1. Albert is at the store to buy new pencils. Each pencil costs $0.55. Albert has not decided how many pencils he will buy, but he will buy 0, 1, 2, 3, 4, 5, or 6 pencils. Let the variable p represent the number of pencils that Albert decides to buy.

(a) If Albert decides to buy 5 pencils, what is the value of p?

(b) Each row in the following table corresponds to the different number of pencils that Albert might buy. Complete the table.

<table>
<thead>
<tr>
<th>p</th>
<th>The total amount of money Albert spends</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

(c) What is the domain of p?

(d) Write down an algebraic expression for the total amount of money that Albert has to spend if he decides to buy p pencils. Hint: think about how you completed the table from part (b).

(e) It turns out that Al only has $2 to spend on pencils. Write down an open sentence that describes Al’s budget restriction. [See Chapter 3-6]

(f) What is the solution set for that corresponds to Al’s budget restriction from part (e) above? [See Chapter 3-6]
2. Bob is also at the store to buy new pencils and new notebooks. Each pencil costs $0.55 and each notebook costs $1.00. Bob will buy 0, 1, 2, or 3 pencils, and 2, 3, or 5 notebooks.

Let the variable \(p \) represent the number of pencils that Bob decides to buy.
Let the variable \(n \) represent the number of notebooks that Bob decides to buy.

(a) If Bob decides to buy 1 pencil and 3 notebooks, what are the values represented by \(p \) and \(n \)?

(b) Complete the following table

<table>
<thead>
<tr>
<th>(p)</th>
<th>(n)</th>
<th>The total amount of money Albert spends</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

(c) What is the domain of \(p \)?

(d) What is the domain of \(n \)?

(e) Write down an algebraic expression for the total amount of money that Bob has to spend if he decides to buy \(p \) pencils and \(n \) notebooks.

(f) It turns out that Bob only has $4 to spend on pencils and notebooks. Write down an open sentence that describes Bob’s budget restriction. [See Chapter 3-6]

(g) What is the solution set for that corresponds to Bob’s budget restriction from part (e) above? [See Chapter 3-6]