
Spring 2013 Optimization II (ORIE 3310/5310/5311)

Lecture 17: March 26, 2013

1 Introduction

In the next three weeks or so, we will learn about integer programs. In particular:

1. We will model various problems as integer programming problems

2. We will explore various approaches for solving integer programming problems (namely: “Branch
and Bound” and “Gomory cutting planes method”)

3. We will develop other ideas that are useful for solving large-scale integer programming problem
(for example, “constraint generation” and “column generation”) which can also be useful for
solving large-scale linear programs

Remark. In this course, whenever we say “integer program” what we mean is “integer linear program”.
That is: a linear program where some or all of its decision variables are restricted to integer values.

Example 1. A bakery bakes and sells one type of bread and one type of cake. One loaf of bread uses
3 eggs and 7 cups of flour, and one cake uses 2 eggs and 4 cups of flour. The bakery’s daily supply
consists of 15 eggs and 25 cups of flour. The profit for each loaf of bread is $2 and the profit for each
cake is $5. Assume that these are the only two ingredients used in making the bread and the cake,
and that everything that the bakery bakes will be sold.

How many loaves of bread and how many cakes should the bakery make so that its daily total profit
is maximized? Note that the bakery cannot sell a fractional number of loaves of bread or a fractional
number of cakes.
An integer (linear) programming formulation: Let x1 = number of loaves of bread and x2 = number
of cakes that are produced in the bakery in one day.

max 2x1 + 5x2

s.t. 3x1 + 2x2 ≤ 15

7x1 + 4x2 ≤ 25

x1, x2 ≥ 0

x1, x2 integers.

Note that if the bakery is allowed to sell fractional numbers of loaves of bread and cakes, then we can
formulate this optimization problem as a linear program.

Example 2. The following example is NOT an integer linear program, because the objective function
and the first constraint is not linear in terms of the decision variables.

max 3x1 + 4x22
s.t. 5x1x2 + x2 ≤ 10

−x1 + 5x2 ≥ 8

x1, x2 ≥ 0

x1 integer.

It is very useful to be able to formulate problems like Example 1 as linear programs: where the
problem is essentially a linear programming problem with integer feasible solutions. However, there
are more interesting uses of integer programming formulation.

One such problem is the “Nonlinear Knapsack Problem” which we introduced a few weeks ago (see
Lecture 14) as a problem that can be solved using a dynamic programming approach.

1

Spring 2013 Optimization II (ORIE 3310/5310/5311)

2 The nonlinear knapsack problem, revisited

Example 3. Consider a knapsack problem with a weight capacity of W = 13 pounds. There are
4 types of products, where each product is available in at most 3 units. The weight of each unit of
products is as follows:

Product (k) Weight per unit (wk)

1 5
2 3
3 2
4 1

The weights are additive. That is, if we decide to take 2 units of product 1, then the total weight from
product 1 is x1 × w1 = 2× 5 = 10 pounds.

However, the values are not additive. The following table has the value if we take i units of product
k, for each i = 1, 2, 3 and each k = 1, 2, 3, 4:

Product (k)
Value of i units of product k (vki)
i = 1 i = 2 i = 3

1 9 15 20
2 4 8 12
3 3 4 5
4 0.5 2.5 5

(Note that one unit of product 1 has value 9, but two units of product 1 has value 15 6= x1× 9 = 2× 9,
etc.)
An integer programming formulation:
Step 1: First, we describe our decision variables.

(1) For each k ∈ {1, 2, 3, 4}, let xk denote the number of units of product k that are taken.
(2) For each k ∈ {1, 2, 3, 4} and each i ∈ {0, 1, 2, 3}, we have one decision variable:

yki = an indicator variable to indicate if i units of product k is taken

=

{
1 if i units of product k is taken
0 if other number of units of product k is taken

Step 2: Next, we describe our constraints.

• First, we need to make sure that the meaning of yki as described above is expressed correctly
as a linear constraint. That is, we want a set of constraints that make sure that the values of
yk1, yk2, yk3, yk4 corresponds correctly to xk, for each product k.

