

Sequential Detection of Convexity from Noisy Function Evaluations

Nanjing Jian[†] Shane G. Henderson[†] Susan R. Hunter[‡] † School of Operations Research and Information Engineering, Cornell University ‡ School of Industrial Engineering, Purdue University

> INFORMS Annual Meeting, San Francisco, CA November 9, 2014

EN,

Problem Statement

- Consider a function $g: S \subseteq \mathbb{R}^d \to \mathbb{R}$ that can only be evaluated with the presence of noise at r points $\boldsymbol{x} = (\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_r) \in \mathbb{R}^d$. Let the true values of the function g at \boldsymbol{x} be denoted $\boldsymbol{g} = (g(\boldsymbol{x}_1), g(\boldsymbol{x}_2), \dots, g(\boldsymbol{x}_r))^T$.
- We wish to determine the convexity/non-convexity of g with some probabilistic guarantee, using only estimates of its values obtained through simulation at the points x.
- $\blacklozenge \ g \text{ is convex if a convex function exists that coincides with } g \\ \text{ at those points.}$

2 Algorithm

- 3 Subroutine Alternatives
- **4** Numerical Experiments
- **5** Conclusion

• Learning about black-box functions

• Learning about black-box functions

• Stopping rule for global (stochastic) optimization algorithms

Previous research: One-shot frequentist hypothesis test, with the number of samples predetermined.

Dim	Distance	Regression parameters
1	Juditsky and Nemirovski [2002]	Baraud et al. [2005]
		Diack and Thomas-Agnan [1998]
		Meyer [2012]
		Wang and Meyer [2011]
> 1	Silvapulle and Sen [2001]	Lau [1978]
		Abrevaya and Jiang [2005]

Previous research: One-shot frequentist hypothesis test, with the number of samples predetermined.

Dim	Distance	Regression parameters
1	Juditsky and Nemirovski [2002]	Baraud et al. [2005]
		Diack and Thomas-Agnan [1998]
		Meyer [2012]
		Wang and Meyer [2011]
> 1	Silvapulle and Sen [2001]	Lau [1978]
		Abrevaya and Jiang [2005]

Our Goal: A sequential algorithm in the Bayesian setting with indefinite number of samples and can be stopped at any time.

2 Algorithm

- 3 Subroutine Alternatives
- 4 Numerical Experiments
- **5** Conclusion

- We obtain realizations of a random vector $\boldsymbol{Y} = \boldsymbol{f} + \boldsymbol{\xi}$, where $\boldsymbol{\xi} \sim N(\boldsymbol{0}, \Gamma) \in \mathbb{R}^r$, and Γ positive-definite if known.
- \blacklozenge Γ is not necessarily diagonal for the use of Common Random Numbers.
- Conditional on f, the samples $(y_n : n = 1, 2, ...)$ in each iteration consists of i.i.d. random vectors.

In each sampling iteration n,

1. Obtain a new set of samples y of the function f.

In each sampling iteration n,

- **1.** Obtain a new set of samples y of the function f.
- 2. With a conjugate prior[†] model, use the posterior of the last iteration as the prior and update the posterior hyper-parameters accordingly.

† Normal-Normal with uninformative prior when Γ is known, Normal-Inverse-Wishart with Jeffery's Prior when Γ is unknown.

In each sampling iteration n,

- **1.** Obtain a new set of samples y of the function f.
- 2. With a conjugate prior[†] model, use the posterior of the last iteration as the prior and update the posterior hyper-parameters accordingly.

† Normal-Normal with uninformative prior when Γ is known, Normal-Inverse-Wishart with Jeffery's Prior when Γ is unknown.

3. Estimate $P(f \in \mathbb{C} | \mathscr{A}_n)$ with a subroutine based on the current posterior distribution.

In each sampling iteration n,

- **1.** Obtain a new set of samples y of the function f.
- 2. With a conjugate prior[†] model, use the posterior of the last iteration as the prior and update the posterior hyper-parameters accordingly.

† Normal-Normal with uninformative prior when Γ is known, Normal-Inverse-Wishart with Jeffery's Prior when Γ is unknown.

