
Spring 2013 Optimization II (ORIE 3310/5310/5311)

Lecture 14: March 7, 2013

Today, we will analyze the amount of “computational effort” of solving the knapsack problem using
DP.

1 Continued from last time: The knapsack problem

Last lecture, we consider the following example of the knapsack problem, which we also see in Recitation
7A. We have a knapsack of weight capacity W = 13 pounds and N = 4 products, each is available in
unlimited quantities.

Product (i) Weight per unit (wi) Value per unit (di)

1 5 9
2 3 4
3 2 3
4 1 0.5

A DP formulation that we saw:

1. Stages: The stages correspond to a product type. That is, at stage k, we consider products 1
through k, making a decision on the quantity of product k to take.

2. States: At stage k, we consider various values for the state Ŵ , which corresponds to a leftover
weight capacity of Ŵ . In particular, we consider Ŵ = 0, 1, . . . ,W (here, W = 13).

3. Decisions: At stage k and state Ŵ , we decide how many units of product k we should take,
given that we have a leftover capacity of Ŵ for products 1 through k.

So, if xk denote the number of units of product k to take, then if the leftover capacity is Ŵ , the
allowable values of xk are:

0, 1, . . . ,

⌊
Ŵ

wk

⌋
,

where
⌊
Ŵ
wk

⌋
is the maximum number of units of product k that fits into a knapsack of leftover

capacity Ŵ .

4. Optimization function: we let f∗
k (Ŵ ) denote the maximum value of a knapsack with leftover

weight capacity Ŵ when we only consider products 1 through k.

5. According to (4) above, f∗
k (Ŵ ) is easiest to compute at stage k = 1:

f∗
1 (Ŵ ) = the maximum value of a knapsack with leftover weight capacity Ŵ when we only

consider product 1.

So,

f∗
k (Ŵ ) =

⌊
Ŵ

w1

⌋
· d1; x∗1 =

⌊
Ŵ

w1

⌋
,

for all values of Ŵ = 0, 1, . . . ,W (here, W = 13).

1



Spring 2013 Optimization II (ORIE 3310/5310/5311)

6. Recurrence relation:

f∗
k (Ŵ ) = the maximum value of a knapsack with leftover weight capacity Ŵ

when we only consider products 1 through k

= max
allowable

values of xk

value from xk units of prod k +

 max value of a knapsack with

leftover weight capacity of Ŵ − xkwk

for products 1 through k − 1


= max

xk=0,...,bŴ/wkc

{
xk · dk + f∗

k−1(Ŵ − xkwk)
}

7. Computation: We complete the following DP table (i.e. we solve for f∗
k (Ŵ ) for each k = 1, . . . , N

and each Ŵ = 0, . . . ,W ) starting from the column for stage 1, which provides our boundary
conditions, then the column for stage 2, etc.

Ŵ f∗
1 (Ŵ ), x∗1 f∗

2 (Ŵ ), x∗2 f∗
3 (Ŵ ), x∗3 f∗

4 (Ŵ ), x∗4
0

1
...

...
...

...
...

12

13

8. The optimal value of the overall problem is given by f∗
N (W ), which in our case is f∗

4 (13). We
trace back to obtain the optimal solution.

Remark. How much work does it take to solve the knapsack problem using the above DP approach?

• In our example, our state space has size 14 and there are 14× x4 = 56 cells to fill.

• In general, the state space has size W + 1 and there are (W + 1)N cells to fill.

• So, we say that the state space is of order O(W ) and the number of cells is of order O(WN).
[See last section on this ”Big-Oh” notation.]

• (To compute each cell in the kth stage, we consider the maximum among up to bŴ/wkc + 1
possible values of xk. Assuming that each wk is a positive integer, the number of possible values
of each xk is at most Ŵ + 1 = O(W ). So in total, our computational effort is around O(NW 2).)