For instance, consider product k = 1. For product 1, we decide to take x1 = 0, 1, 2, or 3 units
of that product. So, among y10, y11, y12, y13, exactly one of them must take the value “1” while
the rest must take the value “0”, in such a way that if x1 = i, then yki = 1.

The following constraint express this condition:

3∑
i=0

iyki = xk, ∀k ∈ {1, 2, 3, 4}.

• Next, we need the weight capacity constraint: at most 13 pounds can be put into the knapsack.
The constraint can be written quite easily as follows:

4∑
k=1

xkwk ≤ 13.

2

Spring 2013 Optimization II (ORIE 3310/5310/5311)

Step 3: Lastly, we formulate our objective:

max
4∑

k=1

3∑
i=0

ykivki.

(Some explanation: To see that the objective function above really represents the total value of items
that are taken:

4∑
k=1

3∑
i=0

ykivki =
4∑

k=1

(
3∑

i=0

ykivki

)

=

(
3∑

i=0

y1iv1i

)
︸ ︷︷ ︸

value from product 1

+

(
3∑

i=0

y2iv2i

)
︸ ︷︷ ︸

value from product 2

+

(
3∑

i=0

y3iv3i

)
︸ ︷︷ ︸

value from product 3

+

(
3∑

i=0

y4iv4i

)
︸ ︷︷ ︸

value from product 4

.

Hence, the objective function
∑4

k=1

∑3
i=0 ykivki does represent the total value of items that are taken.)

Putting everything together, our integer program is:

max
∑4

k=1

∑3
i=0 ykivki

s.t.
∑3

i=0 iyki = xk, ∀k ∈ {1, 2, 3, 4}∑4
k=1 xkwk ≤ 13

0 ≤ yki ≤ 1, integers ∀k ∈ {1, 2, 3, 4},∀i ∈ {0, 1, 2, 3}.

The corresponding AMPL model is:

param N; # number of items

param weightLimit = 13; # maximum weight that we can take

param itemLimit {k in 1..N}; # limit on number of copies of item k available

param value {k in 1..N, i in 0..itemLimit[k]);

param weight {k in 1..N} >= 0;

var x {k in 1..N} integer, >= 0, <= itemLimit[k];

var y {k in 1..N, i in 0..itemLimit[k]}, binary;

maximize Benefit:

sum { k in 1..N, i in 0..itemLimit[k]} y[k, i]*benefit[k, i];

subject to Weight: sum{k in 1..N} weight[k] * x[k] <= weightLimit;

subject to Select {k in 1..N}: sum{i in 0..itemLimit[k]} y[k, i] = 1;

subject to Meaning {k in 1..N}:

x[k] = sum {i in 0..itemLimit[k]} y[k, i]*i;

3 Useful integer programming formulation tricks

In the nonlinear knapsack example above, the objective function is not a linear function of the number
of units of the products that are taken. However, by using binary indicator decision variables, we were
able to formulate the problem as an integer program.

3

Spring 2013 Optimization II (ORIE 3310/5310/5311)

3.1 Some simple integer programming constraints

1. Suppose that n activities are available, and we were to select exactly one of these activities. Let
the binary decision variable xi be an indicator of whether we select activity i. That is, if xi = 1,
we select activity i, but if xi = 0, we don’t. Hence, the constraint that force us to select exactly
one out of the n available activities is:

x1 + x2 + . . . + xn = 1.

2. If instead, we want to select at least two of the activities, then we use the constraint:

x1 + x2 + . . . + xn ≥ 2.

3. If we want a constraint to express that “activity 3 is possible only if both activities 1 and 2 are
selected”, then we add the following two constraints:

x3 ≤ x1,

x3 ≤ x2.

4. Suppose that you can only select activity 3 if at least one of activities 1 or 2 are selected:

x3 ≤ x1 + x2

4

	Introduction
	The nonlinear knapsack problem, revisited
	Useful integer programming formulation tricks
	Some simple integer programming constraints

