bi ≤ µj + (Λ1/2Z)jti,
∀j 6= i,

and

tmin = max
i=1,2,...,r

timin,

tmax = min
i=1,2,...,r

timax.

Algorithm Monte Carlo Conditional MC LR Based Methods Implementations Conclusion References20/42



Estimating the Probability of Convexity of a Function Observed with Noise Jian and Henderson

Conditional Monte Carlo Method

At each iteration n, to estimate
pn = En(FT |Z(tmax(Z))− FT |Z(tmin(Z))),

1. Simulate m i.i.d. samples zk uniformly on the unit shell
Sr−1.

2. For each sample zk, solve for tmin(zk) and tmax(zk).
3. Calculate FT |Z(tmax(zk))− FT |Z(tmin(zk)).
4. Output the estimator p̂n as a sample average of such

integrations obtained from m samples.
This method achieves variance reduction compared to the
vanilla Monte Carlo estimator.
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Reduced Variance and New Challenge
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VANILLA MONTE CARLO METHOD

Figure: Vanilla Monte Carlo
method.
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Conditional Monte Carlo Method

Figure: Conditional Monte Carlo
method.

... but doubled the computational time to check the convexity
for each sample!
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Can we reuse samples?

φ1 φ2
φn+1
φn
φn−1

.........

Maybe yes: as n grows large, we might expect φn+1
φn

to become
close to 1, where φn is the density of f |An. Thus pn+1 may be
estimated by ynk , k = 1, . . . ,m, for which 1 {ynk ∈ C} has been
calculated in iteration n.
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LR Based Methods

At iteration n, calculate p̂n using the vanilla Monte Carlo
method with samples ynk , k = 1, . . . ,m. In iteration n+ `,

Change of Measure: Reuse all the samples ynk in the n-th
iteration. Output ˆpn+` = 1

m

∑m
k=1 1 {ynk ∈ C} φn+`(ynk )

φn(yn
k

) .

Generalized Acceptance/Rejection: Reuse part of the samples
by accepting ynk with probability φn+`(ynk )

cφn(yn
k

) , then generate new
samples as needed:

ˆpn+` = 1
m

(∑
k∈S 1 {ynk ∈ C}+

∑m−|S|
k=1 1

{
yn+`
k ∈ C

})
By utilizing the samples and results in an earlier iteration, these
two methods saves computational time.

Algorithm Monte Carlo Conditional MC LR Based Methods Implementations Conclusion References25/42



Estimating the Probability of Convexity of a Function Observed with Noise Jian and Henderson

LR Based Methods

At iteration n, calculate p̂n using the vanilla Monte Carlo
method with samples ynk , k = 1, . . . ,m. In iteration n+ `,

Change of Measure: Reuse all the samples ynk in the n-th
iteration. Output ˆpn+` = 1

m

∑m
k=1 1 {ynk ∈ C} φn+`(ynk )

φn(yn
k

) .

Generalized Acceptance/Rejection: Reuse part of the samples
by accepting ynk with probability φn+`(ynk )

cφn(yn
k

) , then generate new
samples as needed:

ˆpn+` = 1
m

(∑
k∈S 1 {ynk ∈ C}+

∑m−|S|
k=1 1

{
yn+`
k ∈ C

})
By utilizing the samples and results in an earlier iteration, these
two methods saves computational time.

Algorithm Monte Carlo Conditional MC LR Based Methods Implementations Conclusion References25/42



Estimating the Probability of Convexity of a Function Observed with Noise Jian and Henderson

LR Based Methods

At iteration n, calculate p̂n using the vanilla Monte Carlo
method with samples ynk , k = 1, . . . ,m. In iteration n+ `,

Change of Measure: Reuse all the samples ynk in the n-th
iteration. Output ˆpn+` = 1

m

∑m
k=1 1 {ynk ∈ C} φn+`(ynk )

φn(yn
k

) .

Generalized Acceptance/Rejection: Reuse part of the samples
by accepting ynk with probability φn+`(ynk )

cφn(yn
k

) , then generate new
samples as needed:

ˆpn+` = 1
m

(∑
k∈S 1 {ynk ∈ C}+

∑m−|S|
k=1 1

{
yn+`
k ∈ C

})

By utilizing the samples and results in an earlier iteration, these
two methods saves computational time.

Algorithm Monte Carlo Conditional MC LR Based Methods Implementations Conclusion References25/42



Estimating the Probability of Convexity of a Function Observed with Noise Jian and Henderson

LR Based Methods

At iteration n, calculate p̂n using the vanilla Monte Carlo
method with samples ynk , k = 1, . . . ,m. In iteration n+ `,

Change of Measure: Reuse all the samples ynk in the n-th
iteration. Output ˆpn+` = 1

m

∑m
k=1 1 {ynk ∈ C} φn+`(ynk )

φn(yn
k

) .