2



Spring 2013 Optimization II (ORIE 3310/5310/5311)

2 The knapsack problem with multiple capacity constraints

Suppose we now have a knapsack that has a volume capacity constraint in addition to a weight capacity
constraint. Consider the previous example: Suppose that the weight capacity is still W = 13 pounds,
but it now also has a volume capacity of V = 15 liters. The volumes of our N = 4 products are given
in the following table:

Product (i) Weight per unit (wi) Volume per unit (vi) Value per unit (di)

1 5 4 9
2 3 5 4
3 2 3 3
4 1 1 0.5

Then, besides keeping track of leftover weight capacity (as our “state”), we also need to keep track
of leftover volume capacity, as a “state”. Hence, the DP approach becomes:

1. Stages: The stages correspond to a product type. That is, at stage k, we consider products 1
through k, making a decision on the quantity of product k to take.

2. States: At stage k, we consider various values for the state (Ŵ , V̂ ), which corresponds to a

leftover weight capacity of Ŵ and a leftover volume capacity V̂ . Note that our state is now a
2-dimensional vector.

In particular, at each stage k, we have to consider all possible pairs of values Ŵ = 0, 1, . . . ,W
(here, W = 13) and V̂ = 0, 1, . . . , V (here, V = 15).

3. Decisions: At stage k and state (Ŵ , V̂ ) , we decide how many units of product k we should take,

given that we have a leftover weight and volume capacities of (Ŵ , V̂ ) for products 1 through k.

So, if xk denote the number of units of product k to take, then if the leftover capacity is Ŵ , the
allowable values of xk are:

0, 1, . . . ,min

(⌊
Ŵ

wk

⌋
,

⌊
V̂

vk

⌋)
,

that is, xk has to be less than or equal to both
⌊
Ŵ
wk

⌋
and

⌊
V̂
vk

⌋
.

4. Optimization function: we let f∗
k ((Ŵ , V̂ )) denote the maximum value of a knapsack with leftover

weight and volume capacities (Ŵ , V̂ ) when we only consider products 1 through k.

5. According to (4) above, f∗
k ((Ŵ , V̂ )) is easiest to compute at stage k = 1:

f∗
1 ((Ŵ , V̂ )) = the maximum value of a knapsack with leftover weight capacity Ŵ when we only

consider product 1.

So,

f∗
k (Ŵ , V̂ ) = x∗1 · d1; x∗1 = min

(⌊
Ŵ

w1

⌋
,

⌊
V̂

v1

⌋)
,

for all values of Ŵ = 0, 1, . . . ,W and V̂ = 0, 1, . . . , V (here W = 13, V − 15).

3



Spring 2013 Optimization II (ORIE 3310/5310/5311)

6. Recurrence relation:

f∗
k (Ŵ , V̂ ) = the maximum value of a knapsack with leftover weight capacity Ŵ

when we only consider products 1 through k

= max
allowable

values of xk

value from xk units of prod k +

 max value of a knapsack with leftover

capacities of (Ŵ − xkwk, V̂ − xkvk)
for products 1 through k − 1


= max

xk=0,...,min(bŴ/wkc,bV̂ /vkc,)

{
xk · dk + f∗

k−1(Ŵ − xkwk, V̂ − xkvk)
}

7. Computation: We complete the following DP table (i.e. we solve for f∗
k (Ŵ , V̂ ) for each k =

1, . . . , N and each Ŵ = 0, . . . ,W ) starting from the column for stage 1, which provides our
boundary conditions, then the column for stage 2, etc.

(Ŵ , V̂ ) f∗
1 (Ŵ ), x∗1 f∗

2 (Ŵ ), x∗2 f∗
3 (Ŵ ), x∗3 f∗

4 (Ŵ ), x∗4
(0, 0)

(0, 1)
...

...
...

...
...

(0, 14)

(0, 15)
...

...
...

...
...

(13, 14)

(13, 15)

or, rearranging the table: for each stage k, we fill out:

V̂ = 0 V̂ = 1 · · · V̂ = 15

Ŵ = 0 f∗
k (0, 0) = ..., x∗k = ... f∗

k (0, 1) = ..., x∗k = ... · · · f∗
k (0, 15) = ..., x∗k = ...

