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Lecture 11 

Previously in Opt 2 … 



Example: Inventory planning problem 

Period (k) dk ck Fk hk 

1 10 3 5 0.2 

2 40 2 20 0.3 

3 20 4 10 0.5 

4 50 3 10 0.8 

5 0 



Example: Inventory planning problem 
DP Formulation 

1. Specify stages 

stage k ↔period k 

2. Specify states at each stage k 

 State I ↔ inventory level I  
(that is, I is the quantity in the inventory) 

3. Specify allowable decisions at each state I and 
stage k 

 values xk such that demand dk can be satisfied 

i.e., xk such that I + xk ≥ dk 

 



Example: Inventory planning problem 
DP Formulation 

1. Specify stages 

Stages: k = 1, 2, 3, 4, 5 

2. Specify states at each stage k 

Sk = {0, 10, 20, … , 120} 
(Sk is the set of possible inventory levels at stage k) 

3. Specify allowable decisions at each state I 
and stage k 

 Q I, k = {x in {0, 10, …, 120} | I + x ≥ dk } 

 



Example: Inventory planning problem 
DP Formulation 

4. Word-description of optimal function to be 
solved at state I in stage k 

fk*(I) = the minimum cost for satisfying  
demands in periods k, k+1, …, T, T+1 

5. Boundary conditions 

fT+1*(I) = 0 for all I 

6. Recurrence relation 

fk*(I) =   min   {ckxk + fk1{xk>0} + hk (I + xk - dk) + fk+1*(I + xk - dk)} 
 

xk in Qk,I 



Example: Inventory planning problem 
DP Formulation 

4. Word-description of optimal function to be 
solved at state I in stage k 

fk*(I) = the minimum cost for satisfying  
demands in periods k, k+1, …, T, T+1 

5. Boundary conditions 

fT+1*(I) = 0 for all I 

6. Recurrence relation 

fk*(I) =   min   {ckxk + fk1{xk>0} + hk (I + xk - dk) + fk+1*(I + xk - dk)} 
 

xk in Qk,I 

Min cost in periods k to T+1 given that inventory at start is I 



Example: Inventory planning problem 
DP Formulation 

4. Word-description of optimal function to be 
solved at state I in stage k 

fk*(I) = the minimum cost for satisfying  
demands in periods k, k+1, …, T, T+1 

5. Boundary conditions 

fT+1*(I) = 0 for all I 

6. Recurrence relation 

fk*(I) =   min   {ckxk + fk1{xk>0} + hk (I+ xk - dk) + fk+1*(I + xk - dk)} 
 

xk in Qk,I 

Cost incurred in period k 



Example: Inventory planning problem 
DP Formulation 

4. Word-description of optimal function to be 
solved at state I in stage k 

fk*(I) = the minimum cost for satisfying  
demands in periods k, k+1, …, T, T+1 

5. Boundary conditions 

fT+1*(I) = 0 for all I 

6. Recurrence relation 

fk*(I) =   min   {ckxk + fk1{xk>0} + hk (I + xk - dk) + fk+1*(I + xk - dk)} 
 

xk in Qk,I 

Min cost in periods k+1 to T+1 



Example: Inventory planning problem 
DP Formulation 

4. Word-description of optimal function to be 
solved at state I in stage k 

fk*(I) = the minimum cost for satisfying  
demands in periods k, k+1, …, T, T+1 

5. Boundary conditions 

fT+1*(I) = 0 for all I 

6. Recurrence relation 

fk*(I) =   min   {ckxk + fk1{xk>0} + hk (I + xk - dk) + fk+1*(I + xk - dk)} 
 

xk in Qk,I 

New inventory level Old inventory level 



More generally, recursive relations 
look like: 

fk*(current state) = min  {value/cost due to decision xk + 

 

 fk+1*(new state due to decision xk)} 
 

xk in Qk,I 



More generally, recursive relations 
look like: 

fk*(current state) = min  {value/cost due to decision xk + 
 

 fk+1*(new state due to decision xk)} 
 

xk in Qk,I 

(Or another 
operation) 



Example: Inventory planning problem 
DP Formulation 

7. Computation 



Example: Inventory planning problem 
DP Formulation 

8.  Trace back to find optimal solution 



Example: Inventory planning problem 
DP Formulation 

8.  Trace back to find optimal solution 



i>clicker question 



Q: What is the optimal quantity to produce at 
each time period?  

