ORIE 4741: Learning with Big Messy Data

Regularization

Professor Udell
Operations Research and Information Engineering
Cornell

September 13, 2021
Announcements

- section this week: loss functions
- hw4 due tonight 11:59pm
- project midterm report extended, now due Sunday Nov 8 11:59pm
- quiz Thursday 6:15pm - Friday 11:59pm; set a reminder!

(All times ET)
Regularized empirical risk minimization

choose model by solving

\[
\text{minimize } \sum_{i=1}^{n} \ell(x_i, y_i; w) + r(w)
\]

with variable \(w \in \mathbb{R}^d \)

- parameter vector \(w \in \mathbb{R}^d \)
- loss function \(\ell : \mathcal{X} \times \mathcal{Y} \times \mathbb{R}^d \rightarrow \mathbb{R} \)
- regularizer \(r : \mathbb{R}^d \rightarrow \mathbb{R} \)
Regularized empirical risk minimization

choose model by solving

\[
\text{minimize } \sum_{i=1}^{n} \ell(x_i, y_i; w) + r(w)
\]

with variable \(w \in \mathbb{R}^d \)

- parameter vector \(w \in \mathbb{R}^d \)
- loss function \(\ell : \mathcal{X} \times \mathcal{Y} \times \mathbb{R}^d \rightarrow \mathbb{R} \)
- regularizer \(r : \mathbb{R}^d \rightarrow \mathbb{R} \)

why?

- want to minimize the risk \(\mathbb{E}_{(x, y) \sim P} \ell(x, y; w) \)
- approximate it by the empirical risk \(\sum_{i=1}^{n} \ell(x, y; w) \)
- add regularizer to help model generalize
Example: regularized least squares

find best model by solving

\[
\text{minimize } \sum_{i=1}^{n} \ell(x_i, y_i; w) + r(w)
\]

with variable \(w \in \mathbb{R}^d \)

ridge regression, aka quadratically regularized least squares:

- loss function \(\ell(x, y; w) = (y - w^T x)^2 \)
- regularizer \(r(w) = \|w\|^2 \)
Solving regularized risk minimization

how should we fit these models?

- with a different software package for each model?
- with a different algorithm for each model?
- with a general purpose optimization solver?
Demo: proximal gradient

https://github.com/ORIE4741/demos/blob/master/proxgrad-starter-code.ipynb

for more info: proxgrad lecture slides
https://people.orie.cornell.edu/mru8/orie4741/lectures/proxgrad.pdf
Outline

Maximum likelihood estimation

Regularizers

Quadratic regularization

l_1 regularization

Nonnegative regularizer
Probabilistic setup

- Suppose you know a function $p : \mathbb{R} \to [0, 1]$ so that
 \[P(y_i = y \mid x_i, w) \sim p(y; x_i, w) \]
- For example, if $y_i = w^T x_i + \varepsilon_i$, $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$, then
 \[P(y_i = y \mid x_i, w) \sim \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \]
- Likelihood of data given parameter w is
 \[L(D; w) = \prod_{i=1}^{n} p(y; x_i, w) \sim \prod_{i=1}^{n} P(y_i = y \mid x_i, w) \]
- For example, for linear model with Gaussian error,
 \[L(D; w) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \]
Maximum Likelihood Estimation (MLE)

MLE: choose w to maximize $L(\mathcal{D}; w)$

- **likelihood**
 $$L(\mathcal{D}; w) = \prod_{i=1}^{n} p(y_i; x_i, w)$$

- **negative log likelihood**
 $$\ell(\mathcal{D}; w) = -\log L(\mathcal{D}; w)$$