Ŵ = 1 f∗
k (1, 0) = ..., x∗k = ... f∗

k (1, 1) = ..., x∗k = ... · · · f∗
k (1, 15) = ..., x∗k = ...

...
...

...
...

...

Ŵ = 13 f∗
k (13, 0) = ..., x∗k = ... f∗

k (13, 1) = ..., x∗k = ... · · · f∗
k (13, 15) = ..., x∗k = ...

8. The optimal value of the overall problem is given by f∗
N (W,V ), which in our case is f∗

4 (13, 15).
We trace back to obtain the optimal solution.

Remark. How much work does it take to solve the knapsack problem using the above DP approach?

• In our example, the state space has size 14× 15 and there are 14× 15× 4 = 896 cells to fill.

• In general, the state space has size (W + 1)(V + 1) and there are (W + 1)(V + 1)N cells to fill.

• So, we say that the state space is of order O(WV ) and the number of cells is of order O(NWV ).

• (To compute each cell in the kth stage, we consider the maximum among up to bŴ/wkc + 1
possible values of xk. Assuming that each wk, vk is a positive integer, the number of possible
values of each xk is at most min(Ŵ + 1, V̂ + 1) = O(W ). So in total, our computational effort is
around O(NVW 2).)

Comparison between single-constraint and multiple-constraint knapsack:

4



Spring 2013 Optimization II (ORIE 3310/5310/5311)

• With just one capacity constraint (just weight capacity), our state spae is 1-dimensional with
size O(W ), and we have O(NW ) cells to fill.

• With two capacity constraints (weight and volume capacities), our state-space is 2-dimensional,
with size O(WV ) and we have O(NWV ) cells to fill.

• Suppose that we have d capacity constraints and for each constraint, the capacity is of order
O(C). Then then our state space is d-dimensional, the size of the state space is O(Cd) and we
have O(NCd) cells to fill.

• This illustrates that as the number of dimensions, d, increase, the amount of computation that
we have to do increases exponentially (because d appears as an exponent)

• This issue with DP is often referred to as the “curse of dimensionality” indicating that as the
dimension of the state space grow, the amount of computation grows exponentially such that
computation becomes intractable (this mean, cannot be done in any reasonable amount of time)
very quickly.

5



Spring 2013 Optimization II (ORIE 3310/5310/5311)

3 Another DP formulation of the knapsack problem

As you might have chosen to do in homework, or as you have seen in Recitation 7A, there is another
formulation of knapsack:

• Stage Ŵ corresponds to remaining weight capacity of Ŵ ; the stages go from Ŵ = 0 to Ŵ =
W = 13.

• At each stage Ŵ , we only consider one state: Ŵ .

(Note: The act of specifying “Stages” and “states” is part of a way of formalizing our DP
approach. In our case here, the “state” is redundant; we don’t actually need a state information
in this formulation, and could be “skipped”. However, here, we decided instead of not having
any states, we have a state that is exactly the same as our stage.)

• At stage Ŵ and state Ŵ , we decide whether, given a leftover capacity of Ŵ , one unit of which
product k = 1, 2, . . . , N we should add into our knapsack. So, the allowable decisions are products
k that satisfy

wk ≤ Ŵ ,

i.e., any of the products that can fit.

• At stage Ŵ and state Ŵ , our optimization function is f∗(Ŵ ) = f∗
Ŵ

(Ŵ ) = the maximum value

of a knapsack with leftover capacity Ŵ .

• According to (4) above, the easiest stage Ŵ in which to compute f∗(Ŵ ) is when Ŵ = 0:

f∗(Ŵ ) = the maximum value of a knapsack with leftover capacity 0 = 0, x∗Ŵ = none.