A. x1 = 10, x2 = 110, x3 = 20, x4 = 50 
B. x1 = 10, x2 = 0, x3 = 0, x4 = 0 
C. x1 = 10, x2 = 110, x3 = 0, x4 = 0 
D. x1 = 10, x2 = 40, x3 = 20, x4 = 50 
E. x1 = 10, x2 = 0, x3 = 110, x4 = 0 





Q: What is the optimal quantity to produce at 
each time period?  

A. x1 = 10, x2 = 110, x3 = 20, x4 = 50 
B. x1 = 10, x2 = 0, x3 = 0, x4 = 0 
C. x1 = 10, x2 = 110, x3 = 0, x4 = 0 
D. x1 = 10, x2 = 40, x3 = 20, x4 = 50 
E. x1 = 10, x2 = 0, x3 = 110, x4 = 0 



Example: Inventory planning problem 
DP Formulation 

8.  Trace back to find optimal solution 



DP Computation using AMPL 

As usual, need: 

1. Model file 

2. Data file 

3. Script file  
– Optional, but this can save you time from having to 

re-enter the following commands many times while 
debugging/re-running: 

  model myDP.mod;  

  data myDP.dat;  

  solve; 

  (etc.) 



DP Computation using AMPL 

1. Model file 

– We are not going to model a linear program here, so 
we won’t have: 

 var 

 maximize … 

 subject to … 

– Will use only sets and parameters: 

• The values of some sets/parameters are supplied by the 
data file 

• The values of some other sets/parameters are computed 
within the model file; not supplied by the data file 



DP Computation using AMPL 

2. Data file 

– Same as before! 

– Here, you specify values of parameters that are 
declared in the model file. 

 



DP Computation using AMPL 

2. Data file 

– Same as before! 

– Here, you specify values of parameters that are 
declared in the model file. 

3. Script file 

– Same as before! 

– If you haven’t been using scripts, you can start 
now! 

 



DP Computation using AMPL 

1. inventory.mod 

2. inventory.dat 

3. inventoryScript.txt 



inventory.mod 
param T;    # number of periods 

param c {k in 1..T};  # cost per unit in period k 

param F {k in 1..T};  # fixed cost in period k 

param h {k in 1..T};  # holding cost for inventory from k-1 to k 

param d {k in 1..T};  # demand in period k 

 

param MaxQuantity := sum{k in 1..T} d[k]; 

 

set allowableDecisions {k in 1..T, I in 0..MaxQuantity} := 

 {x in 0..MaxQuantity: d[k] <= I + x <= MaxQuantity}; 

 # quantity to produce at stage k, state I (inventory level) 

 

param f {k in 1..T+1, I in 0..MaxQuantity} :=  # min cost in periods k through T+1 

 if k=T+1 then 0 # no more demand to consider 

 else 

   min{x in allowableDecisions[k, I]}  

(c[k]*x + F[k]*(if x <>0 then 1 else 0) + h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]); 

 

set opt {k in 1..T, I in 0..MaxQuantity} :=   # optimal decisions 

 {x in allowableDecisions[k, I]: f[k, I] = c[k]*x + F[k]*(if x <> 0 then 1 else 0) + 

h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]}; 

 

param DPvalue := f[1, 0];  # compute the optimal value 



inventory.mod 
param T;    # number of periods 

param c {k in 1..T};  # cost per unit in period k 

param F {k in 1..T};  # fixed cost in period k 

param h {k in 1..T};  # holding cost for inventory from k-1 to k 

param d {k in 1..T};  # demand in period k 

 

param MaxQuantity := sum{k in 1..T} d[k]; 