3. Estimate $P(f \in \mathbb{C} | \mathscr{A}_n)$ with a subroutine based on the current posterior distribution.

Convergence

Let $p_n = P(\mathbf{f} \in \mathbb{C} | \mathscr{A}_n)$ be the *n*-iteration posterior probability that \mathbf{f} is convex. As $n \to \infty$, $p_n - \mathbb{1}{\{\mathbf{f} \in \mathbb{C}\}} \to 0$ a.s.

2 Algorithm

3 Subroutine Alternatives

4 Numerical Experiments

5 Conclusion

Motivation Algorithm Subroutine Alternatives Numerical Experiments Conclusion References 9/23 00 00 00000 0000 0

Convexity

 $\boldsymbol{g} \in \mathbb{C}$ if and only if each of the following $\mathrm{LS}(i), i \in \{1, \dots, r\}$

$$\boldsymbol{a}_i^T \boldsymbol{x}_i + b_i = g(\boldsymbol{x}_i)$$

$$\boldsymbol{a}_i^T \boldsymbol{x}_j + b_i \leq g(\boldsymbol{x}_j), \ \forall j \in \{1, \dots, r\} \setminus \{i\}.$$

is feasible in the variables $\boldsymbol{a}_i \in \mathbb{R}^d$ and $b_i \in \mathbb{R}_{(\text{Murty [1988]})}$.

Motivation Algorithm Subroutine Alternatives Numerical Experiments Conclusion References 10/23

Vanilla Monte Carlo Method

In each iteration of the main algorithm, after updating the hyper-parameters of the posterior distribution,

1. Simulate *m* i.i.d. samples y_k^n from the posterior distribution $f|\mathscr{A}_n$.

Vanilla Monte Carlo Method

In each iteration of the main algorithm, after updating the hyper-parameters of the posterior distribution,

- 1. Simulate *m* i.i.d. samples y_k^n from the posterior distribution $f|\mathscr{A}_n$.
- **2.** For each sample \boldsymbol{y}_k^n , set $\boldsymbol{g} = \boldsymbol{y}_k^n$ in $\mathrm{LS}(i), i = 1, \ldots, r$. Obtain an indicator $\mathbbm{1} \{ \boldsymbol{y}_k^n \in \mathbb{C} \}$ that is 0 if any of $\mathrm{LS}(i), i = 1, \ldots, r$ is infeasible and 1 otherwise.

Vanilla Monte Carlo Method

In each iteration of the main algorithm, after updating the hyper-parameters of the posterior distribution,

- 1. Simulate *m* i.i.d. samples y_k^n from the posterior distribution $f|\mathscr{A}_n$.
- 2. For each sample \boldsymbol{y}_k^n , set $\boldsymbol{g} = \boldsymbol{y}_k^n$ in $\mathrm{LS}(i), i = 1, \ldots, r$. Obtain an indicator $\mathbbm{1} \{ \boldsymbol{y}_k^n \in \mathbb{C} \}$ that is 0 if any of $\mathrm{LS}(i), i = 1, \ldots, r$ is infeasible and 1 otherwise.
- **3.** Output the estimator $p_n = \frac{1}{m} \sum_{k=1}^m \mathbb{1} \{ \boldsymbol{y}_k^n \in \mathbb{C} \}$ as the average of all indicators.

MOTIVATION ALGORITHM SUBROUTINE ALTERNATIVES NUMERICAL EXPERIMENTS CONCLUSION REFERENCES 0000 0000 0000 011/23

SEQUENTIAL DETECTION OF CONVEXITY FROM NOISY FUNCTION EVALUATIONS

Conditional Monte Carlo Method

MOTIVATION ALGORITHM SUBROUTINE ALTERNATIVES NUMERICAL EXPERIMENTS CONCLUSION REFERENCES 12/23

This method achieves variance reduction compared to the vanilla Monte Carlo estimator.

- At each iteration n,
 - **1.** Simulate *m* i.i.d. samples z_k uniformly on the sphere S^{r-1} .

This method achieves variance reduction compared to the vanilla Monte Carlo estimator.