- **maximize $L(\mathcal{D}; w) \iff$ minimize $\ell(\mathcal{D}; w)$**
Example: Maximum Likelihood Estimation (MLE)

for linear model with Gaussian error,

\[\ell(D; w) = - \log \left(\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \right) \]

\[= \sum_{i=1}^{n} - \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \right) \]

\[= \sum_{i=1}^{n} \left(\frac{1}{2} \log(2\pi\sigma^2) - \log \left(\exp \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \right) \right) \]

\[= \frac{n}{2} \log(2\pi\sigma^2) + \sum_{i=1}^{n} \frac{1}{2\sigma^2} (y_i - w^T x_i)^2 \]

\[= \frac{n}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - w^T x_i)^2 \]
Example: Maximum Likelihood Estimation (MLE)

for linear model with Gaussian error,

$$
\ell(D; w) = - \log \left(\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(- \frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \right)
$$

$$
= \sum_{i=1}^{n} - \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(- \frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \right)
$$

$$
= \sum_{i=1}^{n} \left(\frac{1}{2} \log(2\pi\sigma^2) - \log \left(\exp \left(- \frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \right) \right)
$$

$$
= \frac{n}{2} \log(2\pi\sigma^2) + \sum_{i=1}^{n} \frac{1}{2\sigma^2} (y_i - w^T x_i)^2
$$

$$
= \frac{n}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - w^T x_i)^2
$$

so maximize $L(D; w) \iff$ minimize $\sum_{i=1}^{n} (y_i - w^T x_i)^2$

(for fixed σ)
what if I have beliefs about what w should be before I begin?

- w should be small
- w should be sparse
- w should be nonnegative

idea: impose prior on w to specify

$$\mathbb{P}(w)$$

before seeing any data
Maximum-a-posteriori estimation

after I see data, compute posterior probability

\[P(D; w) = P(D \mid w) P(w) \]

maximum a posteriori (MAP estimation):
choose \(w \) to maximize posterior probability
Maximum-a-posteriori estimation

after I see data, compute posterior probability

\[P(D; w) = P(D | w) P(w) \]

maximum a posteriori (MAP estimation):
choose \(w \) to maximize posterior probability

n.b. this is not what a true Bayesian would do
(see, e.g., Bishop, Pattern Recognition and Machine Learning)
Ridge regression: interpretation as MAP estimator

- prior probability of model $w \sim \mathcal{N}(0, I_d)$
- noise $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$, $i = 1, \ldots, n$
- response $y_i = w^T x_i + \epsilon_i$, $i = 1, \ldots, n$

$$
\mathbb{P}(\mathcal{D}; w) = \mathbb{P}(\mathcal{D} | w) \mathbb{P}(w)
\sim \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma^2} \exp \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \prod_{i=1}^{d} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{w_i^2}{2} \right)
= (2\pi\sigma^2)^{-\frac{n}{2}} \prod_{i=1}^{n} \left(\exp \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \right) (2\pi)^{-\frac{d}{2}} \prod_{i=1}^{d} \left(\exp \left(-\frac{w_i^2}{2} \right) \right)
$$

$$
\ell(\mathcal{D}; w) = -\log (\mathbb{P}(\mathcal{D}; w))
= \frac{n}{2} \log(2\pi\sigma^2) + \frac{d}{2} \log(2\pi) + \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \frac{1}{2} \sum_{i=1}^{d} w_i^2
$$

aha! and we have ridge regression with $\lambda = \sigma^2$.
Ridge regression: interpretation as MAP estimator

- prior probability of model \(w \sim \mathcal{N}(0, I_d) \)
- noise \(\epsilon_i \sim \mathcal{N}(0, \sigma^2) \), \(i = 1, \ldots, n \)
- response \(y_i = w^T x_i + \epsilon_i, \ i = 1, \ldots, n \)

\[
\mathbb{P}(D; w) = \mathbb{P}(D \mid w) \mathbb{P}(w) \\
\approx \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \prod_{i=1}^{d} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{w_i^2}{2} \right) \\
= (2\pi\sigma^2)^{-\frac{n}{2}} \prod_{i=1}^{n} \left(\exp \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \right) (2\pi)^{-\frac{d}{2}} \prod_{i=1}^{d} \left(\exp \left(-\frac{w_i^2}{2} \right) \right) \\
\ell(D; w) = -\log(\mathbb{P}(D; w)) \\
= \frac{n}{2} \log(2\pi\sigma^2) + \frac{d}{2} \log(2\pi) + \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \frac{1}{2} \sum_{i=1}^{d} w_i^2
\]

...aha! and we have **ridge regression** with \(\lambda = \sigma^2 \)
Outline

Maximum likelihood estimation

Regularizers

Quadratic regularization

l_1 regularization

Nonnegative regularizer
Regularization

why regularize?