 

set allowableDecisions {k in 1..T, I in 0..MaxQuantity} := 

 {x in 0..MaxQuantity: d[k] <= I + x <= MaxQuantity}; 

 # quantity to produce at stage k, state I (inventory level) 

 

param f {k in 1..T+1, I in 0..MaxQuantity} :=  # min cost in periods k through T+1 

 if k=T+1 then 0 # no more demand to consider 

 else 

   min{x in allowableDecisions[k, I]} ( 

c[k]*x + F[k]*(if x <>0 then 1 else 0) + h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]); 

 

set opt {k in 1..T, I in 0..MaxQuantity} :=   # optimal decisions 

 {x in allowableDecisions[k, I]: f[k, I] = c[k]*x + F[k]*(if x <> 0 then 1 else 0) + 

h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]}; 

 

param DPvalue := f[1, 0];  # compute the optimal value 

Values are 
provided by 
inventory.dat 



inventory.mod 
param T;    # number of periods 

param c {k in 1..T};  # cost per unit in period k 

param F {k in 1..T};  # fixed cost in period k 

param h {k in 1..T};  # holding cost for inventory from k-1 to k 

param d {k in 1..T};  # demand in period k 

 

param MaxQuantity := sum{k in 1..T} d[k]; 

 

set allowableDecisions {k in 1..T, I in 0..MaxQuantity} := 

 {x in 0..MaxQuantity: d[k] <= I + x <= MaxQuantity}; 

 # quantity to produce at stage k, state I (inventory level) 

 

param f {k in 1..T+1, I in 0..MaxQuantity} :=  # min cost in periods k through T+1 

 if k=T+1 then 0 # no more demand to consider 

 else 

   min{x in allowableDecisions[k, I]}  

(c[k]*x + F[k]*(if x <>0 then 1 else 0) + h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]); 

 

set opt {k in 1..T, I in 0..MaxQuantity} :=   # optimal decisions 

 {x in allowableDecisions[k, I]: f[k, I] = c[k]*x + F[k]*(if x <> 0 then 1 else 0) + 

h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]}; 

 

param DPvalue := f[1, 0];  # compute the optimal value 

Max quantity considered 



inventory.mod 
param T;    # number of periods 

param c {k in 1..T};  # cost per unit in period k 

param F {k in 1..T};  # fixed cost in period k 

param h {k in 1..T};  # holding cost for inventory from k-1 to k 

param d {k in 1..T};  # demand in period k 

 

param MaxQuantity := sum{k in 1..T} d[k]; 

 

set allowableDecisions {k in 1..T, I in 0..MaxQuantity} := 

 {x in 0..MaxQuantity: d[k] <= I + x <= MaxQuantity}; 

 # quantity to produce at stage k, state I (inventory level) 

 

param f {k in 1..T+1, I in 0..MaxQuantity} :=  # min cost in periods k through T+1 

 if k=T+1 then 0 # no more demand to consider 

 else 

   min{x in allowableDecisions[k, I]}  

(c[k]*x + F[k]*(if x <>0 then 1 else 0) + h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]); 

 

set opt {k in 1..T, I in 0..MaxQuantity} :=   # optimal decisions 

 {x in allowableDecisions[k, I]: f[k, I] = c[k]*x + F[k]*(if x <> 0 then 1 else 0) + 

h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]}; 

 

param DPvalue := f[1, 0];  # compute the optimal value 

Set of allowable 
decisions at  each 
stage k, state I 



inventory.mod 
param T;    # number of periods 

param c {k in 1..T};  # cost per unit in period k 

param F {k in 1..T};  # fixed cost in period k 

param h {k in 1..T};  # holding cost for inventory from k-1 to k 

param d {k in 1..T};  # demand in period k 

 

param MaxQuantity := sum{k in 1..T} d[k]; 

 

set allowableDecisions {k in 1..T, I in 0..MaxQuantity} := 

 {x in 0..MaxQuantity: d[k] <= I + x <= MaxQuantity}; 