At each iteration n,

- **1.** Simulate *m* i.i.d. samples z_k uniformly on the sphere S^{r-1} .
- 2. For each sample z_k , set $\boldsymbol{g} = \mu_n + (\Lambda_n^{1/2} z_k) t_i$ in $\mathrm{LS}(i), i = 1, \ldots, r$, and use $\mathrm{LS}(i)$ as constraints to solve linear programs with optimal objective values $t_{\min}(i) = \min t_i$ and $t_{\max}(i) = \max t_i$.

This method achieves variance reduction compared to the vanilla Monte Carlo estimator.

At each iteration n,

- **1.** Simulate *m* i.i.d. samples z_k uniformly on the sphere S^{r-1} .
- 2. For each sample z_k , set $\boldsymbol{g} = \mu_n + (\Lambda_n^{1/2} z_k) t_i$ in LS(*i*), i = 1, ..., r, and use LS(*i*) as constraints to solve linear programs with optimal objective values $t_{\min}(i) =$ min t_i and $t_{\max}(i) = \max t_i$.

3. Set
$$t_{\min} = \max_{i=1,2,\dots,r} t_{\min}(i)$$
 and $t_{\max} = \min_{i=1,2,\dots,r} t_{\max}(i)$.

This method achieves variance reduction compared to the vanilla Monte Carlo estimator.

At each iteration n,

- **1.** Simulate *m* i.i.d. samples z_k uniformly on the sphere S^{r-1} .
- 2. For each sample z_k , set $\boldsymbol{g} = \mu_n + (\Lambda_n^{1/2} z_k) t_i$ in LS(*i*), i = 1, ..., r, and use LS(*i*) as constraints to solve linear programs with optimal objective values $t_{\min}(i) =$ min t_i and $t_{\max}(i) = \max t_i$.
- **3.** Set $t_{\min} = \max_{i=1,2,\dots,r} t_{\min}(i)$ and $t_{\max} = \min_{i=1,2,\dots,r} t_{\max}(i)$.
- **4.** Calculate the integral $\frac{\beta(r)}{2} \int_{t_{\min}}^{t_{\max}} \phi(tz_k) |t^{r-1}| dt$.

MOTIVATION ALGORITHM SUBROUTINE ALTERNATIVES NUMERICAL EXPERIMENTS CONCLUSION REFERENCES 13/23

This method achieves variance reduction compared to the vanilla Monte Carlo estimator.

At each iteration n,

- **1.** Simulate *m* i.i.d. samples z_k uniformly on the sphere S^{r-1} .
- 2. For each sample z_k , set $\boldsymbol{g} = \mu_n + (\Lambda_n^{1/2} z_k) t_i$ in LS(*i*), i = 1, ..., r, and use LS(*i*) as constraints to solve linear programs with optimal objective values $t_{\min}(i) =$ min t_i and $t_{\max}(i) = \max t_i$.
- **3.** Set $t_{\min} = \max_{i=1,2,\dots,r} t_{\min}(i)$ and $t_{\max} = \min_{i=1,2,\dots,r} t_{\max}(i)$.
- **4.** Calculate the integral $\frac{\beta(r)}{2} \int_{t_{\min}}^{t_{\max}} \phi(tz_k) |t^{r-1}| dt$.
- 5. Output the estimator p_n as a sample average of such integrations obtained from m samples.

Change of Measure Method

As *n* grows large, $\frac{\phi_{n+\ell}}{\phi_n}$ becomes close to 1, where ϕ_n is the density of $f|\mathscr{A}_n$.

Motivation Algorithm Subroutine Alternatives Numerical Experiments Conclusion References 14/23

Change of Measure Method

By utilizing the samples and results in an earlier iteration, this method saves computational time.

At iteration n, calculate p_n using vanilla Monte Carlo with samples $\boldsymbol{y}_k, k = 1, \ldots, m$. In iteration $n + \ell$,

Opt 1 Reuse all the samples \boldsymbol{y}_k^n in the *n*-th iteration: $p_{n+\ell} = \frac{1}{m} \sum_{k=1}^m \mathbb{1} \{ \boldsymbol{y}_k^n \in \mathbb{C} \} \frac{\phi_{n+\ell}(\boldsymbol{y}_k^n)}{\phi_n(\boldsymbol{y}_k^n)}.$