▶ reduce variance of the model
▶ impose prior structural knowledge
▶ improve interpretability
Regularization

why regularize?

▶ reduce variance of the model
▶ impose prior structural knowledge
▶ improve interpretability

why not regularize?

▶ *Gauss-Markov theorem*: least squares is the best linear unbiased estimator
▶ regularization increases bias
Regularizers: a tour

we might choose regularizer so models will be

- small
- sparse
- nonnegative
- smooth
- ...
we might choose regularizer so models will be

- small
- sparse
- nonnegative
- smooth
- ...

compare with forward- and backward-stepwise selection (e.g., AIC, BIC):
regularized models tend to have **lower variance**.

(see Elements of Statistical Learning (Hastie, Tibshirani, Friedman) for more information.)
Outline

Maximum likelihood estimation

Regularizers

Quadratic regularization

\(\ell_1 \) regularization

Nonnegative regularizer
Quadratic regularizer

quadratic regularizer

\[r(w) = \lambda \sum_{i=1}^{n} w_i^2 \]

ridge regression

minimize \[\sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda \sum_{i=1}^{n} w_i^2 \]

with variable \(w \in \mathbb{R}^d \)

solution \(w = (X^T X + \lambda I)^{-1} X^T y \)
Quadratic regularizer

- shrinks coefficients towards 0
- shrinks more in the direction of the smallest singular values of X
Is least squares scaling invariant?

suppose Alice and Bob do the same experiment

- Alice measures distance in mm
- Bob measures distance in km

they each compute an estimator with least squares and compare their predictions
Is least squares scaling invariant?

suppose Alice and Bob do the same experiment

- Alice measures distance in mm
- Bob measures distance in km

they each compute an estimator with least squares and compare their predictions

Q: Do they make the same predictions?

- A. yes
- B. no
Is least squares scaling invariant?

suppose Alice and Bob do the same experiment

- Alice measures distance in mm
- Bob measures distance in km

they each compute an estimator with least squares and compare their predictions

Q: Do they make the same predictions?

A. yes
B. no

A: Yes!
Least squares is scaling invariant

if $\beta \in \mathbb{R}$, $D \in \mathbb{R}^{d \times d}$ is diagonal, and Alice’s measurements (X', y') are related to Bob’s (X, y) by

$$ y' = \beta y, \quad X' = XD, $$

then the resulting least squares models are

$$ w = (X^T X)^{-1} X^T y, \quad w' = (X'^T X')^{-1} X'^T y' $$

and they make the same predictions:

$$ X'w' = X'(X'^T X')^{-1} X'^T y' = XD(D^T X^T XD)^{-1} D^T X^T \beta y $$

$$ = XDD^{-1}(X^T X)^{-1}(D^T)^{-1} D^T X^T \beta y $$

$$ = \beta X(X^T X)^{-1} X^T y = \beta Xw $$

we say least squares is invariant under scaling
Least squares is scaling invariant

if $\beta \in \mathbb{R}$, $D \in \mathbb{R}^{d \times d}$ is diagonal, and Alice’s measurements (X', y') are related to Bob’s (X, y) by

$$y' = \beta y, \quad X' = XD,$$

then the resulting least squares models are

$$w = (X^T X)^{-1} X^T y, \quad w' = (X'^T X')^{-1} X'^T y'$$

and they make the same predictions:

$$X'w' = X'(X'^T X')^{-1} X'^T y' = XD(D^T X^T XD)^{-1} D^T X^T \beta y$$

$$= XDD^{-1}(X^T X)^{-1}(D^T)^{-1} D^T X^T \beta y$$

$$= \beta X(X^T X)^{-1} X^T y = \beta Xw$$

we say least squares is \textbf{invariant under scaling}
Is ridge regression scaling invariant?

suppose Alice and Bob do the same experiment

- Alice measures distance in mm
- Bob measures distance in km

they each compute an estimator with ridge regression and compare their predictions

Q: Do they make the same predictions?

