
Lecture 28 



An interior-point method algorithm 

Consider the linear program 
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The barrier function 
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Q: Write the barrier function for the 
following linear program 
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Q: Which is the barrier function for the 
above linear program? 

A. fμ(x) =(-5x1+9x2+3x3) + μ[log(3x1 – 2x2-20) + 
log(4x2-5x3-17) +log(x1) + log(x2) + log(x3)] 
 

B. fμ(x) =(-5x1+9x2+3x3) + μ[log(20 - 3x1 + 2x2) + 
log(17-4x2+5x3) +log(x1) + log(x2) + log(x3)] 
 

C. fμ(x) =log (-5x1+9x2+3x3) + μ[log(20 - 3x1 + 
2x2) + log(17-4x2+5x3) +log(x1) + log(x2) + 
log(x3)] 
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An interior-point algorithm 

Step 1: Choose an initial μ(0) > 0, β > 1 

Step 2: At the ith iteration: μ(i) 

      Find x(μ(i)), the optimal solution of 

Max fμ(i)(x), 

Step 3: Let μ(i+1) = μ(i)/ β 

 

Repeat steps 2 and 3, for i = 0, 1, … N 
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An interior-point algorithm 

Step 1: Choose an initial μ(0) > 0, x(0), β > 1 

Step 2: At the ith iteration: μ(i), x(i-1) 

  Using x(i-1) as an initial point, carry out ki 
 iterations of Newton’s Method to solve 

∇fμ(i)(x) = 0 

  Let x(i) be the last Newton’s Method iterate. 

Step 3: Let μ(i+1) = μ(i)/ β 

 

Repeat steps 2 and 3, for i = 0, 1, … N 



Loose ends 

• How do we choose μ(0) > 0, x(0), β ? 

• How many iterations (N)? 

• How many Newton’s Method iterations (ki)? 

• We claim that x(μ) approaches x* as μ  
approaches zero.   
Why don’t we just compute x(0) directly? 
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Optimization 2: A sightseeing tour 
through Optimizationland 

• Linear programming 

– Formulation 

– Tool for solving network flow problems 

– Tool for solving integer programming problems 

• Branch and bound 

• Gomory cutting planes method 



Optimization 2: A sightseeing tour 
through Optimizationland 

• Integer programming 

– Formulation 

• Formulating nonlinear constraints and objective using 
binary decision variables 

– Methods for solving 

• Branch and bound 

• Gomory cutting planes method 



Optimization 2: A sightseeing tour 
through Optimizationland 

• Integer programming 

– Algorithmic ideas:  

• Bounds and approximations 

• Constraint generation 

• Column generation (e.g. the cutting stock problem) 



Optimization 2: A sightseeing tour 
through Optimizationland 

• Dynamic programming (deterministic) 

– Example 

• Shortest-path problem 

• Inventory problem 

• Knapsack problems 

– Recurrence relation 

– “Tracing back” to obtain optimal solutions 



Optimization 2: A sightseeing tour 
through Optimizationland 

• Dynamic programming (stochastic) 

– Example 

• “Betting” games; games involving uncertainties 

• Inventory problem with stochastic demand 

– Maximizing/Minimizing expected values 

– Recurrence relation 

– “Tracing back” to obtain optimal solutions 



Optimization 2: A sightseeing tour 
through Optimizationland 

• Nonlinear optimization 

– Necessary conditions for optimality 

• Unconstrained 

• Constrained 

– Convex functions (are nice!) 

– Newton’s Method 

• As a tool for finding minimizers of convex functions 

– Interior-point Method (for linear program) 

• Barrier function 



Optimization 2: A sightseeing tour 
through Optimizationland 

• Network optimization 

– Building block problems: 

• Mincost flow 

• Shortest-path 

• The Assignment Problem 

• Maxflow/Mincut 

– Algorithms: 

• The Hungarian Algorithm 

• Ford-Fulkerson 



Optimization 2: A sightseeing tour 
through Optimizationland 

• Network optimization 

– Formulating problems as a network flow problem 

• Project assignment (as mincut) 

• Baseball elimination (as maxflow) 

– Important modeling ideas: 

• “Special case” of a problem 

• How to model a “real-world problem” to fit a specific 
model 



Thank you for a great semester! 