Generalized Acceptance/Rejection: Reuse part of the samples
by accepting ynk with probability φn+`(ynk )

cφn(yn
k

) , then generate new
samples as needed:

ˆpn+` = 1
m

(∑
k∈S 1 {ynk ∈ C}+

∑m−|S|
k=1 1

{
yn+`
k ∈ C

})
By utilizing the samples and results in an earlier iteration, these
two methods saves computational time.
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Theory vs. Reality
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Change of Measure Method for Convex Function

Figure: The probability of convex is estimated to be over 1.
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Theory vs. Reality
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Figure: When φn+1(y)
φn(y) is huge.
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How likely does this happen?

It can be shown that p̂n+` is unbiased and has finite variance
[Jian et al., 2014] . However, when n becomes large,
maxyn φn+1(yn)

φn(yn) = c has infinite expectation.

Proof sketch: For example, assume r = 1, and Γ = λ−2 is known, so
the n-iteration posterior precision is σ−2

n = σ−2
0 + nλ2. Let

y ∼ N(0, λ−2), and yn ∼ N(µn, σ2
n).

maxyn 2 ln φn+1(yn)
φn(yn) = (µn − µn+1)2(σ−2

n+1 + 1
λ2 (σ−4

n+1)) + ln σn

σn+1
,

(µn − µn+1)2 = ((1− σ2
n+1
σ2

n
)µn − σ2

n+1λ
2y)2 → (σ2

n+1λ
2y)2 and

σn/σn+1 → 1. So maxyn 2 ln φn+1(yn)
φn(yn) → λ2y2 ∼ χ2

1.

Thus c ≥ exp λ2y2

2 ∼ exp χ2
1

2 with expectation ∞.
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The Combination of Methods

Combining the Conditional Monte Carlo method with the
Change of Measure method, we get an hybrid algorithm:

1. At every iteration n, simulate m i.i.d. samples zk uniformly
on the unit shell Sr−1. Solve for tmin(zk) and tmax(zk) and
output the Conditional Monte Carlo estimator p̂n.

2. Let yk = µn + (Λ1/2
n zk)tk, where tk is sampled from

T |Z = zk. If tk ∈ [tmin(zk), tmax(zk)], then 1 {ynk ∈ C} = 1;
otherwise, 1 {ynk ∈ C} = 0.

3. In the next ` iterations, output
p̂n+` = 1

m

∑m
k=1 1 {ynk ∈ C} φn+`(ynk )

φn(yn
k

) .

(Careful! φn+`(ynk )
φn(yn

k
) � 1 may happen.)
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Figure: p̂n for g = −‖x‖2
,x ∈ [− 1, 1]30, r = 61, Γ has 104 on the

diagonal.
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Plane
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Figure: p̂n for g = 0,x ∈ [− 1, 1]2, r = 6, Γ has 1e− 18 on the
diagonal.
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Ambulances in a Square
A "real" example from SimOpt.org: What does the long run
average response time behave like as a function of the
ambulance base location?

 

 

0 1 

1 

? 

BASE 

Figure: Problem illustration.
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One Base, Two Bases
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Figure: p̂n for one ambulance base
(d = 2).
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Figure: p̂n for two ambulance
bases (d = 4).
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Conclusion

In this talk:
• a sequential Bayesian method for estimating the
probability of convex utilizing Monte Carlo simulation

• a Conditional Monte Carlo variance reduction method
• two likelihood-ratio-based variance reduction methods with
limitation

On-going research:
• The asymptotic behavior of the probability that a function
is convex using a kriging model as the number of samples
goes to infinity.
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Constant for the Generalized A/R

How to find c in the generalized acceptance/rejection method,
so that c ≥ φn+`(y)

φn(y) for all y?

Known variance: c ≥{
|Λn+`|
|Λn|

exp 1
`

(Λ−1
n+`

µn+` − Λ−1
n µn)T Γ(Λ−1

n+`
µn+` − Λ−1

n µn) + µT
n Λ−1

n µn − µT
n+`

Λ−1
n+`

µn+`

}1/2
.

Unknown variance: Intractable and needs numerical estimation.
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The Dual

Q = Λ1/2Z.

Primal: tmin = min t
s.t. aTi x+ bi = µi +Qit, ∀i

aTi xj + bi ≤ µj +Qjt,

∀i, ∀j 6= i

ai ∈ Rr, bi ∈ R, t ∈ R, ∀i

Dual: tmin = −min
∑
i

∑
j vijµj

s.t.
∑
i

∑
j vijQj = 1, (1)∑

j xjvij = 0d, ∀i, (2)∑
j vij = 0r, ∀i, (3)

vij ≥ 0, ∀i,∀j 6= i, (4)

Meaning
min distance from µ to C
(vQ)i 6= 0 for the nearest face of C∑

j xj
vij

−vii
= 0d,∀i

vij

−vii
≥ 0,

∑
j
vij

−vii
= 1

vi,· characterizes faces of C
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Where to sample?

An interesting example for g = ‖x‖2 ,x ∈ [− 1, 1]30, r = 60, and
Γ has 104 on the diagonal.
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Figure: Sampling the 60 points
uniformly at random in space.
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Figure: Sampling along 20 random
lines with 3 points on each.
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Where to sample?

Consider a 2-dimensional concave function with the following
level sets (higher values in darker shades):

Convex? Not convex!

Figure: Sampling uniformly vs. Sampling along random lines.
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