ORIE 4741: Learning with Big Messy Data

Underdetermined Least Squares and Quadratic Regularization

Professor Udell
Operations Research and Information Engineering
Cornell

September 10, 2019
Linear algebra review

Definition

The **null space** of a matrix $X : \mathbb{R}^{n \times d}$ is

$$\text{nullspace} \ X = \{ w \in \mathbb{R}^d : Xw = 0 \}$$

(The all-zero vector 0 is always in the null space.)

The following conditions are equivalent:

- $\text{nullspace}(X) = \{0\}$
- If $Xw = 0$, then $w = 0$
- The columns of X are linearly independent
- $\forall z \in \mathbb{R}^n$, if $Xw = z$ and $Xw' = z$, then $w = w'$
- X has a left inverse
Notation: standard basis vectors

- e_1 is the first standard basis vector $(1, 0, \ldots, 0)$
- e_2 is the second standard basis vector $(0, 1, 0, \ldots, 0)$
- $\{e_1, \ldots, e_d\}$ form the standard basis in \mathbb{R}^d
What if the Gram matrix is not invertible?

➤ Least squares objective:

\[
\text{minimize} \quad \|y - Xw\|^2
\]

➤ Normal equations:

\[
X^T Xw = X^T y
\]

➤ Solution if \(X^T X\) is invertible:

\[
w = (X^T X)^{-1} X^T y
\]

Q: if \(X^T X\) is not invertible, do the normal equations still define the solution?
What if the Gram matrix is not invertible?

► Least squares objective:

$$\text{minimize } \|y - Xw\|^2$$

► Normal equations:

$$X^T Xw = X^T y$$

► Solution if $X^T X$ is invertible:

$$w = (X^T X)^{-1} X^T y$$

Q: if $X^T X$ is not invertible, do the normal equations still define the solution?

A: yes! we derived them with no assumptions.
Outline

The SVD

Non-uniqueness

Quadratic regularization
The Singular Value Decomposition (SVD)

rewrite $X \in \mathbb{R}^{n \times d}$ in terms of easier matrices

$X = U \Sigma V^T$

$U \in \mathbb{R}^{n \times r}$ has orthogonal columns: $U^T U = I_r$

$V \in \mathbb{R}^{d \times r}$ has orthogonal columns: $V^T V = I_r$

$\Sigma \in \mathbb{R}^{r \times r}$ is diagonal and positive:

- $\Sigma_{ii} > 0$ for $i = 1, \ldots, r$
- $\Sigma_{ij} = 0$ for $i \neq j$

can compute SVD factorization of X in $O(nd^2)$ flops
The Singular Value Decomposition (SVD)

rewrite \(X \in \mathbb{R}^{n \times d} \) in terms of easier matrices

\(X = U \Sigma V^T \)

\(U \in \mathbb{R}^{n \times r} \) has orthogonal columns: \(U^T U = I_r \)

\(V \in \mathbb{R}^{d \times r} \) has orthogonal columns: \(V^T V = I_r \)

\(\Sigma \in \mathbb{R}^{r \times r} \) is diagonal and positive:

\(\Sigma_{ii} > 0 \) for \(i = 1, \ldots, r \)

\(\Sigma_{ij} = 0 \) for \(i \neq j \)

can compute SVD factorization of \(X \) in \(O(nd^2) \) flops

in julia (or matlab), use the SVD function

\(U, S, V = \text{svd}(X) \)
Full SVD

previous version sometimes called thin SVD. to make full SVD, augment Σ with zeros.

suppose $d \leq n$. full SVD is

- $X = U\Sigma V^T$
- $U \in \mathbb{R}^{n \times d}$ has orthogonal columns: $U^T U = I_d$
- $V \in \mathbb{R}^{d \times d}$ has orthogonal columns: $V^T V = I_d$
- $\Sigma \in \mathbb{R}^{d \times d}$ is diagonal and nonnegative:
 - $\Sigma_{ii} \geq 0$ for $i = 1, \ldots, d$
 - $\Sigma_{ij} = 0$ for $i \neq j$

V is square and orthogonal, so $V^T V = VV^T = I_d$
SVD for least squares

if $X = U\Sigma V^T = \sum_{i=1}^{r} \sigma_i u_i v_i^T$, then

$$X^TX = V\Sigma^T U^T U\Sigma V^T = V\Sigma^2 V^T$$

normal equations are

$$X^TXw = X^Ty$$

$$V\Sigma^2 V^Tw = V\Sigma U^Ty$$

$$\Sigma^{-2} V^T V\Sigma^2 V^Tw = \Sigma^{-2} V^T V\Sigma U^Ty$$

$$V^Tw = \Sigma^{-1} U^Ty$$

try $w = V\Sigma^{-1} U^Ty = \sum_{i=1}^{d} v_i \frac{1}{\sigma_i} u_i^T y$:

$$V^Tw = V^T V\Sigma^{-1} U^Ty = \Sigma^{-1} U^Ty$$

so we’ve found a solution (without assuming invertibility)!
Demo: SVD

https://github.com/ORIE4741/demos/SVD.ipynb
Review: three methods for least squares

- gradient descent (most flexible, $O(nd)$ flops per iteration)
- QR factorization (most efficient exact solution method, $O(nd^2)$ flops)
- SVD factorization (exact solution method for underdetermined problems, $O(nd^2)$ flops)
Outline

The SVD

Non-uniqueness

Quadratic regularization
What if the Gram matrix is not invertible?

\[X^T X w = X^T y \]
\[w = (X^T X)^{-1} X^T y \]

Q: is the solution to the normal equations always unique?
A: no, if \(X^T X \) is not invertible, the solution is not unique!

