ORIE 4741: Learning with Big Messy Data

Regularization

Professor Udell
Operations Research and Information Engineering
Cornell

October 26, 2017
Regularized empirical risk minimization

choose model by solving

\[\text{minimize} \sum_{i=1}^{n} \ell(x_i, y_i; w) + r(w) \]

with variable \(w \in \mathbb{R}^d \)

- parameter vector \(w \in \mathbb{R}^d \)
- loss function \(\ell : \mathcal{X} \times \mathcal{Y} \times \mathbb{R}^d \rightarrow \mathbb{R} \)
- regularizer \(r : \mathbb{R}^d \rightarrow \mathbb{R} \)
Regularized empirical risk minimization

choose model by solving

\[
\text{minimize} \quad \sum_{i=1}^{n} \ell(x_i, y_i; w) + r(w)
\]

with variable \(w \in \mathbb{R}^d \)

- parameter vector \(w \in \mathbb{R}^d \)
- loss function \(\ell : \mathcal{X} \times \mathcal{Y} \times \mathbb{R}^d \rightarrow \mathbb{R} \)
- regularizer \(r : \mathbb{R}^d \rightarrow \mathbb{R} \)

why?

- want to minimize the risk \(\mathbb{E}_{(x,y) \sim P} \ell(x, y; w) \)
- approximate it by the empirical risk \(\sum_{i=1}^{n} \ell(x, y; w) \)
- add regularizer to help model generalize
Example: regularized least squares

find best model by solving

$$\text{minimize} \quad \sum_{i=1}^{n} \ell(x_i, y_i; w) + r(w)$$

with variable $w \in \mathbb{R}^d$

ridge regression, aka quadratically regularized least squares:

- loss function $\ell(x, y; w) = (y - w^T x)^2$
- regularizer $r(w) = \|w\|^2$
why regularize?

- reduce variance of the model
- impose prior structural knowledge
- improve interpretability
Regularization

why regularize?

▶ reduce variance of the model
▶ impose prior structural knowledge
▶ improve interpretability

why not regularize?

▶ Gauss-Markov theorem: least squares is the best linear unbiased estimator
▶ regularization adds bias
we might choose regularizer so models will be

- small
- sparse
- nonnegative
- smooth
- ...
Regularizers: a tour

we might choose regularizer so models will be

- small
- sparse
- nonnegative
- smooth
- ...

comparison with forward- and backward-stepwise selection: regularized models tend to have lower variance.
see Elements of Statistical Learning (Hastie, Tibshirani, Friedman) for more information.
Quadratic regularizer

quadratic regularizer

\[r(w) = \lambda \sum_{i=1}^{n} w_i^2 \]

ridge regression

minimize \[\sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda \sum_{i=1}^{n} w_i^2 \]

with variable \(w \in \mathbb{R}^d \)

solution \(w = (X^T X + \lambda I)^{-1} X^T y \)
Quadratic regularizer

- shrinks coefficients towards 0
- shrinks more in the direction of the smallest singular values of X
Is least squares scaling invariant?

Suppose Alice and Bob do the same experiment

- Alice measures distance in mm
- Bob measures distance in km

They each compute an estimator with least squares and compare their predictions.
Is least squares scaling invariant?

suppose Alice and Bob do the same experiment
 ▶ Alice measures distance in mm
 ▶ Bob measures distance in km

they each compute an estimator with least squares and compare their predictions

Q: Do they make the same predictions?
Is least squares scaling invariant?

suppose Alice and Bob do the same experiment

- Alice measures distance in mm
- Bob measures distance in km

they each compute an estimator with least squares and compare their predictions

Q: Do they make the same predictions?
A: Yes!
Least squares is scaling invariant

if $\beta \in \mathbb{R}$, $D \in \mathbb{R}^{d \times d}$ is diagonal, and Alice’s measurements (X', y') are related to Bob’s (X, y) by

$$y' = \beta y, \quad X' = XD,$$

then the resulting least squares models are

$$w = (X^T X)^{-1} X^T y, \quad w' = (X'^T X')^{-1} X'^T y'$$

and they make the same predictions:

$$X'w' = X'(X'^T X')^{-1} X'^T y' = XD(D^T X^T XD)^{-1} D^T X^T \beta y$$

$$= XDD^{-1}(X^T X)^{-1}(D^T)^{-1} D^T X^T \beta y$$

$$= \beta X(X^T X)^{-1} X^T y = \beta Xw$$
Least squares is scaling invariant

if $\beta \in \mathbb{R}$, $D \in \mathbb{R}^{d \times d}$ is diagonal, and Alice’s measurements (X', y') are related to Bob’s (X, y) by

$$y' = \beta y, \quad X' = XD,$$

then the resulting least squares models are

$$w = (X^TX)^{-1}X^Ty, \quad w' = (X'^TX')^{-1}X'^Ty'$$

and they make the same predictions:

$$X'w' = X'(X'^TX')^{-1}X'^Ty' = XD(D^TX^TXD)^{-1}D^TX^T\beta y$$
$$= XDD^{-1}(X^TX)^{-1}(D^T)^{-1}D^TX^T\beta y$$
$$= \beta X(X^TX)^{-1}X^Ty = \beta Xw$$

we say least squares is **invariant under scaling**
Is ridge regression scaling invariant?

suppose Alice and Bob do the same experiment

- Alice measures distance in mm
- Bob measures distance in km

they each compute an estimator with ridge regression and compare their predictions
Is ridge regression scaling invariant?

suppose Alice and Bob do the same experiment
 ▶ Alice measures distance in mm
 ▶ Bob measures distance in km

they each compute an estimator with ridge regression and compare their predictions

Q: Do they make the same predictions?
Is ridge regression scaling invariant?

suppose Alice and Bob do the same experiment

- Alice measures distance in mm
- Bob measures distance in km

they each compute an estimator with ridge regression and compare their predictions

Q: Do they make the same predictions?

A: No!
Ridge regression is not scaling invariant

if $\beta \in \mathbb{R}$, $D \in \mathbb{R}^{d \times d}$ is diagonal, and Alice’s measurements (X', y') are related to Bob’s (X, y) by

$$y' = \beta y, \quad X' = XD,$$

then the resulting ridge regression models are

$$w = (X^T X + \lambda I)^{-1} X^T y, \quad w' = (X'^T X' + \lambda I)^{-1} X'^T y'$$

and the predictions are

$$Xw = X(X^T X + \lambda I)^{-1} X^T y, \quad X'w' = X'(X'^T X' + \lambda I)^{-1} X'^T y'$$

ridge regression is not invariant under coordinate transformations
Scaling and offsets

To get the same answer no matter the units of measurement, standardize the data: for each column of X and of y

- demean: subtract column mean
- standardize: divide by column standard deviation

Let

$$
\mu_j = \frac{1}{n} \sum_{i=1}^{n} X_{ij}, \quad \mu = \frac{1}{n} \sum_{i=1}^{n} y_i
$$

$$
\sigma^2_j = \frac{1}{n} \sum_{i=1}^{n} (X_{ij} - \mu_j)^2, \quad \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mu)^2
$$

Solve

$$
\text{minimize} \sum_{i=1}^{n} \left(\frac{y_i - \mu}{\sigma} - \sum_{j=1}^{d} w_j \frac{X_{ij} - \mu_j}{\sigma_j} \right)^2 + \lambda \sum_{j=1}^{d} w_j^2
$$
Scale the regularizer, not the data

instead of

\[
\minimize \sum_{i=1}^{n} \left(\frac{y_i - \mu}{\sigma} - \sum_{j=1}^{d} w_j \frac{X_{ij} - \mu_i}{\sigma_i} \right)^2 + \sum_{j=1}^{d} w_j^2,
\]

▶ multiply through by \(\sigma^2 \)
▶ reparametrize \(w_j' = \frac{\sigma}{\sigma_j} w_j \)

to find the equivalent problem

\[
\minimize \sum_{i=1}^{n} (y_i - \sum_{j=1}^{d} w_j' X_{ij} + c(w'))^2 + \sum_{j=1}^{d} \sigma_j^2 (w_j')^2,
\]

where \(c(w') \) is some linear function of \(w' \)
finally absorb \(c(w') \) into the constant term in the model

\[
\minimize \| y - Xw' \|^2 + \lambda \sum_{j=1}^{d} \sigma_j^2 (w_j')^2,
\]
Scaling and offsets