A. yes

B. no

A: No!
Is ridge regression scaling invariant?

suppose Alice and Bob do the same experiment

► Alice measures distance in mm
► Bob measures distance in km

they each compute an estimator with ridge regression and compare their predictions

Q: Do they make the same predictions?

A. yes
B. no
Is ridge regression scaling invariant?

suppose Alice and Bob do the same experiment

- Alice measures distance in mm
- Bob measures distance in km

they each compute an estimator with ridge regression and compare their predictions

Q: Do they make the same predictions?

A. yes
B. no

A: No!
Ridge regression is not scaling invariant

if $\beta \in \mathbb{R}$, $D \in \mathbb{R}^{d \times d}$ is diagonal, and Alice’s measurements (X', y') are related to Bob’s (X, y) by

$$y' = \beta y, \quad X' = XD,$$

then the resulting ridge regression models are

$$w = (X^T X + \lambda I)^{-1} X^T y, \quad w' = (X'^T X' + \lambda I)^{-1} X'^T y'$$

and the predictions are

$$Xw = X(X^T X + \lambda I)^{-1} X^T y, \quad X'w' = X'(X'^T X' + \lambda I)^{-1} X'^T y'$$

ridge regression is not invariant under coordinate transformations
Scaling and offsets

to get the **same** answer no matter the units of measurement, **standardize** the data: for each column of X and of y

- demean: subtract column mean
- standardize: divide by column standard deviation

let

\[
\mu_j = \frac{1}{n} \sum_{i=1}^{n} X_{ij}, \quad \mu = \frac{1}{n} \sum_{i=1}^{n} y_i
\]

\[
\sigma_j^2 = \frac{1}{n} \sum_{i=1}^{n} (X_{ij} - \mu_j)^2, \quad \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mu)^2
\]

solve

\[
\text{minimize} \quad \sum_{i=1}^{n} \left(\frac{y_i - \mu}{\sigma} - \sum_{j=1}^{d} w_j \frac{X_{ij} - \mu_j}{\sigma_j} \right)^2 + \lambda \sum_{j=1}^{d} w_j^2
\]
Scale the regularizer, not the data

instead of

\[
\text{minimize} \quad \sum_{i=1}^{n} \left(\frac{y_i - \mu}{\sigma} - \sum_{j=1}^{d} w_j \frac{X_{ij} - \mu_i}{\sigma_i} \right)^2 + \sum_{j=1}^{d} w_j^2,
\]

- multiply through by \(\sigma^2 \)
- reparametrize \(w_j' = \frac{\sigma}{\sigma_j} w_j \)

to find the equivalent problem

\[
\text{minimize} \quad \sum_{i=1}^{n} (y_i - \sum_{j=1}^{d} w_j' X_{ij} + c(w'))^2 + \sum_{j=1}^{d} \sigma_j^2 (w_j')^2,
\]

where \(c(w') \) is some linear function of \(w' \)

finally absorb \(c(w') \) into the constant term in the model

\[
\text{minimize} \quad \|y - Xw'\|^2 + \lambda \sum_{j=1}^{d} \sigma_j^2 (w_j')^2,
\]
Scaling and offsets

A different solution to scaling and offsets: take the MAP view

- $r(w)$ is negative log prior on w
- With a Gaussian prior,

$$r(w) = \sum_{i=1}^{n} \sigma_i^2 w_i^2$$

where $\frac{1}{\sigma_i}$ is the variance of the prior on the ith entry of w

- If you believe the noise in the ith features is large, penalize the ith entry more (σ_i big);
- If you believe the noise in the ith features is small, penalize the ith entry less (σ_i small);
- If you measure X or y in different units, your prior on w should change accordingly
Scaling and offsets

A different solution to scaling and offsets: take the MAP view.

- $r(w)$ is negative log prior on w.
- With a Gaussian prior,

$$r(w) = \sum_{i=1}^{n} \sigma_i^2 w_i^2$$

Where $\frac{1}{\sigma_i}$ is the variance of the prior on the ith entry of w.

