
Spring 2013 Optimization II (ORIE 3310/5310/5311)

Lecture 12: Feb 28, 2013

In this lecture, we wrap-up our inventory planning example and introduce how we can use
AMPL to help us carry out dynamic programming computation.

1 Recap: Solving inventory planning problems using DP

Recall our inventory planning problem:

• Input:

– T = number of periods in the “planning horizon”

– For each period k ∈ {1, 2, . . . , T}, there is a demand dk, a per-unit production cost ck,
a fixed cost of production Fk, and a per-unit holding cost hk.

• Decision to make: to determine the quantity to be produced in each period

• Constraint: demand in each period must be satisfied by the end of the period

• Objective: to minimize total cost

Period (k) dk ck Fk hk

1 10 3 5 0.2
2 40 2 20 0.3
3 20 4 10 0.5
4 50 3 10 0.8

Also assume that the production quantities can only be in multiples of 10.

1.1 Dynamic programming formulation

1.1.1 Specify the stages

Stage k corresponds to period k. So, there will be five stages: 1, 2, 3, 4, 5, where the fifth stage is
a dummy stage, indicating the end of the fourth period.

1.1.2 Specify the states

The state I corresponds to inventory level I at the beginning of the period.

Sk = {0, 10, 20, . . . , 120}.

1.1.3 Specify the sets of allowable decisions at each state in each stage

Let xk denote the quantity to produce at stage k. If we start with an inventory of I units at the
beginning of stage k, then we want to make sure that:

• We have enough items to satisfy demand: I + xk ≥ dk

1

Spring 2013 Optimization II (ORIE 3310/5310/5311)

• And since we assume that our inventory level is at most 120, we need only consider xk such
that

I + xk − dk ≤ 120.

• So, in summary, we formulate the set of allowable decisions at state I in stage k as:

Qk,I = {x ∈ {0, 10, . . .} | I + xk ≥ dk and I + xk − dk ≤ 120}.

1.1.4 Describe in words the optimization function to be solved at each state in each
stage

Consider a state I in stage k. That is, the inventory level at the beginning of period k is I. Then,

f ∗k (I) = the minimum total cost to meet demands in period k until period T + 1

1.1.5 Specify boundary conditions

f ∗5 (I) = 0, ∀I ∈ {0, 10, . . . , 120}.

1.1.6 Write the recurrence relation for the optimization function described in step 4

f ∗k (I) = min
xk∈Qk,I

(xk ∗ ck + 1xk>0Fk + (I + xk − dk) ∗ hk)︸ ︷︷ ︸
cost due to producing xk in period k

+f ∗k+1(I + xk − dk)

 .

1.1.7 Compute the value of f ∗k (I) for each state I ∈ Sk, for each stage k

To compute f ∗k (I), we only need to use the recurrence relation we described in step 6. In order
to do the computation, since each f ∗k refer to a value f ∗k+1, we do the computation starting from
k = T + 1 (the boundary conditions), then k = T, T − 1, . . . , 1.

Within each stage k, we solve for f ∗k (I) for all states I ∈ Sk, before proceeding to stage k − 1.
That is, we complete the following table starting from each row in the leftmost column, proceeding
to the next left-most column, etc.

Stage 5
Possible States (i) f*_5(i) f*_4(i) x*_4 f*_3(i) x*_3 f*_2(i) x*_2 f*_1(i) x*_1

0 0 160 50 250 20 286 110 321 10
10 0 130 40 210 10 266 100
20 0 100 30 160 0 246 90
30 0 70 20 135 0 226 80
40 0 40 10 110 0 206 70
50 0 0 0 85 0 186 60
60 0 8 0 60 0 166 0 or 50
70 0 16 0 25 0 144 0
80 0 24 0 38 0 122 0
90 0 32 0 51 0 100 0
100 0 40 0 64 0 78 0
110 0 48 0 77 0 46 0
120 0 56 0 90 0 62 0

Stage 4 Stage 3 Stage 2 Stage 1

2

Spring 2013 Optimization II (ORIE 3310/5310/5311)

1.1.8 Trace backwards to find the optimal objective function and the optimal deci-
sion.

• We begin by recognizing that our original problem, to find the minimum-cost solution to
satisfy demand from period 1 to period 5, is represented by the state I = 0 in stage 1. So,
from the table above, our minimum cost is f ∗1 (0) = 321. From the table, we also know that
the optimal quantity to produce in period 1 is x∗1 = 10.