A different solution to scaling and offsets: take the MAP view

- $r(w)$ is negative log prior on w
- With a Gaussian prior,

$$r(w) = \sum_{i=1}^{n} \sigma_i^2 w_i^2$$

Where $\frac{1}{\sigma_i}$ is the variance of the prior on the ith entry of w

- If you believe the noise in the ith features is large, penalize the ith entry more (σ_i big);
- If you believe the noise in the ith features is small, penalize the ith entry less (σ_i small);
- If you measure X or y in different units, your prior on w should change accordingly

Example: don’t penalize the offset w_n of the model ($\sigma_n \to \infty$)

$$r(w) = \sum_{i=1}^{n-1} w_i^2$$
\(\ell_1 \) regularization

\(\ell_1 \) regularizer

\[
r(w) = \lambda \sum_{i=1}^{n} |w_i|
\]

lasso problem

\[
\text{minimize} \quad \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda \sum_{i=1}^{n} |w_i|
\]

with variable \(w \in \mathbb{R}^d \)

- penalizes large \(w \) less than ridge regression
- no closed form solution
Recall ℓ_p norms

ℓ_p norm $\|w\|_p$ for $p \in (0, \infty)$ is defined as

$$\|w\|_p = \left(\sum_{i=1}^{d} |w|^p \right)^{1/p}$$

examples:

- ℓ_1 norm is $\|w\|_1 = \sum_{i=1}^{d} |w|$
- ℓ_2 norm is $\|w\|_2 = \sqrt{\sum_{i=1}^{d} w^2}$

for $p = 0$ or $p = \infty$, ℓ_p norm is defined by taking limit:

- ℓ_∞ norm is $\|w\|_\infty = \lim_{p \to \infty} (\sum_{i=1}^{d} |w|^p)^{1/p} = \max_i |w_i|$
- ℓ_0 norm is $\|w\|_0 = \lim_{p \to 0} (\sum_{i=1}^{d} |w|^p)^{1/p} = \text{card}(w)$, number of nonzeros in w

note: ℓ_0 is not actually a norm
(not absolutely homogeneous since $\|\alpha w\|_0 = \|w\|_0$ for $\alpha \neq 0$)
\(\ell_1 \) regularization

why use \(\ell_1 \)?

- best convex lower bound for \(\ell_0 \) on the \(\ell_\infty \) unit ball
- tends to produce sparse solution

eexample:

- suppose \(X_1 = y, X_2 = \alpha y \) for some \(\alpha > 0 \)
- fit lasso model and ridge regression model as \(\lambda \to 0 \)

\[
\begin{align*}
\lim_{\lambda \to 0} \arg\min_w \| y - Xw \|^2 + \lambda \| w \|^2_2 &= \text{ridge regression model} \\
\lim_{\lambda \to 0} \arg\min_w \| y - Xw \|^2 + \lambda \| w \|^1_1 &= \text{lasso model}
\end{align*}
\]

- as \(\lambda \to 0 \), solution has \(w_1 + \alpha w_2 = 1 \)
\(\ell_1 \) regularization

why use \(\ell_1 \)?

- best convex lower bound for \(\ell_0 \) on the \(\ell_\infty \) unit ball
- tends to produce sparse solution

d example:

- suppose \(X_1 = y, X_2 = \alpha y \) for some \(\alpha > 0 \)
- fit lasso model and ridge regression model as \(\lambda \to 0 \)

\[
\begin{align*}
\mathbf{w}^{\text{ridge}} &= \lim_{\lambda \to 0} \arg \min_{\mathbf{w}} \|y - X\mathbf{w}\|^2 + \lambda \|\mathbf{w}\|^2_2 \\
\mathbf{w}^{\text{lasso}} &= \lim_{\lambda \to 0} \arg \min_{\mathbf{w}} \|y - X\mathbf{w}\|^2 + \lambda \|\mathbf{w}\|_1 \\
\end{align*}
\]

- as \(\lambda \to 0 \), solution has \(w_1 + \alpha w_2 = 1 \)
- ridge regression minimizes \(w_1^2 + w_2^2 \implies w_1 = w_2 = \frac{1}{2} \)
- lasso minimizes \(|w_1| + |w_2| \implies w_1 = 1, w_2 = 0 \) is valid
why would you want sparsity?

