ORIE 6326: Convex Optimization

Operator Splitting

Professor Udell
Operations Research and Information Engineering
Cornell

May 3, 2017
Outline

Proximal method

Reformulations

Splitting
Proximal point method

fixed point iteration using prox is called **proximal point method**

\[x^{(k+1)} = \text{prox}_{\lambda f}(x^{(k)}) \]

properties:

- \(\text{prox}_{\lambda f} \) is \(\frac{1}{2} \) averaged for any \(\lambda > 0 \), so
- converges for any \(\lambda > 0 \)
- to a zero of \(\partial f \) (\(\text{FPs of } \text{prox}_{\lambda f} \))
- if \(f \) is \(\alpha \)-strongly convex, \(\text{prox}_{\lambda f} \) is a contraction, so converges linearly
- not usually a practical method (often, as hard as solving original problem)
Method of multipliers

consider

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad Ax = b
\end{align*}
\]

let

\[
g(\mu) = -(\inf_x f(x) + \mu^T (Ax - b)) = f^*(-A^T \mu) + \mu^T b
\]

be the (negative) dual function, and consider the proximal point method for \(t > 0 \)

\[
y^{(k+1)} = R_{t\partial g}(y^{(k)})
\]

\begin{itemize}
\item \(\partial g(v) = -A \partial (f^*(-A^T v)) + b \)
\item \(x \in \partial (f^*(-A^T v)) \text{ iff } -A^T v \in \partial f(x) \)
\item so if \(v = R_{t\partial g}(y) = (I + t\partial g)^{-1}(y) \), then
\end{itemize}

\[
\begin{align*}
y & \in v + t\partial g(v) \\
y & = v - \alpha (Ax - b) \quad \text{for some } x \text{ with} \quad -A^T v \in \partial f(x)
\end{align*}
\]
Method of multipliers

notice x minimizes the \textbf{Augmented Lagrangian} $L_\alpha(x, y)$

$$0 \in \partial f(x) + A^T(y + \alpha(Ax - b))$$

$$x \in \arg\min_x f(x) + y^T(Ax - b) + \alpha/2\|Ax - b\|^2 = L_\alpha(x, y)$$

so proximal point method for g is

$$x^{(k+1)} \in \arg\min_x L_\alpha(x, y^{(k)})$$

$$y^{(k+1)} = y^{(k)} + \alpha(Ax^{(k+1)} - b)$$

also called the \textbf{method of multipliers}

properties:

- always converges
- if f is smooth, then g is strongly convex, $R_t\partial g$ is a contraction, and the method of multipliers converges linearly
- useful if f is smooth and A is very sparse
 (alternative: optimize over $x \in x_0 + (A)z$; but (A) is generally dense)
Cayley method

fixed point iteration using Cayley operator

\[x^{(k+1)} = C_{tf}(x^{(k)}) \]

consider Cayley method for smooth function

\[x^+ = (2(l + t\nabla f)^{-1} - l)x \]
\[= 2(l + t\nabla f)^{-1}x - x \]
\[\frac{1}{2}(x^+ + x) = (l + t\nabla f)^{-1}x \]
\[(l + t\nabla f)(\frac{1}{2}(x^+ + x)) = x \]
\[\frac{1}{2}(x^+ + x) + t\nabla f(\frac{1}{2}(x^+ + x)) = x \]
\[t\nabla f(\frac{1}{2}(x^+ + x)) = \frac{1}{2}(x - x^+) \]
\[x^+ = x - 2t\nabla f(\frac{1}{2}(x^+ + x)) \]

fact: for \(f \) \(\alpha \) Lipschitz and \(\beta \) smooth, Cayley method achieves “accelerated” convergence rate (linear convergence with rate \(\sqrt{\kappa + 1} \))
Composition rules

suppose A has Lipschitz constant L_A, B has Lipschitz constant L_B
then $A \circ B$ has Lipschitz constant $\leq L_A L_B$
Composition rules

suppose A has Lipschitz constant L_A, B has Lipschitz constant L_B then $A \circ B$ has Lipschitz constant $\leq L_A L_B$

proof:

$$\|A \circ By - A \circ Bx\| \leq L_A \|By - Bx\| \leq L_A L_B \|y - x\|$$

- nonexpansive \circ nonexpansive $= \text{nonexpansive}$
- nonexpansive \circ contractive $= \text{contractive}$
Outline

