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Problem Statement

• Consider a function g : S ⊆ Rd → R that can only be
evaluated with the presence of noise at r points
x = (x1,x2, . . . ,xr) ∈ Rd . Let the true values of the
function g at x be denoted g = (g(x1), g(x2), . . . , g(xr))T .

• We wish to determine the convexity/non-convexity of g
with some probabilistic guarantee, using only estimates of
its values obtained through simulation at the points x.

♠ g is convex if a convex function exists that coincides with g
at those points.
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Motivation

• Learning about black-box
functions

• Stopping rule for global
(stochastic) optimization
algorithms
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Motivation

Previous research: One-shot frequentist hypothesis test, with
the number of samples predetermined.

Dim Distance Regression parameters
1 Juditsky and Nemirovski [2002] Baraud et al. [2005]

Diack and Thomas-Agnan [1998]

Meyer [2012]

Wang and Meyer [2011]

> 1 Silvapulle and Sen [2001] Lau [1978]

Abrevaya and Jiang [2005]

Our Goal: A sequential algorithm in the Bayesian setting with
indefinite number of samples and can be stopped at any time.
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Assumptions

• We obtain realizations of a random vector Y = f + ξ,
where ξ ∼ N (0,Γ) ∈ Rr , and Γ positive-definite if known.

♠ Γ is not necessarily diagonal for the use of Common
Random Numbers.

• Conditional on f , the samples (yn : n = 1, 2, . . .) in each
iteration consists of i.i.d. random vectors.
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Main Idea

In each sampling iteration n,
1. Obtain a new set of samples y of the function f .

2. With a conjugate prior† model, use the posterior of the last
iteration as the prior and update the posterior
hyper-parameters accordingly.
† Normal-Normal with uninformative prior when Γ is known,
Normal-Inverse-Wishart with Jeffery’s Prior when Γ is unknown.

3. Estimate P(f ∈ C|An) with a subroutine based on the
current posterior distribution.

Convergence
Let pn = P(f ∈ C|An) be the n-iteration posterior probability
that f is convex. As n →∞, pn − 1{f ∈ C} → 0 a.s.
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Convexity

x1

x2
x3

x4

g ∈ C if and only if each of the
following LS(i),i ∈ {1, . . . , r}

aT
i xi + bi = g(xi)

aT
i xj + bi ≤ g(xj), ∀j ∈ {1, . . . , r}\{i}.

is feasible in the variables ai ∈ Rd and
bi ∈ R (Murty [1988]).
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Vanilla Monte Carlo Method

In each iteration of the main algorithm, after updating the
hyper-parameters of the posterior distribution,

1. Simulate m i.i.d. samples yn
k from the posterior

distribution f |An .

2. For each sample yn
k , set g = yn

k in LS(i), i = 1, . . . , r .
Obtain an indicator 1 {yn

k ∈ C} that is 0 if any of
LS(i), i = 1, . . . , r is infeasible and 1 otherwise.

3. Output the estimator pn = 1
m

∑m
k=1 1 {yn

k ∈ C} as the
average of all indicators.
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Conditional Monte Carlo Method
Instead of obtaining a 0− 1 estimator...
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Conditional Monte Carlo Method

This method achieves variance reduction compared to the
vanilla Monte Carlo estimator.
At each iteration n,

1. Simulate m i.i.d. samples zk uniformly on the sphere Sr−1.

2. For each sample zk , set g = µn + (Λ1/2
n zk)ti in

LS(i), i = 1, . . . , r , and use LS(i) as constraints to solve
linear programs with optimal objective values tmin(i) =
min ti and tmax(i) = max ti .

3. Set tmin = max
i=1,2,...,r

tmin(i) and tmax = min
i=1,2,...,r

tmax(i).

4. Calculate the integral β(r)
2

∫ tmax
tmin

φ(tzk)|tr−1|dt.
5. Output the estimator pn as a sample average of such

integrations obtained from m samples.
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Change of Measure Method

φ1 φ2

φn+1
φn
φn−1

.........

As n grows large, φn+`

φn
becomes close to 1, where φn is the

density of f |An .
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Change of Measure Method

By utilizing the samples and results in an earlier iteration, this
method saves computational time.

At iteration n, calculate pn using vanilla Monte Carlo with
samples yk , k = 1, . . . ,m. In iteration n + `,

Opt 1 Reuse all the samples yn
k in the n-th iteration:

pn+` = 1
m

∑m
k=1 1 {yn

k ∈ C} φn+`(yn
k )

φn(yn
k ) .

Opt 2 Randomly reuse part of the samples (say, set S) in the n-th
iteration and generate new samples as needed: pn+` =
1
|S |

∑
k∈S 1 {yn

k ∈ C} φn+`(yn
k )

φn(yn
k ) + 1

m−|S |
∑m−|S |

k=1 1
{

yn+`
k ∈ C

}
.
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Inverted Bowl
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Figure : pn for g = −‖x‖2
,x ∈ [− 1, 1]30, r = 61, Γ has 104 on the

diagonal.
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Plane
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Figure : pn for g = 0,x ∈ [− 1, 1]2, r = 5, Γ has 1 on the diagonal.
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Where to sample?

An interesting example for g = ‖x‖2 ,x ∈ [− 1, 1]30, r = 60, and
Γ has 104 on the diagonal.
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Figure : Sampling the 60 points
uniformly at random in space.
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Figure : Sampling along 20 random
lines with 3 points on each.
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What happened?

For easiness of illustration, consider a 2-dimensional function
with the following level sets:

Figure : Sampling uniformly vs. Sampling along random lines.
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Conclusion

We suggested
• a sequential method for detecting convexity/non-convexity
of noisy functions

• a Monte Carlo method for estimating probability of convex
• a conditional Monte Carlo method for variance reduction
• a change of measure method for speed improvement

Next steps:
• the number and locations of sampled points
• uneven sample size at each sampled point
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