- credit card application: requires less info from applicant
- medical diagnosis: easier to explain model to doctor
- genomic study: which genes to investigate?
Convex indicator

define **convex indicator** \(1 : \{\text{true, false}\} \rightarrow \mathbb{R} \cup \{\infty\} \)

\[
1(z) = \begin{cases}
0 & z \text{ is true} \\
\infty & z \text{ is false}
\end{cases}
\]

define **convex indicator** of set \(C \)

\[
1_C(x) = 1(x \in C) = \begin{cases}
0 & x \in C \\
\infty & \text{otherwise}
\end{cases}
\]
Convex indicator

define **convex indicator** $1 : \{ \text{true, false} \} \rightarrow \mathbb{R} \cup \{ \infty \}$

$$1(z) = \begin{cases} 0 & \text{if } z \text{ is true} \\ \infty & \text{if } z \text{ is false} \end{cases}$$

define **convex indicator** of set C

$$1_C(x) = 1(x \in C) = \begin{cases} 0 & x \in C \\ \infty & \text{otherwise} \end{cases}$$

don’t confuse this with the boolean indicator $\mathbb{1}(z)$
(no standard notation...)
Nonnegative regularization

nonnegative regularizer

\[r(w) = \sum_{i=1}^{n} 1(w_i \geq 0) \]

nonnegative least squares problem (NNLS)

\[
\text{minimize } \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda \sum_{i=1}^{n} 1(w_i \geq 0)
\]

with variable \(w \in \mathbb{R}^d \)

- value is \(\infty \) if \(w_i < 0 \)
- so solution is **always** nonnegative
- often, solution is also sparse
Nonnegative coefficients

why would you want nonnegativity?
Nonnegative coefficients

why would you want nonnegativity?

- electricity usage: how often is device turned on?
 - $n =$ times, $d =$ electric devices,
 - $y =$ usage, $X =$ which devices use power at which times
 - $w =$ devices used by household

- hyperspectral imaging: which species are present?
 - $n =$ frequencies, $d =$ possible materials,
 - $y =$ observed spectrum, $X =$ known spectrum of each material
 - $w =$ material composition of location

- logistics: which routes to run?
 - $n =$ locations, $d =$ possible routes,
 - $y =$ demand, $X =$ which routes visit which locations
 - $w =$ size of truck to send on each route
Nonnegative coefficients

why would you want nonnegativity?

- electricity usage: how often is device turned on?
 - \(n = \) times, \(d = \) electric devices,
 - \(y = \) usage, \(X = \) which devices use power at which times
 - \(w = \) devices used by household

- hyperspectral imaging: which species are present?
 - \(n = \) frequencies, \(d = \) possible materials,
 - \(y = \) observed spectrum, \(X = \) known spectrum of each material
 - \(w = \) material composition of location
Nonnegative coefficients

why would you want nonnegativity?

- electricity usage: how often is device turned on?
 - $n =$ times, $d =$ electric devices,
 - $y =$ usage, $X =$ which devices use power at which times
 - $w =$ devices used by household

- hyperspectral imaging: which species are present?
 - $n =$ frequencies, $d =$ possible materials,
 - $y =$ observed spectrum, $X =$ known spectrum of each material
 - $w =$ material composition of location

- logistics: which routes to run?
 - $n =$ locations, $d =$ possible routes,
 - $y =$ demand, $X =$ which routes visit which locations
 - $w =$ size of truck to send on each route
Demo: Regularized Regression

https://github.com/ORIE4741/demos/RegularizedRegression.ipynb
Smooth coefficients

smooth regularizer

\[r(w) = \sum_{i=1}^{d-1} (w_{i+1} - w_i)^2 = \|Dw\|^2 \]

where \(D \in \mathbb{R}^{(d-1) \times d} \) is the first order difference operator

\[D_{ij} = \begin{cases}
1 & j = i \\
-1 & j = i + 1 \\
0 & \text{else}
\end{cases} \]

smoothed least squares problem

\[\text{minimize} \quad \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda \|Dw\|^2 \]
Why smooth?

- allow model to change over space or time
 - e.g., different years in tax data
- interpolates between one model and separate models for different domains
 - e.g., counties in tax data
- can couple any pairs of model coefficients, not just \((i, i + 1)\)