- If you believe the noise in the ith features is large, penalize the ith entry more (σ_i big);
- If you believe the noise in the ith features is small, penalize the ith entry less (σ_i small);
- If you measure X or y in different units, your prior on w should change accordingly.

Example: Don’t penalize the offset w_n of the model ($\sigma_n \to \infty$)

$$r(w) = \sum_{i=1}^{n-1} w_i^2$$
Outline

Maximum likelihood estimation

Regularizers

Quadratic regularization

l_1 regularization

Nonnegative regularizer
\(\ell_1 \text{ regularization} \)

\(\ell_1 \) regularizer

\[
r(w) = \lambda \sum_{i=1}^{n} |w_i|
\]

lasso problem

\[
\text{minimize} \quad \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda \sum_{i=1}^{n} |w_i|
\]

with variable \(w \in \mathbb{R}^d \)

▶ penalizes large \(w \) less than ridge regression

▶ no closed form solution
Recall ℓ_p norms

ℓ_p norm $\|w\|_p$ for $p \in (0, \infty)$ is defined as

$$\|w\|_p = \left(\sum_{i=1}^{d} |w|^p \right)^{1/p}$$

examples:

- ℓ_1 norm is $\|w\|_1 = \sum_{i=1}^{d} |w|$
- ℓ_2 norm is $\|w\|_2 = \sqrt{\sum_{i=1}^{d} w^2}$

for $p = 0$ or $p = \infty$, ℓ_p norm is defined by taking limit:

- ℓ_∞ norm is $\|w\|_\infty = \lim_{p \to \infty} \left(\sum_{i=1}^{d} |w|^p \right)^{1/p} = \max_i |w_i|$
- ℓ_0 norm is $\|w\|_0 = \lim_{p \to 0} \left(\sum_{i=1}^{d} |w|^p \right)^{1/p} = \text{card}(w)$, number of nonzeros in w

note: ℓ_0 is not actually a norm
(not absolutely homogeneous since $\|\alpha w\|_0 = \|w\|_0$ for $\alpha \neq 0$)
ℓ_1 regularization

why use ℓ_1?

- best convex lower bound for ℓ_0 on the ℓ_∞ unit ball
- tends to produce sparse solution

example:

- suppose $X_1 = y$, $X_2 = \alpha y$ for some $0 < \alpha < 1$
- fit lasso model and ridge regression model as $\lambda \to 0$

$$w^{\text{ridge}} = \lim_{\lambda \to 0} \arg\min_w \|y - Xw\|^2 + \lambda \|w\|_2^2$$

$$w^{\text{lasso}} = \lim_{\lambda \to 0} \arg\min_w \|y - Xw\|^2 + \lambda \|w\|_1$$

- as $\lambda \to 0$, solution solves least squares $\implies w_1 + \alpha w_2 = 1$
\(\ell_1 \) regularization

why use \(\ell_1 \)?

- best convex lower bound for \(\ell_0 \) on the \(\ell_\infty \) unit ball
- tends to produce sparse solution

example:

- suppose \(X_1 = y, \ X_2 = \alpha y \) for some \(0 < \alpha < 1 \)
- fit lasso model and ridge regression model as \(\lambda \to 0 \)

\[
\begin{align*}
\hat{w}^{\text{ridge}} &= \lim_{\lambda \to 0} \arg\min_w \| y - Xw \|^2 + \lambda \| w \|^2_2 \\
\hat{w}^{\text{lasso}} &= \lim_{\lambda \to 0} \arg\min_w \| y - Xw \|^2 + \lambda \| w \|^1
\end{align*}
\]

- as \(\lambda \to 0 \), solution solves least squares \(\implies w_1 + \alpha w_2 = 1 \)
- ridge regression minimizes \(w_1^2 + w_2^2 \) \(\implies w_1 = w_2 = \frac{1}{1+\alpha} \)
- lasso minimizes \(|w_1| + |w_2| \) \(\implies w_1 = 1, \ w_2 = 0 \)
Sparsity

why would you want sparsity?