Proximal method

Reformulations

Splitting
suppose f is smooth, g is non-smooth but proxable. solve unconstrained problem

$$\text{minimize} \quad f(x) + g(Ax)$$

or, rewrite as

$$\text{minimize} \quad f(x) + g(y)$$
$$\text{subject to} \quad Ax = y$$
suppose f is smooth, g is non-smooth but proxable. solve unconstrained problem

$$\text{minimize} \quad f(x) + g(Ax)$$

or, rewrite as

$$\text{minimize} \quad f(x) + g(y)$$
subject to $Ax = y$

how general is this formulation?
Two linear operators

suppose f is smooth, g is non-smooth but proxable. solve

$$\text{minimize } f(Bx) + g(Ax)$$

reformulate
Two linear operators

suppose \(f \) is smooth, \(g \) is non-smooth but proxable. solve

\[
\text{minimize} \quad f(Bx) + g(Ax)
\]

reformulate:
\(f(Mx) \) is smooth whenever \(f \) is, so it’s already in the right form
Two linear operators

suppose \(f \) is smooth, \(g \) is non-smooth but proxable. solve

\[
\text{minimize} \quad f(Bx) + g(Ax)
\]

reformulate:
\(f(Mx) \) is smooth whenever \(f \) is, so it’s already in the right form

special case: \(f(x) = \sum_{i=1}^{m} f_i(x) \)
Many fs

suppose f_i is smooth for $i = 1, \ldots, m$, g is non-smooth but proxable.

solve

$$\begin{align*}
\text{minimize} & \quad \sum_{i=1}^n f_i(x_i) + g(y) \\
\text{subject to} & \quad \sum_{i=1}^n A_i x_i = y
\end{align*}$$

reformulate:

$$\begin{align*}
\text{minimize} & \quad f(x) + g(y) \\
\text{subject to} & \quad Ax = y
\end{align*}$$
Many fs

suppose f_i is smooth for $i = 1, \ldots, m$, g is non-smooth but proxable. solve

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{n} f_i(x_i) + g(y) \\
\text{subject to} & \quad \sum_{i=1}^{n} A_i x_i = y
\end{align*}
\]

reformulate: $x = (x_1, \ldots, x_m)$, $f(x) = \sum_{i=1}^{n} f_i(x_i)$, $Ax = \sum_{i=1}^{n} A_i x_i = y$.

\[
\begin{align*}
\text{minimize} & \quad f(x) + g(y) \\
\text{subject to} & \quad Ax = y
\end{align*}
\]
Many gs

Suppose f is smooth, g_i is non-smooth but proxable for $i = 1, \ldots, m$. Solve

$$
\begin{align*}
\text{minimize} & \quad f(x) + \sum_{i=1}^{m} g_i(y_i) \\
\text{subject to} & \quad A_i x = y_i
\end{align*}
$$

Reformulate:
Many gs

suppose f is smooth, g_i is non-smooth but proxable for $i = 1, \ldots, m$. solve

\[
\begin{align*}
\text{minimize} & \quad f(x) + \sum_{i=1}^{m} g_i(y_i) \\
\text{subject to} & \quad A_i x = y_i
\end{align*}
\]

reformulate: $Ax = (A_1 x, \ldots, A_m x) = y$, $g(y) = \sum_{i=1}^{m} g_i(y_i)$. g is separable so still proxable.

\[
\begin{align*}
\text{minimize} & \quad f(x) + g(y) \\
\text{subject to} & \quad Ax = y
\end{align*}
\]
Conic problem

suppose we have a conic problem over cone K

minimize $c^T x$
subject to $Ax = b$
$x \in K$

reformulate:
Conic problem

suppose we have a conic problem over cone K

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b \\
& \quad x \in K
\end{align*}
\]

reformulate:

\[
\begin{align*}
\text{minimize} & \quad c^T x + I_K(y - b) \\
\text{subject to} & \quad Ax = y
\end{align*}
\]
Conic problem

suppose we have a conic problem over cone K

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b \\
& \quad x \in K
\end{align*}
\]

reformulate:

\[
\begin{align*}
\text{minimize} & \quad c^T x + I_K(y - b) \\
\text{subject to} & \quad Ax = y
\end{align*}
\]

