
Lecture 28

An interior-point method algorithm

Consider the linear program

0

..

max





x

bAxts

xcT

An interior-point method algorithm

Example

0

0

100..

97192max

2

1

21

21









x

x

xxts

xx

An interior-point method algorithm

Consider the linear program

0

..

max





x

bAxts

xcT

An interior-point method algorithm

Consider the linear program

0

0..

max





x

Axbts

xcT

An interior-point method algorithm

Consider the linear program

0

0

0

0..

max

22

11









x

xab

xab

xabts

xc

T

mm

T

T

T



The barrier function









 



n

i

i

m

j

T

jj

T xxabxcxf
11

)log()log()(

An interior-point method algorithm

Example

0

0

100..

97192max

2

1

21

21









x

x

xxts

xx

An interior-point method algorithm

Example

0

0

0100..

97192max

2

1

21

21









x

x

xxts

xx

An interior-point method algorithm

Example

0

0

100..

97192max

2

1

21

21









x

x

xxts

xx









 



n

i

i

m

j

T

jj

T xxabxcxf
11

)log()log()(

 )log()log()100log(97192)(212121 xxxxxxxf  

Q: Write the barrier function for the
following linear program

0

0

0

1754

2023..

395max

3

2

1

32

21

321













x

x

x

xx

xxts

xxx

i>clicker

Q: Which is the barrier function for the
above linear program?

A. fμ(x) =(-5x1+9x2+3x3) + μ[log(3x1 – 2x2-20) +
log(4x2-5x3-17) +log(x1) + log(x2) + log(x3)]

B. fμ(x) =(-5x1+9x2+3x3) + μ[log(20 - 3x1 + 2x2) +
log(17-4x2+5x3) +log(x1) + log(x2) + log(x3)]

C. fμ(x) =log (-5x1+9x2+3x3) + μ[log(20 - 3x1 +
2x2) + log(17-4x2+5x3) +log(x1) + log(x2) +
log(x3)]

Q: Which is the barrier function for the
above linear program?

A. fμ(x) =(-5x1+9x2+3x3) + μ[log(3x1 – 2x2-20) +
log(4x2-5x3-17) +log(x1) + log(x2) + log(x3)]

B. fμ(x) =(-5x1+9x2+3x3) + μ[log(20 - 3x1 + 2x2) +
log(17-4x2+5x3) +log(x1) + log(x2) + log(x3)]

C. fμ(x) =log (-5x1+9x2+3x3) + μ[log(20 - 3x1 +
2x2) + log(17-4x2+5x3) +log(x1) + log(x2) +
log(x3)]

An interior-point algorithm

Step 1: Choose an initial μ(0) > 0, β > 1

Step 2: At the ith iteration: μ(i)

 Find x(μ(i)), the optimal solution of

Max fμ(i)(x),

Step 3: Let μ(i+1) = μ(i)/ β

Repeat steps 2 and 3, for i = 0, 1, … N

An interior-point algorithm

Step 1: Choose an initial μ(0) > 0, β > 1

Step 2: At the ith iteration: μ(i)

 Find x(μ(i)), the optimal solution of

Max fμ(i)(x),

Step 3: Let μ(i+1) = μ(i)/ β

Repeat steps 2 and 3, for i = 0, 1, … N

An interior-point algorithm

Step 1: Choose an initial μ(0) > 0, x(0), β > 1

Step 2: At the ith iteration: μ(i), x(i-1)

 Using x(i-1) as an initial point, carry out ki
 iterations of Newton’s Method to solve

∇fμ(i)(x) = 0

 Let x(i) be the last Newton’s Method iterate.

Step 3: Let μ(i+1) = μ(i)/ β

Repeat steps 2 and 3, for i = 0, 1, … N

Loose ends

• How do we choose μ(0) > 0, x(0), β ?

• How many iterations (N)?

• How many Newton’s Method iterations (ki)?

• We claim that x(μ) approaches x* as μ
approaches zero.
Why don’t we just compute x(0) directly?

Loose ends

• How do we choose μ(0) > 0, x(0), β ?

• How many iterations (N)?

• How many Newton’s Method iterations (ki)?

• We claim that x(μ) approaches x* as μ
approaches zero.
Why don’t we just compute x(0) directly?

Loose ends

• How do we choose μ(0) > 0, x(0), β ?

• How many iterations (N)?

• How many Newton’s Method iterations (ki)?

• We claim that x(μ) approaches x* as μ
approaches zero.
Why don’t we just compute x(0) directly?

Loose ends

• How do we choose μ(0) > 0, x(0), β ?

• How many iterations (N)?

• How many Newton’s Method iterations (ki)?

• We claim that x(μ) approaches x* as μ
approaches zero.
Why don’t we just compute x(0) directly?

Loose ends

• How do we choose μ(0) > 0, x(0), β ?

• How many iterations (N)?

• How many Newton’s Method iterations (ki)?

• We claim that x(μ) approaches x* as μ
approaches zero.
Why don’t we just compute x(0) directly?

Loose ends

• How do we choose μ(0) > 0, x(0), β ?

• How many iterations (N)?

• How many Newton’s Method iterations (ki)?

• We claim that x(μ) approaches x* as μ
approaches zero.
Why don’t we just compute x(0) directly?

Optimization 2: A sightseeing tour
through Optimizationland

• Linear programming

– Formulation

– Tool for solving network flow problems

– Tool for solving integer programming problems

• Branch and bound

• Gomory cutting planes method

Optimization 2: A sightseeing tour
through Optimizationland

• Integer programming

– Formulation

• Formulating nonlinear constraints and objective using
binary decision variables

– Methods for solving

• Branch and bound

• Gomory cutting planes method

Optimization 2: A sightseeing tour
through Optimizationland

• Integer programming

– Algorithmic ideas:

• Bounds and approximations

• Constraint generation

• Column generation (e.g. the cutting stock problem)

Optimization 2: A sightseeing tour
through Optimizationland

• Dynamic programming (deterministic)

– Example

• Shortest-path problem

• Inventory problem

• Knapsack problems

– Recurrence relation

– “Tracing back” to obtain optimal solutions

Optimization 2: A sightseeing tour
through Optimizationland

• Dynamic programming (stochastic)

– Example

• “Betting” games; games involving uncertainties

• Inventory problem with stochastic demand

– Maximizing/Minimizing expected values

– Recurrence relation

– “Tracing back” to obtain optimal solutions

Optimization 2: A sightseeing tour
through Optimizationland

• Nonlinear optimization

– Necessary conditions for optimality

• Unconstrained

• Constrained

– Convex functions (are nice!)

– Newton’s Method

• As a tool for finding minimizers of convex functions

– Interior-point Method (for linear program)

• Barrier function

Optimization 2: A sightseeing tour
through Optimizationland

• Network optimization

– Building block problems:

• Mincost flow

• Shortest-path

• The Assignment Problem

• Maxflow/Mincut

– Algorithms:

• The Hungarian Algorithm

• Ford-Fulkerson

Optimization 2: A sightseeing tour
through Optimizationland

• Network optimization

– Formulating problems as a network flow problem

• Project assignment (as mincut)

• Baseball elimination (as maxflow)

– Important modeling ideas:

• “Special case” of a problem

• How to model a “real-world problem” to fit a specific
model

Thank you for a great semester!