 # quantity to produce at stage k, state I (inventory level) 

 

param f {k in 1..T+1, I in 0..MaxQuantity} :=  # min cost in periods k through T+1 

 if k=T+1 then 0 # no more demand to consider 

 else 

   min{x in allowableDecisions[k, I]}  

(c[k]*x + F[k]*(if x <>0 then 1 else 0) + h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]); 

 

set opt {k in 1..T, I in 0..MaxQuantity} :=   # optimal decisions 

 {x in allowableDecisions[k, I]: f[k, I] = c[k]*x + F[k]*(if x <> 0 then 1 else 0) + 

h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]}; 

 

param DPvalue := f[1, 0];  # compute the optimal value 

Computation of fk*(I) 
at each stage k, each 
state I 



inventory.mod 
param T;    # number of periods 

param c {k in 1..T};  # cost per unit in period k 

param F {k in 1..T};  # fixed cost in period k 

param h {k in 1..T};  # holding cost for inventory from k-1 to k 

param d {k in 1..T};  # demand in period k 

 

param MaxQuantity := sum{k in 1..T} d[k]; 

 

set allowableDecisions {k in 1..T, I in 0..MaxQuantity} := 

 {x in 0..MaxQuantity: d[k] <= I + x <= MaxQuantity}; 

 # quantity to produce at stage k, state I (inventory level) 

 

param f {k in 1..T+1, I in 0..MaxQuantity} :=  # min cost in periods k through T+1 

 if k=T+1 then 0 # no more demand to consider 

 else 

   min{x in allowableDecisions[k, I]}  

(c[k]*x + F[k]*(if x <>0 then 1 else 0) + h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]); 

 

set opt {k in 1..T, I in 0..MaxQuantity} :=   # optimal decisions 

 {x in allowableDecisions[k, I]: f[k, I] = c[k]*x + F[k]*(if x <> 0 then 1 else 0) + 

h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]}; 

 

param DPvalue := f[1, 0];  # compute the optimal value 

Keeping track of optimal 
decision, xk*, at each stage k, 
each state I 



inventory.mod 
param T;    # number of periods 

param c {k in 1..T};  # cost per unit in period k 

param F {k in 1..T};  # fixed cost in period k 

param h {k in 1..T};  # holding cost for inventory from k-1 to k 

param d {k in 1..T};  # demand in period k 

 

param MaxQuantity := sum{k in 1..T} d[k]; 

 

set allowableDecisions {k in 1..T, I in 0..MaxQuantity} := 

 {x in 0..MaxQuantity: d[k] <= I + x <= MaxQuantity}; 

 # quantity to produce at stage k, state I (inventory level) 

 

param f {k in 1..T+1, I in 0..MaxQuantity} :=  # min cost in periods k through T+1 

 if k=T+1 then 0 # no more demand to consider 

 else 

   min{x in allowableDecisions[k, I]}  

(c[k]*x + F[k]*(if x <>0 then 1 else 0) + h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]); 

 

set opt {k in 1..T, I in 0..MaxQuantity} :=   # optimal decisions 

 {x in allowableDecisions[k, I]: f[k, I] = c[k]*x + F[k]*(if x <> 0 then 1 else 0) + 

h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]}; 

 

param DPvalue := f[1, 0];  # compute the optimal value 
Determining the optimal 
cost: f1*(0) 



inventory.dat 
param T := 4; # number of periods 

 

param: d c F h := 

1   10  3  5 0.2 

2   40  2 20 0.3 

3   20  4 10 0.5 

4   50  3 10 0.8; 



inventoryScript.txt 
reset; 

model Opt2Models/Lec11/inventory.mod; 

data Opt2Models/Lec11/inventory.dat; 

display DPvalue; 



In the “sw” console: 

sw: ampl 

ampl: include Opt2Models/Lec11/inventoryScript.txt; 

DPvalue = 321 

 

ampl: 