• The recurrence relation:

f(Ŵ ) = the maximum value of a knapsack with leftover capacity Ŵ

= min
product k

that fits

{
value of product k +

the maximum value of a knapsack

with leftover capacity Ŵ

}

= min
k = 1, . . . N

s.t.wk ≤ Ŵ

{
vk + f(Ŵ − wk)

}

• Computation: complete the following DP table, starting from Ŵ = 0 to Ŵ = 13.

Ŵ f∗(Ŵ ), x∗
Ŵ

0

1
...

...

12

13

• The optimal value of the overall problem is given by f∗(W ) which in our case is f∗(13). We trace
back to find out the optimal number of units of each product.

6



Spring 2013 Optimization II (ORIE 3310/5310/5311)

Remark.

In our example, there are 14 cells to fill.

In general, there are (W + 1) cells to fill. That is, O(W ) cells to fill. Note that this is fewer than in
the previous DP formulation of knapsack by a factor of N .

(To compute the cell in the Ŵ th stage, we consider up to N choices of products to be added into the
knapsack. So, in total, our computational “effort” is of order O(NW ).)

We can also obtain a similar formulation for the “multiple-constraints” knapsack problem. We
consider the weight and volume capacity constraints example again. A second formulation:

1. Stage (Ŵ , V̂ ) corresponds to remaining weight and volume capacities of (Ŵ , V̂ ); the stages go

from (Ŵ , V̂ ) = (0, 0) to (Ŵ , V̂ ) = (W,V )(= (13, 15)).

2. At each stage (Ŵ , V̂ ), we only consider one state: (Ŵ , V̂ ).

(Note: The act of specifying “Stages” and “states” is part of a way of formalizing our DP
approach. In our case here, the “state” is redundant; we don’t actually need a state information
in this formulation, and could be “skipped”. We can also use one of them as a state and the
other as a stage, etc.)

3. At stage (Ŵ , V̂ ) and state (Ŵ , V̂ ), we decide whether, given a leftover weight and volume capac-

ities pair of (Ŵ , V̂ ), one unit of which product k = 1, 2, . . . , N we should add into our knapsack.
So, the allowable decisions are products k that satisfy

wk ≤ Ŵ ,

and
vk ≤ V̂ ,

i.e., any of the products that can fit (which means that both capacity constraints are satisfied).

4. At stage (Ŵ , V̂ ) and state (Ŵ , V̂ ), our optimization function is f∗(Ŵ , V̂ ) = f∗
(Ŵ ,V̂ )

(Ŵ , V̂ ) = the

maximum value of a knapsack with leftover capacities (Ŵ , V̂ ).

5. According to (4) above, the easiest stage Ŵ in which to compute f∗(Ŵ , V̂ ) is when Ŵ = 0 or
V̂ = 0:

f∗(Ŵ , 0) = the maximum value of a knapsack with leftover capacity (Ŵ , 0) = 0, x∗(Ŵ , 0) = none,

for any value of Ŵ = 0, 1, . . . , 13, and:

f∗(0, V̂ ) = the maximum value of a knapsack with leftover capacity (0, V̂ ) = 0, x∗(0, V̂ ) = none,

for any value of V̂ = 0, 1, . . . , 15.

6. The recurrence relation:

f(Ŵ , V̂ ) = the maximum value of a knapsack with leftover capacity (Ŵ , V̂ )

= min
product k

that fits

{
value of product k +

the maximum value of a knapsack with

leftover capacity (Ŵ , V̂ )

}

= min
k = 1, . . . N

s.t.wk ≤ Ŵ , vk ≤ V̂

{
vk + f(Ŵ − wk, V̂ − vk)

}

7



Spring 2013 Optimization II (ORIE 3310/5310/5311)

7. Computation: complete the following DP table, starting from the boundary conditions above, to
(Ŵ , V̂ ) = (13, 15):

V̂ = 0 V̂ = 1 · · · V̂ = 15

Ŵ = 0 f∗(0, 0) = ..., x∗(0,0) = ... f∗(0, 1) = ..., x∗(0,1) = ... · · · f∗(0, 15) = ..., x∗(0,15) = ...