If \(\text{Rank} (X^T X) < d \), then for some \(v \neq 0 \), \(X^T X v = 0 \).

So if \(X^T X w = X^T y \), then \(X^T X (w + \alpha v) = X^T y \) for any \(\alpha \in \mathbb{R} \).

Q: is non-uniqueness a problem for a predictive model?
A: yes.
What if the Gram matrix is not invertible?

\[X^T X w = X^T y \]
\[w = (X^T X)^{-1} X^T y \]

Q: is the solution to the normal equations always unique?
What if the Gram matrix is not invertible?

\[X^T X w = X^T y \]
\[w = (X^T X)^{-1} X^T y \]

Q: is the solution to the normal equations always unique?

A: no, if \(X^T X \) is not invertible, the solution is not unique!

if \(\text{Rank}(X^T X) < d \), then for some \(v \neq 0 \), \(X^T X v = 0 \).

so if \(X^T X w = X^T y \), then \(X^T X (w + \alpha v) = X^T y \) for any \(\alpha \in \mathbb{R} \).
What if the Gram matrix is not invertible?

\[X^T Xw = X^T y \]
\[w = (X^T X)^{-1}X^T y \]

Q: is the solution to the normal equations always unique?
A: no, if \(X^T X \) is not invertible, the solution is not unique!

if \(\text{Rank}(X^T X) < d \), then for some \(v \neq 0 \), \(X^T Xv = 0 \).
so if \(X^T Xw = X^T y \), then \(X^T X(w + \alpha v) = X^T y \) for any \(\alpha \in \mathbb{R} \).

Q: is non-uniqueness a problem for a predictive model?
What if the Gram matrix is not invertible?

\[X^T X w = X^T y \]
\[w = (X^T X)^{-1} X^T y \]

Q: is the solution to the normal equations always unique?

A: no, if \(X^T X \) is not invertible, the solution is not unique!

if \(\text{Rank}(X^T X) < d \), then for some \(v \neq 0 \), \(X^T X v = 0 \).
so if \(X^T X w = X^T y \), then \(X^T X (w + \alpha v) = X^T y \) for any \(\alpha \in \mathbb{R} \).

Q: is non-uniqueness a problem for a predictive model?

A: yes.
Example: non-uniqueness

- goal: predict cancer risk from mutations in genes
- X_{ij} is 1 if person i has a mutation in gene j
- genes 1 and 2 vary together: every person with a mutation in gene 1 has one in gene 2, too, and vice versa
- so the first and second column of X are identical: $X_1 = X_2$.

13 / 19
Example: non-uniqueness (II)

\[X_{1:} = X_{2:} \]

- suppose our least squares solution is \(w \)
- \(w' = w + \alpha e_1 - \alpha e_2 \), for \(\alpha \in \mathbb{R} \), makes the same predictions:

\[
Xw' = X(w + \alpha e_1 - \alpha e_2) = Xw + \alpha X(e_1 - e_2) \\
= Xw + \alpha (X_{1:} - X_{2:}) = Xw
\]

- now suppose a new person \(x \) arrives with a mutation in gene 1 \((x_1 = 1) \) but not in gene 2 \((x_2 = 0) \).
Example: non-uniqueness (II)

\[X_{1:} = X_{2:} \]

- Suppose our least squares solution is \(w \).
- \(w' = w + \alpha e_1 - \alpha e_2 \), for \(\alpha \in \mathbb{R} \), makes the same predictions:
 \[
 Xw' = X(w + \alpha e_1 - \alpha e_2) = Xw + \alpha X(e_1 - e_2) \\
 = Xw + \alpha (X_{1:} - X_{2:}) = Xw
 \]

- Now suppose a new person \(x \) arrives with a mutation in gene 1 \((x_1 = 1) \) but not in gene 2 \((x_2 = 0) \).

Q: do \(w \) and \(w' \) make the same prediction?
Example: non-uniqueness (II)

\[X_1: = X_2: \]

- Suppose our least squares solution is \(w \)
- \(w' = w + \alpha e_1 - \alpha e_2 \), for \(\alpha \in \mathbb{R} \), makes the same predictions:
 \[
 Xw' = X(w + \alpha e_1 - \alpha e_2) = Xw + \alpha X(e_1 - e_2) \\
 = Xw + \alpha(X_1: - X_2:) = Xw
 \]
- Now suppose a new person \(x \) arrives with a mutation in gene 1 (\(x_1 = 1 \)) but not in gene 2 (\(x_2 = 0 \)).