• Given that x∗1 = 10, the inventory level at the beginning of period 2 is 0 + x∗1 − d1 =
0 + 10− 10 = 0. So, we next look at f ∗2 (0), to find that x∗2 = 110.

• Given that x∗2 = 110, the inventory level at the beginning of period 3 is 0 + x∗2 − d2 =
0 + 110− 20 = 70. So, we next look at f ∗3 (70), to find that x∗3 = 0.

• Given that x∗3 = 0, the inventory level at the beginning of period 4 is 70 + x∗3 − d3 =
70 + 0− 20 = 50. So, we next look at f ∗4 (50), to find that x∗4 = 0.

Hence, we can conclude that the minimum cost is 321, obtained by the following production plan:

x1 = 10, x2 = 110, x3 = 0, x4 = 0.

2 Using AMPL for DP computation

In Optimization 1 and in the network optimization part of the semester, we have been using
AMPL to solve linear programming (and possibly integer programming) formulation of various
optimization problems.

The components of an AMPL formulation:

Model file In the model file, we declare what our sets and parameters are (the values of which
are normally supplied by a data file). We also specify what our linear programming problem
is.

Data file In the data file, we supply actual values for the sets and parameters that we indicated
in the model file.

Script file In the script file, we can store any sequence of commands that we might write in the
ampl (or sw) console. The advantage of doing this is that we don’t have to repeatedly enter
the sequence of commands (when debugging, for example). Instead, we only need to enter
one line:

include scriptfile.txt;

to tell AMPL to look at the file scriptfile.txt for the sequence of commands.

As you have noticed, there is no linear program to be solved when we’re using dynamic pro-
gramming. So, in the model file, we won’t be specifying any linear program. That is, we won’t
have any AMPL decision variables (var ...), AMPL objective function (maximize ...), or
AMPL constraint (subject to ...).

Instead, we our model file will consists of parameters and sets:

• Some of the parameters and sets will have values that are supplied by the data file

• Some other parameters and sets will be assigned values when the model is running. These
parameters and sets represent our “DP Table” which we fill out in “step 7”.

3

Spring 2013 Optimization II (ORIE 3310/5310/5311)

2.1 AMPL files for our inventory planning problem

We will start with the “easy” part, the data file. The data file consists of information on the
number of periods, demands, production costs, fixed costs, and holding costs.

param T := 4; # number of periods

param: d c F h := # demand and costs

1 10 3 5 0.2

2 40 2 20 0.3

3 20 4 10 0.5

4 50 3 10 0.8;

Then, the following is the model file:

Parameters specified in the data file

param T; # number of periods

param c {k in 1..T};

cost per unit in period k

param F {k in 1..T};

fixed cost in period k

param h {k in 1..T}; # holding cost for inventory from k-1 to k

param d {k in 1..T}; # demand in period k

Dynamic Programming Computation:

param MaxQuantity := sum{k in 1..T} d[k];

set allowableDecisions {k in 1..T, I in 0..MaxQuantity by 10} :=

{x in 0..MaxQuantity by 10: d[k] <= I + x <= MaxQuantity};

quantity to produce at stage k, state I (inventory level)

param f {k in 1..T+1, I in 0..MaxQuantity by 10} :=

if k=T+1 then 0 # no more demand to consider

else

min{x in allowableDecisions[k, I]} (c[k]*x + F[k]*(if x <>0 then 1

else 0) + h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]);

min cost in periods k through T+1

param DPvalue := f[1, 0];

compute the optimal value

4

Spring 2013 Optimization II (ORIE 3310/5310/5311)

set opt {k in 1..T, I in 0..MaxQuantity by 10} :=

{x in allowableDecisions[k, I]: f[k, I] = c[k]*x + F[k]*(if x <> 0

then 1 else 0) + h[k]*(I + x - d[k]) + f[k+1, I + x - d[k]]};

optimal decisions

5

	Recap: Solving inventory planning problems using DP
	Dynamic programming formulation
	Specify the stages
	Specify the states
	Specify the sets of allowable decisions at each state in each stage
	Describe in words the optimization function to be solved at each state in each stage
	Specify boundary conditions
	Write the recurrence relation for the optimization function described in step 4
	Compute the value of f*k(I) for each state I Sk, for each stage k
	Trace backwards to find the optimal objective function and the optimal decision.

	Using AMPL for DP computation
	AMPL files for our inventory planning problem