Ŵ = 1 f∗(1, 0) = ..., x∗(1,0) = ... f∗(1, 1) = ..., x∗(1,1) = ... · · · f∗(1, 15) = ..., x∗(2,15) = ...
...

...
...

...
...

Ŵ = 13 f∗(13, 0) = ..., x∗(13,0) = ... f∗(13, 1) = ..., x∗(13,1) = ... · · · f∗(13, 15) = ..., x∗(13,15) = ...

Note that in this case there are a few options on how we can fill out the table after the boundary
conditions:

• First fill all cells where Ŵ = 1, then all cells where Ŵ = 2, etc., or

• First fill all cells where V̂ = 1, then all cells where V̂ = 2, etc., or

• First fill all cells where Ŵ + V̂ = 1, then all cells where Ŵ + V̂ = 2, etc.

8. The optimal value of the overall problem is given by f∗(W,V ) which in our case is f∗(13, 15).
We trace back to find out the optimal number of units of each product.

Remark.

In our example, there are 14× 16 cells to fill.

In general, there are (W + 1)(V + 1) cells to fill. That is, O(WV ) cells to fill. Note that this is fewer
than in the previous DP formulation of knapsack by a factor of N .

(To compute the cell in the (Ŵ , V̂ )th stage, we consider up to N choices of products to be added into
the knapsack. So, in total, our computational “effort” is of order O(NWV ).)

As before, focusing on the number of cells to fill:

• With just one capacity constraint (just weight capacity), our state spae is 1-dimensional, and we
have O(W ) cells to fill.

• With two capacity constraints (weight and volume capacities), our state-space is 2-dimensional
and we have O(WV ) cells to fill.

• Suppose that we have d capacity constraints and for each constraint, the capacity is C. Then
then our state space is d-dimensional and we have O(Cd) cells to fill

• This illustrates that as the number of dimensions, d, increase, the amount of computation that
we have to do increases exponentially (because d appears as an exponent)

• This issue with DP is often referred to as the “curse of dimensionality” indicating that as the
dimension of the state space grow, the amount of computation grows exponentially such that
computation becomes intractable (this mean, cannot be done in any reasonable amount of time)
very quickly.

8



Spring 2013 Optimization II (ORIE 3310/5310/5311)

4 The nonlinear knapsack problem

After the previous sections, you noticed that the second knapsack formulation is “computationally less
expensive” than the first formulation, since there are fewer cells to fill (for knapsack with juts a weight
capacity constraint of W , the number of cells to fill is of order O(NW ) in the first and O(W ) in the
second; the computational effort is O(NW 2) in the first and O(NW ) in the second).

So, why would one ever want to use the first formulation? The following is a version of the knapsack
problem, in which you have to use the first kind of formulation:

Consider a knapsack problem with a weight capacity of W = 13 pounds. There are 4 types of
products, where each product is available in at most 3 units. The weight of each unit of products is
as follows:

Product (k) Weight per unit (wk)

1 5
2 3
3 2
4 1

The weights are additive. That is, if we decide to take 2 units of product 1, then the total weight from
product 1 is x1 × w1 = 2× 5 = 10 pounds.

However, the values are not additive. The following table has the value if we take i units of product
k, for each i = 1, 2, 3 and each k = 1, 2, 3, 4:

Product (k)
Value of i units of product k (vki)
i = 1 i = 2 i = 3

1 9 15 20
2 4 8 12
3 3 4 5
4 0.5 2.5 5

Note that one unit of product 1 has value 9, but two units of product 1 has value 15 6= x1× 9 = 2× 9,
etc.

Question. To think about: why can’t we formulate this problem using the second kind of DP formu-
lation? (Hint: try to formulate this problem using the second formulation. In this formulation, certain
information is not captured.)

5 The “Big-Oh” Notation

9


	Continued from last time: The knapsack problem
	The knapsack problem with multiple capacity constraints
	Another DP formulation of the knapsack problem
	The nonlinear knapsack problem
	The ``Big-Oh'' Notation

