
Lecture 11

Lecture 11

Previously in Opt 2 …

Example: Inventory planning problem

Period (k) dk ck Fk hk

1 10 3 5 0.2

2 40 2 20 0.3

3 20 4 10 0.5

4 50 3 10 0.8

5 0

Example: Inventory planning problem
DP Formulation

1. Specify stages

stage k ↔period k

2. Specify states at each stage k

 State I ↔ inventory level I
(that is, I is the quantity in the inventory)

3. Specify allowable decisions at each state I and
stage k

 values xk such that demand dk can be satisfied

i.e., xk such that I + xk ≥ dk

Example: Inventory planning problem
DP Formulation

1. Specify stages

Stages: k = 1, 2, 3, 4, 5

2. Specify states at each stage k

Sk = {0, 10, 20, … , 120}
(Sk is the set of possible inventory levels at stage k)

3. Specify allowable decisions at each state I
and stage k

 Q I, k = {x in {0, 10, …, 120} | I + x ≥ dk }

Example: Inventory planning problem
DP Formulation

4. Word-description of optimal function to be
solved at state I in stage k

fk*(I) = the minimum cost for satisfying
demands in periods k, k+1, …, T, T+1

5. Boundary conditions

fT+1*(I) = 0 for all I

6. Recurrence relation

fk*(I) = min {ckxk + fk1{xk>0} + hk (I + xk - dk) + fk+1*(I + xk - dk)}

xk in Qk,I

Example: Inventory planning problem
DP Formulation

4. Word-description of optimal function to be
solved at state I in stage k

fk*(I) = the minimum cost for satisfying
demands in periods k, k+1, …, T, T+1

5. Boundary conditions

fT+1*(I) = 0 for all I

6. Recurrence relation

fk*(I) = min {ckxk + fk1{xk>0} + hk (I + xk - dk) + fk+1*(I + xk - dk)}

xk in Qk,I

Min cost in periods k to T+1 given that inventory at start is I

Example: Inventory planning problem
DP Formulation

4. Word-description of optimal function to be
solved at state I in stage k

fk*(I) = the minimum cost for satisfying
demands in periods k, k+1, …, T, T+1

5. Boundary conditions

fT+1*(I) = 0 for all I

6. Recurrence relation

fk*(I) = min {ckxk + fk1{xk>0} + hk (I+ xk - dk) + fk+1*(I + xk - dk)}

xk in Qk,I

Cost incurred in period k

Example: Inventory planning problem
DP Formulation

4. Word-description of optimal function to be
solved at state I in stage k

fk*(I) = the minimum cost for satisfying
demands in periods k, k+1, …, T, T+1

5. Boundary conditions

fT+1*(I) = 0 for all I

6. Recurrence relation

fk*(I) = min {ckxk + fk1{xk>0} + hk (I + xk - dk) + fk+1*(I + xk - dk)}

xk in Qk,I

Min cost in periods k+1 to T+1

Example: Inventory planning problem
DP Formulation

4. Word-description of optimal function to be
solved at state I in stage k

fk*(I) = the minimum cost for satisfying
demands in periods k, k+1, …, T, T+1

5. Boundary conditions

fT+1*(I) = 0 for all I

6. Recurrence relation

fk*(I) = min {ckxk + fk1{xk>0} + hk (I + xk - dk) + fk+1*(I + xk - dk)}

xk in Qk,I

New inventory level Old inventory level

More generally, recursive relations
look like:

fk*(current state) = min {value/cost due to decision xk +

 fk+1*(new state due to decision xk)}

xk in Qk,I

More generally, recursive relations
look like:

fk*(current state) = min {value/cost due to decision xk +

 fk+1*(new state due to decision xk)}

xk in Qk,I

(Or another
operation)

Example: Inventory planning problem
DP Formulation

7. Computation

Example: Inventory planning problem
DP Formulation

8. Trace back to find optimal solution

Example: Inventory planning problem
DP Formulation

8. Trace back to find optimal solution

i>clicker question

Q: What is the optimal quantity to produce at
each time period?

A. x1 = 10, x2 = 110, x3 = 20, x4 = 50
B. x1 = 10, x2 = 0, x3 = 0, x4 = 0
C. x1 = 10, x2 = 110, x3 = 0, x4 = 0
D. x1 = 10, x2 = 40, x3 = 20, x4 = 50
E. x1 = 10, x2 = 0, x3 = 110, x4 = 0

Q: What is the optimal quantity to produce at
each time period?

A. x1 = 10, x2 = 110, x3 = 20, x4 = 50
B. x1 = 10, x2 = 0, x3 = 0, x4 = 0
C. x1 = 10, x2 = 110, x3 = 0, x4 = 0
D. x1 = 10, x2 = 40, x3 = 20, x4 = 50
E. x1 = 10, x2 = 0, x3 = 110, x4 = 0

Example: Inventory planning problem
DP Formulation

8. Trace back to find optimal solution

DP Computation using AMPL

As usual, need:

1. Model file

2. Data file

3. Script file
– Optional, but this can save you time from having to

re-enter the following commands many times while
debugging/re-running:

 model myDP.mod;

 data myDP.dat;

 solve;

 (etc.)