$\text{prox}_{I_K} = \Pi_K$ is projection onto cone K
Strongly convex

suppose f is strongly convex, g is non-smooth but proxable. solve

\[
\begin{align*}
\text{minimize} \quad & f(x) + g(y) \\
\text{subject to} \quad & Ax = y
\end{align*}
\]

reformulate:
Strongly convex

Suppose f is strongly convex, g is non-smooth but proxable. Solve

\[
\begin{align*}
\text{minimize} & \quad f(x) + g(y) \\
\text{subject to} & \quad Ax = y
\end{align*}
\]

Reformulate: duality!

\[
L(x, y, \mu) = f(x) + g(y) + \mu^T (Ax - y) \\
\inf_{x,y} L(x, y, \mu) = -f^*(-A^T \mu) - g^*(\mu)
\]

dual formulation:

\[
\text{maximize} \quad f^*(-A^T \mu) + g^*(\mu)
\]

Notice:

1. $f^* \circ (-A^T)$ smooth
2. If $g = \sum_{i=1}^{m} g_i(y_i)$ is separable, so is $g^*(\mu) = \sup_y \sum_{i=1}^{m} (\mu_i y_i - g_i(y_i))$
Outline

Proximal method

Reformulations

Splitting
suppose F is $\frac{1}{\beta}$-cocoercive and G is maximal monotone (eg, $F = \nabla f$ and $G = \partial g$)

find x
subject to $0 \in Fx + Gx$

analyze optimality conditions:

$$
0 \in Fx + Gx \\
-tFx \in tGx \\
(I - tF)x \in (I + tG)x \\
x = (I + tGx)^{-1}(I - tF)x \\
x = R_{tG}(I - tF)x
$$
Forward backward splitting

\[x^+ = R_{tg}(I - tF)x \]

convergence:

- \(R_{tg} \) is \(\frac{1}{2} \)-averaged
- for \(t \in (0, \frac{2}{\beta}) \), \(I - tB \) is averaged
- so FBS converges
- if either \(F \) or \(G \) is strongly monotone, then FBS converges linearly
suppose f is smooth, g is non-smooth but proxable. then ∇f is $\frac{1}{\beta}$-cocoercive and ∂g is maximal monotone. FBS for these operators is called **proximal gradient method**

$$x^+ = \text{prox}_tg(x - t\nabla f(x))$$

solves unconstrained problem

$$\text{minimize } f(x) + g(x)$$

convergence:

- for $t \in (0, \frac{2}{\beta})$, converges
- if either f or g is strongly convex, then proximal gradient converges linearly

special case: projected gradient
consider update that linearizes f and regularizes around $x^{(k)}$

$$x^{(k+1)} \in \arg\min_x f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)}) + \frac{1}{2t} \|x - x^{(k)}\|^2 + 1$$

$$0 \in \nabla f(x^{(k)}) + x^{(k+1)} - x^{(k)} + \partial g(x^{(k+1)})$$

$$x^{(k)} - \nabla f(x^{(k)}) \in x^{(k+1)} + \partial g(x^{(k+1)})$$

$$x^{(k+1)} = \text{prox}_{tg}(x^{(k)} - t\nabla f(x^{(k)}))$$

we see proximal gradient update solves

$$\text{minimize} \quad g + \text{quadratic approximation to } f$$
Proximal gradient: interpretation

consider update that linearizes f and regularizes around $x^{(k)}$

$$x^{(k+1)} \in \arg\min_x f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)}) + \frac{1}{2t} \|x - x^{(k)}\|^2 +$$

$$0 \in \nabla f(x^{(k)}) + x^{(k+1)} - x^{(k)} + \partial g(x^{(k+1)})$$

$$x^{(k)} - \nabla f(x^{(k)}) \in x^{(k+1)} + \partial g(x^{(k+1)})$$

$$x^{(k+1)} = \text{prox}_{tg}(x^{(k)} - t \nabla f(x^{(k)}))$$

we see proximal gradient update solves

$$\text{minimize } g + \text{quadratic approximation to } f$$

variable metric:

- regularize with $\|x - x^{(k)}\|^2_L$ instead of $\frac{1}{2t} \|x - x^{(k)}\|^2$
- reduces to standard proximal gradient when $L = \frac{1}{t} I$
- converges so long as f is 1-smooth wrt the metric L
suppose f is smooth and g is proxable

