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Lecture 7: Feb 12, 2013

1 The Project-Selection Problem

1.1 The problem statement

The project-selection problem is as follows.
Input:

• m projects: P = {1, 2, . . . ,m}

• n tools: T = {1, 2, . . . , n}

• For each project i ∈ P ,

bi = benefit gained by selecting project i to be completed, and

Ti = the set of tools required to complete job i.

• For each tool j ∈ T ,

cj = the cost of selecting to purchase tool j.

Objective: To determine a feasible selection of projects and tools (P ′, T ′), where P ′ ⊂ P , T ′ ⊂ T ,
in order to maximize net profit:

max
(P ′,T ′) feas

∑
i∈P ′

bi −
∑
j∈T ′

cj,

where (P ′, T ′) is a feasible selection if it satisfies the following set of constraints. Constraints: if
project i is selected (i.e. i ∈ P ′), then all tools in Ti must also be selected (i.e., j ∈ Ti).

1.2 Modeling project-selection as a minimum cut problem

Step 1: We construct the following input for the minimum cut problem.

• A directed graph G = (N,E) where

N = {s, t} ∪ P ∪ T ,

and
E = {(s, i)|∀i ∈ P} ∪ {(i, j)|∀i ∈ P , j ∈ Ti} ∪ {(j, t)|∀j ∈ T }.

• Edge capacities:

usi = bi forall i ∈ P
uij = +∞ forall i ∈ P , j ∈ Ti

ujt = cj forall j ∈ T
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Step 2: We show a correspondence between feasible selections of projects and tools, and feasible
cuts with finite capacities.

• Suppose that we are given a feasible selection of projects and tools, call it (P ′, T ′). Construct
the corresponding cut as follows:

S = {s} ∪ P ′ ∪ T ′,

T = {t} ∪ (P\P ′) ∪ (T \T ′),

(that is, T contains the sink, and all project and tool nodes that are not in S).

Then, we want to show that the cut (S, T ) has a finite capacity:

– The only way for the cut (S, T ) to have infinite capacity is if there is an edge (i, j) with
capacity uij = +∞, where i ∈ S, j ∈ T .

– But the only edges with infinite capacities are edges (i, j) where i is a project and j is
a tool needed by the project.

– So, the only way for the cut (S, T ) to have infinite capacity is to have a project node i
that is in S, the source-side of the cut, and a tool j ∈ Ti that is in T , the sink-side of
the cut.

– This means that the only way for the cut (S, T ) to have infinite capacity is when i is in
P ′ (because S contains the projects that are selected, in P ′) but j is not in T ′ (because
if j is in T ′, then it would have been in S).

– That is, the only way for the cut (S, T ) to have infinite capacity is when the correspond-
ing selection of projects and tools is infeasible.

– So, (S, T ) must have a finite capacity.

• Next, we show the other direction of the correspondence. Suppose that we are given a feasible
cut with finite capacity, call it (S, T ). Construct the corresponding selection of projects and
tools as follows:

P ′ = P ∩ S = projects that are in S, the source-side of the cut

T ′ = T ∩ S = tools that are in S, the source-side of the cut

Then, we want to show that (P ′, T ′) is a feasible selection of projects and tools. That is, we
want to show that if project i is in P ′, then each j ∈ Ti must also be selected to be in T ′.

– We know that (S, T ) has finite capacity, so for all edges (i, j) with infinite capacity,
either both i and j are in S, or i is in T .

– If (i, j) has infinite capacity and both i and j are in S, then this means that project i
is in S, and each tool j needed by i is also in S. So, the project i is in the set P ′ and
all its necessary tools are in T ′.

– If i is in T , then project i is not selected, so we don’t have to worry about the tools
that project i needs.

– Hence, the selection (P ′, T ′) is a feasible selection of projects and tools.
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Step 3: We show a correspondence between the net profit of a feasible selection of projects and
tools, and the capacity (finite) of the corresponding cuts. This will then show that a selection with
the maximum net profit corresponds to a cut with the minimum capacity.

Consider a feasible selection of projects and tools (P ′, T ′) and its corresponding cut (S, T ),
where the correspondence is as described in step 2 above, namely, S = {s} ∪ P ′ ∪ T ′ and T
contains all other nodes that are not in S.

We will show that if PROFIT (P ′, T ′) denote the net profit of selection (P ′, T ′), then the
capacity of the cut (S, T ) is

CAPACITY (S, T ) = −PROFIT (P ′, T ′) + B,

where B =
∑
i∈P

bi is a constant that does not depend on the choice of (P ′, T ′) or (S, T ).

To see this, note that

PROFIT (P ′, T ′) =
∑
i∈P ′

bi −
∑
j∈T ′

cj,

so,

−PROFIT (P ′, T ′) + B = −
∑
i∈P ′

bi +
∑
j∈T ′

cj +
∑
i∈P

bi

=
∑

i∈P,i/∈P ′

bi +
∑
j∈T ′

cj

=
∑

i∈P,i/∈P ′

bi +
∑
j∈T ′

cj

=
∑

i∈P,i/∈S

usi +
∑

j∈T ,j∈S

ujt

=
∑

s∈S,i/∈S

usi +
∑

j∈S,t/∈S

ujt

=
∑

v∈S,w/∈S

uvw

= CAPACITY (S, T ).

This shows the correspondence between the objective values. Hence, the optimal solution must
also corresponds, because

max
(P ′,T ′)feas

PROFIT (P ′, T ′) = max
(S,T )feas, finite cap

(−CAPACITY (S, T ) + B)

=

(
max

(S,T )feas, finite cap
−CAPACITY (S, T )

)
+ B

= −
(

min
(S,T )feas, finite cap

CAPACITY (S, T )

)
+ B.

So, the problem of maximizing net profit in the project selection problem is equivalent to finding
the minimum cut in the constructed maxflow/mincut problem.
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