DP Computation using AMPL

1. Model file

– We are not going to model a linear program here, so
we won’t have:

 var

 maximize …

 subject to …

– Will use only sets and parameters:

• The values of some sets/parameters are supplied by the
data file

• The values of some other sets/parameters are computed
within the model file; not supplied by the data file

DP Computation using AMPL

2. Data file

– Same as before!

– Here, you specify values of parameters that are
declared in the model file.

DP Computation using AMPL

2. Data file

– Same as before!

– Here, you specify values of parameters that are
declared in the model file.

3. Script file

– Same as before!

– If you haven’t been using scripts, you can start
now!

DP Computation using AMPL

1. inventory.mod

2. inventory.dat

3. inventoryScript.txt

inventory.mod
param T; # number of periods

param c {k in 1..T}; # cost per unit in period k

param F {k in 1..T}; # fixed cost in period k

param h {k in 1..T}; # holding cost for inventory from k-1 to k

param d {k in 1..T}; # demand in period k

param MaxQuantity := sum{k in 1..T} d[k];

set allowableDecisions {k in 1..T, I in 0..MaxQuantity} :=

 {x in 0..MaxQuantity: d[k] <= I + x <= MaxQuantity};

 # quantity to produce at stage k, state I (inventory level)

param f {k in 1..T+1, I in 0..MaxQuantity} := # min cost in periods k through T+1

 if k=T+1 then 0 # no more demand to consider

 else

 min{x in allowableDecisions[k, I]}

(c[k]*x + F[k]*(if x <>0 then 1 else 0) + h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]);

set opt {k in 1..T, I in 0..MaxQuantity} := # optimal decisions

 {x in allowableDecisions[k, I]: f[k, I] = c[k]*x + F[k]*(if x <> 0 then 1 else 0) +

h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]};

param DPvalue := f[1, 0]; # compute the optimal value

inventory.mod
param T; # number of periods

param c {k in 1..T}; # cost per unit in period k

param F {k in 1..T}; # fixed cost in period k

param h {k in 1..T}; # holding cost for inventory from k-1 to k

param d {k in 1..T}; # demand in period k

param MaxQuantity := sum{k in 1..T} d[k];

set allowableDecisions {k in 1..T, I in 0..MaxQuantity} :=

 {x in 0..MaxQuantity: d[k] <= I + x <= MaxQuantity};

 # quantity to produce at stage k, state I (inventory level)

param f {k in 1..T+1, I in 0..MaxQuantity} := # min cost in periods k through T+1

 if k=T+1 then 0 # no more demand to consider

 else

 min{x in allowableDecisions[k, I]} (

c[k]*x + F[k]*(if x <>0 then 1 else 0) + h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]);

set opt {k in 1..T, I in 0..MaxQuantity} := # optimal decisions

 {x in allowableDecisions[k, I]: f[k, I] = c[k]*x + F[k]*(if x <> 0 then 1 else 0) +

h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]};

param DPvalue := f[1, 0]; # compute the optimal value

Values are
provided by
inventory.dat

inventory.mod
param T; # number of periods

param c {k in 1..T}; # cost per unit in period k

param F {k in 1..T}; # fixed cost in period k

param h {k in 1..T}; # holding cost for inventory from k-1 to k

param d {k in 1..T}; # demand in period k

param MaxQuantity := sum{k in 1..T} d[k];

set allowableDecisions {k in 1..T, I in 0..MaxQuantity} :=

 {x in 0..MaxQuantity: d[k] <= I + x <= MaxQuantity};

 # quantity to produce at stage k, state I (inventory level)

param f {k in 1..T+1, I in 0..MaxQuantity} := # min cost in periods k through T+1

 if k=T+1 then 0 # no more demand to consider

 else

 min{x in allowableDecisions[k, I]}

(c[k]*x + F[k]*(if x <>0 then 1 else 0) + h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]);

set opt {k in 1..T, I in 0..MaxQuantity} := # optimal decisions

 {x in allowableDecisions[k, I]: f[k, I] = c[k]*x + F[k]*(if x <> 0 then 1 else 0) +

h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]};

param DPvalue := f[1, 0]; # compute the optimal value

Max quantity considered

inventory.mod
param T; # number of periods

param c {k in 1..T}; # cost per unit in period k

param F {k in 1..T}; # fixed cost in period k

param h {k in 1..T}; # holding cost for inventory from k-1 to k

param d {k in 1..T}; # demand in period k

param MaxQuantity := sum{k in 1..T} d[k];

set allowableDecisions {k in 1..T, I in 0..MaxQuantity} :=

 {x in 0..MaxQuantity: d[k] <= I + x <= MaxQuantity};