- easy to apply proximal gradient method to

$$\text{minimize } f(Ax) + g(x),$$

since $\nabla(f(Ax)) = A^T(\nabla f)(Ax)$

- hard to apply proximal gradient method to

$$\text{minimize } f(x) + g(Ax),$$

since

- $\text{prox}_{g \circ A}$ may not be easy to evaluate even if prox_g is easy
- $\text{prox}_{g \circ A}$ may not be separable even if g is separable
Dual proximal gradient method

instead of

\[\text{minimize } f(x) + g(Ax), \]

consider its dual problem

\[\text{minimize } f^*(-A^T \mu) + g^*(\mu) \]

proximal gradient on the dual is

\[\mu^{(k+1)} = \text{prox}_{t g^*}(I - A \nabla f^*)(-A^T \mu^{(k)}) \]

much easier: only need to multiply by \(A \) and \(A^T \)
Dual proximal gradient method: convergence

sublinear convergence rate if both operators are nonexpansive:

- f α-strongly convex \implies f^* $\frac{1}{\alpha}$-smooth \implies $\nabla (f^o - A^T) \frac{\alpha}{\|A^T\|^2}$ cocoercive

- g^* is CCP if g is

so get sublinear convergence if $t \in (0, \frac{2\alpha}{\|A^T\|^2})$

linear convergence if in addition either operator is contractive:

- gradient update is contractive f^* strongly convex, which happens if f β-smooth and A is surjective

- prox update is contractive if g^* is strongly convex which happens if g is smooth
Dual proximal gradient method: challenges

two challenges

- how to recover primal solution from dual solution?
- how to compute $\text{prox}_{t g^*}$?

(we’ve already seen $y \in \nabla f^*(x)$ iff $x \in \partial f(y)$)
Dual proximal gradient method: recover primal

how to recover primal solution from dual solution?
Dual proximal gradient method: recover primal

how to recover primal solution from dual solution?

if μ^* is dual optimal for minimize $f(x) + g(Ax)$,
then KKT conditions $\implies x^*$ primal optimal iff

$$x^* \in \arg\min_x f(x) + g(y) + (\mu^*)^T(Ax - y)$$

$$0 \in \partial f(x^*) + A^T\mu^*$$

$$x^* \in (\partial f)^{-1}(A^T\mu^*)$$

$$x^* \in \partial f^*(A^T\mu^*)$$

recovers primal solution
Moreau’s identity

Moreau’s identity:

\[\text{prox}_g + \text{prox}_{g^*} = I \]
Moreau’s identity

Moreau’s identity:
\[\text{prox}_g + \text{prox}_{g^*} = I \]

proof: let \(z = \text{prox}_g(x) \). then

\[
\text{prox}_g(x) = (I + \partial f)^{-1}x = z
\]
\[x \in (I + \partial f)(z) \]
\[x - z \in \partial f(z) \]
\[\partial f^*(x - z) \ni z \]
\[(I + \partial f^*)(x - z) \ni x - z + z = x \]
\[x - z = (I + \partial f^*)^{-1}x = \text{prox}_{g^*}^*(x) \]

so \(\text{prox}_g(x) + \text{prox}_{g^*}(x) = z + x - z = x \)

- scale \(g \) by \(t \) to compute

\[
z = \text{prox}_{tg}(z) + \text{prox}_{(tg)^*}(z) = \text{prox}_{tg}(z) + t\text{prox}_{t^{-1}g^*}(t^{-1}z)
\]
Dual proximal gradient method: compute $\text{prox}_{t g^*}$

dual proximal gradient method

$$
\begin{align*}
 x &= \nabla f^*(-A^T \mu) \\
 \mu^+ &= \text{prox}_{t g^*}(\mu + tAx)
\end{align*}
$$

how to compute $\text{prox}_{t g^*}(\mu + tAx)$?
Dual proximal gradient method: compute prox_{tg^*}

dual proximal gradient method

\[
x = \nabla f^*(-A^T \mu)
\]
\[
\mu^+ = \text{prox}_{tg^*}(\mu + tAx)
\]

how to compute $\text{prox}_{tg^*}(\mu + tAx)$?

use Moreau’s identity with $tz = \mu + tAx$:

\[
\text{prox}_{tg^*}(tz) = tz - \text{prox}_{1/tg}(z)
\]

dual proximal gradient method becomes

\[
x = \nabla f^*(-A^T \mu)
\]
\[
\mu^+ = \mu + tAx - \text{prox}_{1/tg}(\mu/t + Ax)
\]
Dual proximal gradient method: interpretation

dual proximal gradient method

\[
\begin{align*}
x &= \nabla f^*(-A^T \mu) \\
\mu^+ &= \mu + tAx - \text{prox}_{1/tg}(\mu/t + Ax)
\end{align*}
\]