Opt 2 Randomly reuse part of the samples (say, set S) in the *n*-th iteration and generate new samples as needed: $p_{n+\ell} = \frac{1}{|S|} \sum_{k \in S} \mathbb{1} \{ \boldsymbol{y}_k^n \in \mathbb{C} \} \frac{\phi_{n+\ell}(\boldsymbol{y}_k^n)}{\phi_n(\boldsymbol{y}_k^n)} + \frac{1}{m-|S|} \sum_{k=1}^{m-|S|} \mathbb{1} \{ \boldsymbol{y}_k^{n+\ell} \in \mathbb{C} \}.$

MOTIVATION ALGORITHM SUBROUTINE ALTERNATIVES NUMERICAL EXPERIMENTS CONCLUSION REFERENCES 15/23

2 Algorithm

- 3 Subroutine Alternatives
- **4** Numerical Experiments
- 5 Conclusion

Motivation Algorithm Subroutine Alternatives Numerical Experiments Conclusion References 16/23

Inverted Bowl

Figure : p_n for $g = 0, \boldsymbol{x} \in [-1, 1]^2$, r = 5, Γ has 1 on the diagonal.

Motivation Algorithm Subroutine Alternatives Numerical Experiments Conclusion References 18/23

Where to sample?

An interesting example for $g = \|\boldsymbol{x}\|^2$, $\boldsymbol{x} \in [-1, 1]^{30}$, r = 60, and Γ has 10^4 on the diagonal.

Figure : Sampling the 60 points uniformly at random in space.

Figure : Sampling along 20 random lines with 3 points on each.

What happened?

For easiness of illustration, consider a 2-dimensional function with the following level sets:

Figure : Sampling uniformly vs. Sampling along random lines.

Motivation Algorithm Subroutine Alternatives Numerical Experiments Conclusion References 20/23

2 Algorithm

- 3 Subroutine Alternatives
- **4** Numerical Experiments

Conclusion

We suggested

- a sequential method for detecting convexity/non-convexity of noisy functions
- a Monte Carlo method for estimating probability of convex
- a conditional Monte Carlo method for variance reduction
- a change of measure method for speed improvement

Next steps:

- the number and locations of sampled points
- uneven sample size at each sampled point

Reference I

- Jason Abrevaya and Wei Jiang. A nonparametric approach to measuring and testing curvature. Journal of Business & Economic Statistics, 23:1-19, 2005. URL http://EconPapers.repec.org/RePEc:bes:jnlbes:v:23:y:2005:p:1-19.
- Y. Baraud, S. Huet, and B. Laurent. Testing convex hypotheses on the mean of a Gaussian vector. application to testing qualitative hypotheses on a regression function. *The Annals of Statistics*, 33(1):214-257, 2005.
- C. A. T. Diack and C. Thomas-Agnan. A nonparametric test of the non-convexity of regression. *Nonparametric Statistics*, 9:335–362, 1998.
- A. Juditsky and A. Nemirovski. On nonparametric tests of positivity/monotonicity/convexity. The Annals of Statistics, 30(2):498–527, 2002.
- Lawrence J Lau. Testing and imposing monoticity, convexity, and quasi-convexity constraints. Electronic Journal of Statistics, 1:409–453, 1978.
- Mary C. Meyer. Constrained penalized splines. Canadian Journal of Statistics, 40(1):190-206, 2012. ISSN 1708-945X. doi: 10.1002/cjs.10137. URL http://dx.doi.org/10.1002/cjs.10137.
- K. G. Murty. Linear Complementarity, Linear and Nonlinear Programming. Heldermann Verlag, Berlin, 1988.
- Mervyn J. Silvapulle and Pranab K. Sen. Constrained Statistical Inference: Order, Inequality, and Shape Restrictions, chapter 3, pages 59-141. John Wiley & Sons, Inc., 2001. ISBN 9781118165614. doi: 10.1002/9781118165614.ch3. URL http://dx.doi.org/10.1002/9781118165614.ch3.
- Jianqiang C. Wang and Mary C. Meyer. Testing the monotonicity or convexity of a function using regression splines. *Canadian Journal of Statistics*, 39(1):89-107, 2011. ISSN 1708-945X. doi: 10.1002/cjs.10094. URL http://dx.doi.org/10.1002/cjs.10094.