 # quantity to produce at stage k, state I (inventory level)

param f {k in 1..T+1, I in 0..MaxQuantity} := # min cost in periods k through T+1

 if k=T+1 then 0 # no more demand to consider

 else

 min{x in allowableDecisions[k, I]}

(c[k]*x + F[k]*(if x <>0 then 1 else 0) + h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]);

set opt {k in 1..T, I in 0..MaxQuantity} := # optimal decisions

 {x in allowableDecisions[k, I]: f[k, I] = c[k]*x + F[k]*(if x <> 0 then 1 else 0) +

h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]};

param DPvalue := f[1, 0]; # compute the optimal value

Set of allowable
decisions at each
stage k, state I

inventory.mod
param T; # number of periods

param c {k in 1..T}; # cost per unit in period k

param F {k in 1..T}; # fixed cost in period k

param h {k in 1..T}; # holding cost for inventory from k-1 to k

param d {k in 1..T}; # demand in period k

param MaxQuantity := sum{k in 1..T} d[k];

set allowableDecisions {k in 1..T, I in 0..MaxQuantity} :=

 {x in 0..MaxQuantity: d[k] <= I + x <= MaxQuantity};

 # quantity to produce at stage k, state I (inventory level)

param f {k in 1..T+1, I in 0..MaxQuantity} := # min cost in periods k through T+1

 if k=T+1 then 0 # no more demand to consider

 else

 min{x in allowableDecisions[k, I]}

(c[k]*x + F[k]*(if x <>0 then 1 else 0) + h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]);

set opt {k in 1..T, I in 0..MaxQuantity} := # optimal decisions

 {x in allowableDecisions[k, I]: f[k, I] = c[k]*x + F[k]*(if x <> 0 then 1 else 0) +

h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]};

param DPvalue := f[1, 0]; # compute the optimal value

Computation of fk*(I)
at each stage k, each
state I

inventory.mod
param T; # number of periods

param c {k in 1..T}; # cost per unit in period k

param F {k in 1..T}; # fixed cost in period k

param h {k in 1..T}; # holding cost for inventory from k-1 to k

param d {k in 1..T}; # demand in period k

param MaxQuantity := sum{k in 1..T} d[k];

set allowableDecisions {k in 1..T, I in 0..MaxQuantity} :=

 {x in 0..MaxQuantity: d[k] <= I + x <= MaxQuantity};

 # quantity to produce at stage k, state I (inventory level)

param f {k in 1..T+1, I in 0..MaxQuantity} := # min cost in periods k through T+1

 if k=T+1 then 0 # no more demand to consider

 else

 min{x in allowableDecisions[k, I]}

(c[k]*x + F[k]*(if x <>0 then 1 else 0) + h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]);

set opt {k in 1..T, I in 0..MaxQuantity} := # optimal decisions

 {x in allowableDecisions[k, I]: f[k, I] = c[k]*x + F[k]*(if x <> 0 then 1 else 0) +

h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]};

param DPvalue := f[1, 0]; # compute the optimal value

Keeping track of optimal
decision, xk*, at each stage k,
each state I

inventory.mod
param T; # number of periods

param c {k in 1..T}; # cost per unit in period k

param F {k in 1..T}; # fixed cost in period k

param h {k in 1..T}; # holding cost for inventory from k-1 to k

param d {k in 1..T}; # demand in period k

param MaxQuantity := sum{k in 1..T} d[k];

set allowableDecisions {k in 1..T, I in 0..MaxQuantity} :=

 {x in 0..MaxQuantity: d[k] <= I + x <= MaxQuantity};

 # quantity to produce at stage k, state I (inventory level)

param f {k in 1..T+1, I in 0..MaxQuantity} := # min cost in periods k through T+1

 if k=T+1 then 0 # no more demand to consider

 else

 min{x in allowableDecisions[k, I]}

(c[k]*x + F[k]*(if x <>0 then 1 else 0) + h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]);

set opt {k in 1..T, I in 0..MaxQuantity} := # optimal decisions

 {x in allowableDecisions[k, I]: f[k, I] = c[k]*x + F[k]*(if x <> 0 then 1 else 0) +

h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]};

param DPvalue := f[1, 0]; # compute the optimal value
Determining the optimal
cost: f1*(0)

inventory.dat
param T := 4; # number of periods

param: d c F h :=

1 10 3 5 0.2

2 40 2 20 0.3

3 20 4 10 0.5

4 50 3 10 0.8;

inventoryScript.txt
reset;

model Opt2Models/Lec11/inventory.mod;

data Opt2Models/Lec11/inventory.dat;

display DPvalue;

In the “sw” console:

sw: ampl

ampl: include Opt2Models/Lec11/inventoryScript.txt;

DPvalue = 321

ampl:

