Announcements

▶ free JuliaBox is ending Nov. 1; install locally!
▶ section this week: review
▶ hw 3 is out, due 10/17
▶ midterm 10/22
▶ we’ll release a practice midterm this week
▶ take a look at peer feedback on your projects; stop by OH to discuss projects
Linear algebra review

Definition

The **null space** of a matrix $X : \mathbb{R}^{n \times d}$ is

$$\text{nullspace}(X) = \{ w \in \mathbb{R}^d : Xw = 0 \}$$

(The all-zero vector 0 is always in the null space.)

The following conditions are equivalent:

- $\text{nullspace}(X) = \{ 0 \}$
- If $Xw = 0$, then $w = 0$
- The columns of X are linearly independent
- $\forall z \in \mathbb{R}^n$, if $Xw = z$ and $Xw' = z$, then $w = w'$
- X has a left inverse
Notation: standard basis vectors

- e_1 is the first standard basis vector $(1, 0, \ldots, 0)$
- e_2 is the second standard basis vector $(0, 1, 0, \ldots, 0)$
- $\{e_1, \ldots, e_d\}$ form the standard basis in \mathbb{R}^d
What if the Gram matrix is not invertible?

▶ Least squares objective:

$$\text{minimize} \quad \|y - Xw\|^2$$

▶ Normal equations:

$$X^T Xw = X^T y$$

▶ Solution if $X^T X$ is invertible:

$$w = (X^T X)^{-1} X^T y$$

Q: if $X^T X$ is not invertible, do the normal equations still define the solution?
What if the Gram matrix is not invertible?

- Least squares objective:
 \[
 \text{minimize} \quad \| y - Xw \|^2
 \]

- Normal equations:
 \[
 X^T Xw = X^T y
 \]

- Solution if $X^T X$ is invertible:
 \[
 w = (X^T X)^{-1} X^T y
 \]

Q: if $X^T X$ is not invertible, do the normal equations still define the solution?

A: yes! we derived them with no assumptions.
Outline

The SVD

Non-uniqueness

Quadratic regularization
The Singular Value Decomposition (SVD)

suppose $d \leq n$. SVD rewrites $X \in \mathbb{R}^{n \times d}$ in terms of easier matrices:

- $X = U \Sigma V^T$
- $U \in \mathbb{R}^{n \times d}$ is orthogonal: $U^T U = I_d$
- $V \in \mathbb{R}^{d \times d}$ is orthogonal: $V^T V = V V^T = I_d$
- $\Sigma \in \mathbb{R}^{d \times d}$ is diagonal and nonnegative:
 - $\Sigma_{ii} \geq 0$ for $i = 1, \ldots, d$
 - $\Sigma_{ij} = 0$ for $i \neq j$

In Julia (or Matlab), use the SVD function

$$(X, U, S, V) = \text{svd}(X)$$

can compute SVD factorization of X in $O(nd^2)$ flops.
The Singular Value Decomposition (SVD)

suppose $d \leq n$. SVD rewrites $X \in \mathbb{R}^{n \times d}$ in terms of easier matrices:

- $X = U \Sigma V^T$
- $U \in \mathbb{R}^{n \times d}$ is orthogonal: $U^T U = I_d$
- $V \in \mathbb{R}^{d \times d}$ is orthogonal: $V^T V = VV^T = I_d$
- $\Sigma \in \mathbb{R}^{d \times d}$ is diagonal and nonnegative:
 - $\Sigma_{ii} \geq 0$ for $i = 1, \ldots, d$
 - $\Sigma_{ij} = 0$ for $i \neq j$

in julia (or matlab), use the SVD function

$$U, S, V = \text{svd}(X)$$

can compute SVD factorization of X in $O(nd^2)$ flops
Thin SVD

previous version sometimes called **full SVD**.

to make **thin SVD**, delete zeros from Σ

- $r = \text{Rank}(X)$
- $X = U\Sigma V^T$
- $U \in \mathbb{R}^{n \times r}$ has orthogonal columns: $U^T U = I_r$
- $V \in \mathbb{R}^{d \times r}$ has orthogonal columns: $V^T V = I_r$
- $\Sigma \in \mathbb{R}^{r \times r}$ is diagonal and positive:
 - $\Sigma_{ii} > 0$ for $i = 1, \ldots, r$
 - $\Sigma_{ij} = 0$ for $i \neq j$
SVD for least squares

if $X = U\Sigma V^T = \sum_{i=1}^{r} \sigma_i u_i v_i^T$ is the thin SVD, then

$$X^T X = V \Sigma^T U^T U \Sigma V^T = V \Sigma^2 V^T$$
SVD for least squares

if \(X = U \Sigma V^T = \sum_{i=1}^{r} \sigma_i u_i v_i^T \) is the thin SVD, then

\[
X^T X = V \Sigma^T U^T U \Sigma V^T = V \Sigma^2 V^T
\]

normal equations are

\[
X^T X w = X^T y
\]
SVD for least squares

if \(X = U \Sigma V^T = \sum_{i=1}^{r} \sigma_i u_i v_i^T \) is the thin SVD, then

\[
X^T X = V \Sigma^T U^T U \Sigma V^T = V \Sigma^2 V^T
\]

normal equations are

\[
X^T X w = X^T y
\]

\[
V \Sigma^2 V^T w = V \Sigma U^T y
\]
SVD for least squares

if \(X = U\Sigma V^T = \sum_{i=1}^{r} \sigma_i u_i v_i^T \) is the thin SVD, then

\[
X^T X = V\Sigma^T U^T U\Sigma V^T = V\Sigma^2 V^T
\]

normal equations are

\[
X^T X w = X^T y \\
V\Sigma^2 V^T w = V\Sigma U^T y \\
\Sigma^{-2} V^T V\Sigma^2 V^T w = \Sigma^{-2} V^T V\Sigma U^T y
\]
SVD for least squares

if \(X = U \Sigma V^T = \sum_{i=1}^{r} \sigma_i u_i v_i^T \) is the thin SVD, then

\[
X^T X = V \Sigma^T U^T U \Sigma V^T = V \Sigma^2 V^T
\]

normal equations are

\[
X^T X w = X^T y \\
V \Sigma^2 V^T w = V \Sigma U^T y \\
\Sigma^{-2} V^T V \Sigma^2 V^T w = \Sigma^{-2} V^T V \Sigma U^T y \\
V^T w = \Sigma^{-1} U^T y
\]

can’t solve (\(V^T \) not invertible, solution not unique….)
if \(X = U\Sigma V^T = \sum_{i=1}^{r} \sigma_i u_i v_i^T \) is the thin SVD, then

\[
X^T X = V\Sigma^T U^T U\Sigma V^T = V\Sigma^2 V^T
\]

normal equations are

\[
X^T X w = X^T y \\
V\Sigma^2 V^T w = V\Sigma U^T y \\
\Sigma^{-2} V^T V\Sigma^2 V^T w = \Sigma^{-2} V^T V\Sigma U^T y \\
V^T w = \Sigma^{-1} U^T y
\]

can’t solve \((V^T \) not invertible, solution not unique… \) try

\[
w = V\Sigma^{-1} U^T y = \sum_{i=1}^{d} v_i \sigma_i^{-1} u_i^T y:
\]
SVD for least squares

if \(X = U \Sigma V^T = \sum_{i=1}^{r} \sigma_i u_i v_i^T \) is the thin SVD, then

\[
X^T X = V \Sigma^T U^T U \Sigma V^T = V \Sigma^2 V^T
\]

normal equations are

\[
X^T X w = X^T y \\
V \Sigma^2 V^T w = V \Sigma U^T y \\
\Sigma^{-2} V^T V \Sigma^2 V^T w = \Sigma^{-2} V^T V \Sigma U^T y \\
V^T w = \Sigma^{-1} U^T y
\]

can’t solve (\(V^T \) not invertible, solution not unique...) try

\[
w = V \Sigma^{-1} U^T y = \sum_{i=1}^{d} v_i \sigma_i^{-1} u_i^T y:
\]

\[
V^T w = V^T V \Sigma^{-1} U^T y = \Sigma^{-1} U^T y
\]

so we’ve found a solution (without assuming invertibility)!
Demo: SVD

https://github.com/ORIE4741/demos/SVD.ipynb
Review: methods for least squares

<table>
<thead>
<tr>
<th></th>
<th>GD</th>
<th>SGM</th>
<th>Gram GD</th>
<th>Parallel GD</th>
<th>QR or SVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0</td>
<td>0</td>
<td>(nd^2)</td>
<td>(nd^2/P)</td>
<td>(nd^2)</td>
</tr>
<tr>
<td>per iter</td>
<td>(nd)</td>
<td>(</td>
<td>S</td>
<td>d)</td>
<td>(d^2)</td>
</tr>
</tbody>
</table>

(numbers in flops, omitting constants)

- gradient descent (most flexible, \(O(nd)\) flops per iteration)
- QR factorization (most efficient exact solution method, \(O(nd^2)\) flops)
- SVD factorization (exact solution method, works for underdetermined problems, \(O(nd^2)\) flops)
Outline

The SVD

Non-uniqueness

Quadratic regularization
What if the Gram matrix is not invertible?

\[X^T X w = X^T y \]

Q: is the solution to the normal equations always unique?
What if the Gram matrix is not invertible?

\[X^T Xw = X^T y \]

Q: is the solution to the normal equations always unique?

A: no, if \(X^T X \) is not invertible, the solution is not unique!

if \(\text{Rank}(X^T X) < d \), then for some \(v \neq 0 \), \(X^T Xv = 0 \).

so if \(X^T Xw = X^T y \), then \(X^T X(w + \alpha v) = X^T y \) for any \(\alpha \in \mathbb{R} \).
What if the Gram matrix is not invertible?

\[X^T X w = X^T y \]

Q: is the solution to the normal equations always unique?
A: no, if \(X^T X \) is not invertible, the solution is not unique!
if \(\text{Rank}(X^T X) < d \), then for some \(v \neq 0, X^T X v = 0. \)
so if \(X^T X w = X^T y \), then \(X^T X (w + \alpha v) = X^T y \) for any \(\alpha \in \mathbb{R} \).

Q: is non-uniqueness a problem for a predictive model?
What if the Gram matrix is not invertible?

\[X^T Xw = X^T y \]

Q: is the solution to the normal equations always unique?
A: no, if \(X^T X \) is not invertible, the solution is not unique!
if \(\text{Rank}(X^T X) < d \), then for some \(v \neq 0 \), \(X^T Xv = 0 \).
so if \(X^T Xw = X^T y \), then \(X^T X(w + \alpha v) = X^T y \) for any \(\alpha \in \mathbb{R} \).

Q: is non-uniqueness a problem for a predictive model?
A: yes.
Example: non-uniqueness

- goal: predict cancer risk from mutations in genes
- X_{ij} is 1 if person i has a mutation in gene j
- genes 1 and 2 vary together: every person with a mutation in gene 1 has one in gene 2, too, and vice versa
- so the first and second column of X are identical: $X_1 = X_2$.
Example: non-uniqueness (II)

\[X_1: = X_2: \]

- Suppose our least squares solution is \(w \).
- \(w' = w + \alpha e_1 - \alpha e_2 \), for \(\alpha \in \mathbb{R} \), makes the same predictions:

\[
Xw' = X(w + \alpha e_1 - \alpha e_2) = Xw + \alpha X(e_1 - e_2) \\
= Xw + \alpha(X_1: - X_2:) = Xw
\]

- Now suppose a new person \(x \) arrives with a mutation in gene 1 (\(x_1 = 1 \)) but not in gene 2 (\(x_2 = 0 \)).
Example: non-uniqueness (II)

\[X_1: = X_2: \]

- Suppose our least squares solution is \(w \)
- \(w' = w + \alpha e_1 - \alpha e_2 \), for \(\alpha \in \mathbb{R} \), makes the same predictions:

\[
Xw' = X(w + \alpha e_1 - \alpha e_2) = Xw + \alpha X(e_1 - e_2) \\
= Xw + \alpha(X_1: - X_2:) = Xw
\]

- Now suppose a new person \(x \) arrives with a mutation in gene 1 \((x_1 = 1) \) but not in gene 2 \((x_2 = 0) \).

Q: do \(w \) and \(w' \) make the same prediction?
Example: non-uniqueness (II)

\[X_1: = X_2: \]

- suppose our least squares solution is \(w \)
- \(w' = w + \alpha e_1 - \alpha e_2, \) for \(\alpha \in \mathbb{R}, \) makes the same predictions:

\[
Xw' = X(w + \alpha e_1 - \alpha e_2) = Xw + \alpha X(e_1 - e_2) \\
= Xw + \alpha (X_1: - X_2:) = Xw
\]

- now suppose a new person \(x \) arrives with a mutation in gene 1 \((x_1 = 1) \) but not in gene 2 \((x_2 = 0) \).

Q: do \(w \) and \(w' \) make the same prediction?
A: no!
Example: non-uniqueness (II)

\[X_1 : = X_2 : \]

- Suppose our least squares solution is \(w \)
- \(w' = w + \alpha e_1 - \alpha e_2 \), for \(\alpha \in \mathbb{R} \), makes the same predictions:
 \[
 Xw' = X(w + \alpha e_1 - \alpha e_2) = Xw + \alpha X(e_1 - e_2) \\
 = Xw + \alpha(X_1 - X_2) = Xw
 \]
- Now suppose a new person \(x \) arrives with a mutation in gene 1 \((x_1 = 1) \) but not in gene 2 \((x_2 = 0) \).

Q: do \(w \) and \(w' \) make the same prediction?

A: no!