Q: do \(w \) and \(w' \) make the same prediction?

A: no!
Example: non-uniqueness (II)

\[X_1: = X_2: \]

- Suppose our least squares solution is \(w \)
- \(w' = w + \alpha e_1 - \alpha e_2 \), for \(\alpha \in \mathbb{R} \), makes the same predictions:

\[
Xw' = X(w + \alpha e_1 - \alpha e_2) = Xw + \alpha X(e_1 - e_2) \\
= Xw + \alpha (X_1: - X_2:) = Xw
\]

- Now suppose a new person \(x \) arrives with a mutation in gene 1 (\(x_1 = 1 \)) but not in gene 2 (\(x_2 = 0 \)).

Q: do \(w \) and \(w' \) make the same prediction?

A: no!

Q: what criterion might you pick to choose a good \(w \)?
Example: non-uniqueness (II)

\[X_1: = X_2: \]

- suppose our least squares solution is \(w \)
- \(w' = w + \alpha e_1 - \alpha e_2 \), for \(\alpha \in \mathbb{R} \), makes the same predictions:
 \[
 Xw' = X(w + \alpha e_1 - \alpha e_2) = Xw + \alpha X(e_1 - e_2) \\
 = Xw + \alpha (X_1: - X_2:) = Xw
 \]
- now suppose a new person \(x \) arrives with a mutation in gene 1 \((x_1 = 1) \) but not in gene 2 \((x_2 = 0) \).

Q: do \(w \) and \(w' \) make the same prediction?

A: no!

Q: what criterion might you pick to choose a good \(w \)?

A: pick a \(w \) that’s small; it will make less crazy predictions
Outline

The SVD

Non-uniqueness

Quadratic regularization
Quadratic regularization

add a small penalty for large coefficients

\[
\text{minimize } \|y - Xw\|^2 + \lambda\|w\|^2
\]

where \(\lambda > 0 \) is the **regularization parameter** (also called “regularized least squares”, “ridge regression”, “Tikhonov regularization”, or “weight decay”)

why regularize?

- prevent overfitting
- stabilize estimate
- solution is always unique
Solving regularized regression

\[
\text{minimize} \quad \|y - Xw\|^2 + \lambda \|w\|^2
\]

- solve by setting the derivative to 0: optimal \(w^{\text{ridge}} \) satisfies

\[
0 = \nabla^{\text{ridge}} \left(\|y - Xw^{\text{ridge}}\|^2 + \lambda \|w^{\text{ridge}}\|^2 \right)
\]
\[
= -2X^Ty + 2X^TXw^{\text{ridge}} + 2\lambda w^{\text{ridge}}
\]
\[
(X^TX + \lambda I)w^{\text{ridge}} = X^Ty
\]

- \(X^TX + \lambda I \) is always invertible, so

\[
w^{\text{ridge}} = (X^TX + \lambda I)^{-1}X^Ty
\]
Review: why is $X^TX + \lambda I$ invertible?

- let

 \[X = U\Sigma V^T \]

 be the full SVD

- then

 \[X^TX + \lambda I = V\Sigma U^T U\Sigma V^T + \lambda I = V\Sigma^2 V^T + \lambda VV^T = V(\Sigma^2 + \lambda I)V \]

- use the fact that for the full SVD, $V^{-1} = V^T$

- and $\Sigma^2 + \lambda I$ is diagonal with strictly positive entries, so invertible

- hence $X^TX + \lambda I$ is invertible with inverse

 \[(X^TX + \lambda I)^{-1} = (V^T)^{-1}(\Sigma^2 + \lambda I)^{-1}V^{-1} = V(\Sigma^2 + \lambda I)^{-1}V^T. \]
Quadratic regularization and the SVD

suppose $X = U\Sigma V^T$ is the (full) SVD of X.

regularized solution is

$$w_{\text{ridge}} = (X^T X + \lambda I)^{-1} X^T y$$

$$= (V \Sigma U^T U \Sigma V^T + \lambda I)^{-1} V \Sigma U^T y$$

$$= (V \Sigma^2 V^T + V(\lambda I)V^T)^{-1} V \Sigma U^T y$$

$$= V(\Sigma^2 + \lambda I)^{-1} V^T V \Sigma U^T y$$

$$= V(\Sigma^2 + \lambda I)^{-1} \Sigma U^T y$$

$$= \sum_{i=1}^{d} v_i \frac{\sigma_i}{\sigma_i^2 + \lambda} u_i^T y$$

ridge regression shrinks $\sigma_i^{-1} = \frac{\sigma_i}{\sigma_i^2}$ to $\frac{\sigma_i}{\sigma_i^2 + \lambda}$