- credit card application: requires less info from applicant
- medical diagnosis: easier to explain model to doctor
- genomic study: which genes to investigate?
Outline

Maximum likelihood estimation

Regularizers

Quadratic regularization

ℓ_1 regularization

Nonnegative regularizer
Convex indicator

define **convex indicator** $1 : \{\text{true, false}\} \to \mathbb{R} \cup \{\infty\}$

$$1(z) = \begin{cases} 0 & \text{if } z \text{ is true} \\ \infty & \text{if } z \text{ is false} \end{cases}$$

define **convex indicator** of set C

$$1_C(x) = 1(x \in C) = \begin{cases} 0 & x \in C \\ \infty & \text{otherwise} \end{cases}$$
Convex indicator

define **convex indicator** $1 : \{\text{true, false}\} \rightarrow \mathbb{R} \cup \{\infty\}$

$$1(z) = \begin{cases}
0 & z \text{ is true} \\
\infty & z \text{ is false}
\end{cases}$$

define **convex indicator** of set C

$$1_C(x) = 1(x \in C) = \begin{cases}
0 & x \in C \\
\infty & \text{otherwise}
\end{cases}$$

don’t confuse this with the boolean indicator $\mathbb{1}(z)$
(no standard notation...)
Nonnegative regularization

nonnegative regularizer

\[r(w) = \sum_{i=1}^{n} 1(w_i \geq 0) \]

nonnegative least squares problem (NNLS)

\[\text{minimize} \quad \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \sum_{i=1}^{n} 1(w_i \geq 0) \]

with variable \(w \in \mathbb{R}^d \)

- value is \(\infty \) if \(w_i < 0 \)
- so solution is always nonnegative
- often, solution is also sparse
Nonnegative coefficients

why would you want nonnegativity?
Nonnegative coefficients

why would you want nonnegativity?

- electricity usage: how often is device turned on?
 - $n =$ times, $d =$ electric devices,
 - $y =$ usage, $X =$ which devices use power at which times
 - $w =$ devices used by household

- hyperspectral imaging: which species are present?
 - $n =$ frequencies, $d =$ possible materials,
 - $y =$ observed spectrum, $X =$ known spectrum of each material
 - $w =$ material composition of location

- logistics: which routes to run?
 - $n =$ locations, $d =$ possible routes,
 - $y =$ demand, $X =$ which routes visit which locations
 - $w =$ size of truck to send on each route
Nonnegative coefficients

why would you want nonnegativity?

▶ electricity usage: how often is device turned on?
 ▶ n = times, d = electric devices,
 ▶ y = usage, X = which devices use power at which times
 ▶ w = devices used by household

▶ hyperspectral imaging: which species are present?
 ▶ n = frequencies, d = possible materials,
 ▶ y = observed spectrum, X = known spectrum of each material
 ▶ w = material composition of location
Nonnegative coefficients

why would you want nonnegativity?

▶ electricity usage: how often is device turned on?
 ▶ n = times, d = electric devices,
 ▶ y = usage, X = which devices use power at which times
 ▶ w = devices used by household

▶ hyperspectral imaging: which species are present?
 ▶ n = frequencies, d = possible materials,
 ▶ y = observed spectrum, X = known spectrum of each material
 ▶ w = material composition of location

▶ logistics: which routes to run?
 ▶ n = locations, d = possible routes,
 ▶ y = demand, X = which routes visit which locations
 ▶ w = size of truck to send on each route
Demo: Regularized Regression

https://github.com/ORIE4741/demos/
RegularizedRegression.ipynb
Smooth coefficients

smooth regularizer

\[
 r(w) = \sum_{i=1}^{d-1} (w_{i+1} - w_i)^2 = \|Dw\|^2
\]

where \(D \in \mathbb{R}^{(d-1) \times d} \) is the first order difference operator

\[
 D_{ij} = \begin{cases}
 1 & j = i \\
 -1 & j = i + 1 \\
 0 & \text{else}
 \end{cases}
\]

smoothed least squares problem

\[
 \text{minimize} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda \|Dw\|^2
\]
Why smooth?

- allow model to change over space or time
 - e.g., different years in tax data
- interpolates between one model and separate models for different domains
 - e.g., counties in tax data
- can couple any pairs of model coefficients, not just \((i, i + 1)\)