Q: what criterion might you pick to choose a good \(w \)?
Example: non-uniqueness (II)

\[X_1: = X_2: \]

- suppose our least squares solution is \(w \)
- \(w' = w + \alpha e_1 - \alpha e_2 \), for \(\alpha \in \mathbb{R} \), makes the same predictions:
 \[
 Xw' = X(w + \alpha e_1 - \alpha e_2) = Xw + \alpha X(e_1 - e_2) \\
 = Xw + \alpha(X_1: - X_2:) = Xw
 \]
- now suppose a new person \(x \) arrives with a mutation in gene 1 (\(x_1 = 1 \)) but not in gene 2 (\(x_2 = 0 \)).

Q: do \(w \) and \(w' \) make the same prediction?

A: no!

Q: what criterion might you pick to choose a good \(w \)?

A: pick a \(w \) that’s small; it will make less crazy predictions
Outline

The SVD

Non-uniqueness

Quadratic regularization
Quadratic regularization

add a small penalty for large coefficients

\[
\text{minimize } \| y - Xw \|^2 + \lambda \| w \|^2
\]

where \(\lambda > 0 \) is the regularization parameter
(also called “regularized least squares”, “ridge regression”, “Tikhonov regularization”, or “weight decay”)

why regularize?

▷ prevent overfitting
▷ stabilize estimate
▷ solution is always unique
Solving regularized regression

minimize \(\| y - Xw \|^2 + \lambda \| w \|^2 \)

- solve by setting the derivative to 0: optimal \(w^{\text{ridge}} \) satisfies

\[
0 = \nabla^{\text{ridge}} \left(\| y - Xw^{\text{ridge}} \|^2 + \lambda \| w^{\text{ridge}} \|^2 \right)
\]

\[
= -2X^Ty + 2X^TXw^{\text{ridge}} + 2\lambda w^{\text{ridge}} \]

\[
(X^TX + \lambda I)w^{\text{ridge}} = X^Ty
\]

- \(X^TX + \lambda I \) is always invertible, so

\[
w^{\text{ridge}} = (X^TX + \lambda I)^{-1}X^Ty
\]
Review: why is $X^TX + \lambda I$ invertible?

- let

$$X = U\Sigma V^T$$

be the full SVD

- then

$$X^TX + \lambda I = V\Sigma U^T U\Sigma V^T + \lambda I = V\Sigma^2 V^T + \lambda V V^T = V(\Sigma^2 + \lambda I)V$$
Review: why is $X^T X + \lambda I$ invertible?

▸ let

$$X = U \Sigma V^T$$

be the full SVD

▸ then

$$X^T X + \lambda I = V \Sigma U^T U \Sigma V^T + \lambda I = V \Sigma^2 V^T + \lambda V V^T = V (\Sigma^2 + \lambda I) V$$

▸ use the fact that for the full SVD, $V^{-1} = V^T$

▸ and $\Sigma^2 + \lambda I$ is diagonal with strictly positive entries, so invertible
Review: why is $X^T X + \lambda I$ invertible?

- Let
 \[X = U \Sigma V^T \]
 be the full SVD.

- Then
 \[X^T X + \lambda I = V \Sigma U^T U \Sigma V^T + \lambda I = V \Sigma^2 V^T + \lambda V V^T = V (\Sigma^2 + \lambda I) V^T. \]

- Use the fact that for the full SVD, $V^{-1} = V^T$.

- And $\Sigma^2 + \lambda I$ is diagonal with strictly positive entries, so invertible.

- Let’s compute the inverse:
 \[(X^T X + \lambda I)^{-1} = (V^T)^{-1} (\Sigma^2 + \lambda I)^{-1} V^{-1} = V (\Sigma^2 + \lambda I)^{-1} V^T. \]
Quadratic regularization and the SVD

suppose $X = U \Sigma V^T$ is the (full) SVD of X.

regularized solution is

$$w_{\text{ridge}} = (X^T X + \lambda I)^{-1} X^T y$$

$$= (V \Sigma U^T U \Sigma V^T + \lambda I)^{-1} V \Sigma U^T y$$

$$= (V \Sigma^2 V^T + V(\lambda I) V^T)^{-1} V \Sigma U^T y$$

$$= V(\Sigma^2 + \lambda I)^{-1} V^T V \Sigma U^T y$$

$$= V(\Sigma^2 + \lambda I)^{-1} \Sigma U^T y$$

$$= \sum_{i=1}^{d} v_i \frac{\sigma_i}{\sigma_i^2 + \lambda} u_i^T y$$

ridge regression shrinks $\sigma_i^{-1} = \frac{\sigma_i}{\sigma_i^2}$ to $\frac{\sigma_i}{\sigma_i^2 + \lambda}$