- state \(\nabla f^*(-A^T \mu)\) explicitly:
 \[
 \nabla f^*(-A^T \mu) = \arg\max_x (-A^T \mu)^T x - f(x) = \arg\min_x f(x) + \mu^T Ax
 \]

- state \(\text{prox}_{1/tg}(\mu/t + Ax)\) explicitly:
 \[
 \text{prox}_{1/tg}(\mu/t + Ax) = \arg\min_y g(y) + \frac{t}{2} \|y - Ax - \mu/t\|^2
 \]

dual proximal gradient method becomes

\[
\begin{align*}
x &= \arg\min_x f(x) + \mu^T Ax \\
y &= \arg\min_y g(y) + \frac{t}{2} \|y - Ax - \mu/t\|^2 \\
\mu^+ &= \mu + t(Ax - y)
\end{align*}
\]
Many more splitting methods

- Peaceman Rachford Splitting
- Douglas Rachford Splitting
- Davis Yin Three Operator Splitting
- Chambolle Pock
- ADMM

details in Ryu and Boyd monograph
consider the problem

\[
\text{minimize } f(x) + g(Ax)
\]

Chambolle Pock iteration is

\[
\begin{align*}
 x^{(k+1)} &= R_{\partial f}(x^{(k)} - tA^T u^{(k)}) \\
 u^{(k+1)} &= R_{\partial g^*}(u^{(k)} + tA(2x^{(k+1)} - x^{(k)}))
\end{align*}
\]

- converges when \(t < \frac{1}{\|M\|} \)
- easy whenever \(f \) and \(g \) are proxable
- only requires multiplication by \(M \) and \(M^T \)
ADMM

consider the problem

\[
\begin{align*}
\text{minimize} & \quad f(x) + g(z) \\
\text{subject to} & \quad Ax + Bz = c
\end{align*}
\]

Augmented Lagrangian for this problem (with dual variable \(y\)) is

\[
L_t(x, z, y) = f(x) + g(z) + y^T(Ax + Bz - c) + \frac{t}{2}\|Ax + Bz - c\|^2
\]

Alternating Directions Method of Multipliers (ADMM) iteration is

\[
\begin{align*}
x^{(k+1)} &= \arg\min_x L_t(x, z^{(k)}, y^{(k)}) \\
z^{(k+1)} &= \arg\min_z L_t(x^{(k+1)}, z, y^{(k)}) \\
y^{(k+1)} &= y^{(k)} + \frac{1}{t}(Ax^{(k+1)} + Bz^{(k+1)} - c)
\end{align*}
\]

(special case of Douglas Rachford splitting)
ADMM

properties:

- converges for any $t > 0$ (but can be very slow)
- letting $y = tu$, equivalent to the iteration

\[
\begin{align*}
x^{(k+1)} &= \arg\min_x f(x) + t/2 \|Ax + Bz^{(k)} - c + u^{(k)}\|_2^2 \\
z^{(k+1)} &= \arg\min_z g(z) + t/2 \|Ax^{(k+1)} + Bz - c + u^{(k)}\|_2^2 \\
u^{(k+1)} &= u^{(k)} + Ax^{(k+1)} + Bz^{(k+1)} - c
\end{align*}
\]

- frequently used for distributed optimization, since problems decouple
Operator splitting for distributed optimization

economy with \(n \) agents: each agent

- produces \((x_i)_j\) of good \(j \) if \((x_i)_j > 0\)
- (or consumes if \((x_i)_j < 0\))
- has utility function \(f_i(x_i) \)

supply = demand if \(\sum_i x_i = 0 \).

the economy solves the problem

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{n} f_i(x_i) \\
\text{subject to} & \quad \sum_i x_i = 0
\end{align*}
\]
References

- Parikh and Boyd, Proximal Algorithms
- Ryu and Boyd, Primer on Monotone Operator Methods
- Davis and Yin, Convergence Rate Analysis of Several Splitting Schemes
- Pontus Gisselson, Course on Large-Scale Convex Optimization
 http://www.control.lth.se/ls-convex-2015/