Announcements

- Be a TA for CS/ORIE 1380: Data Science for All!
 - syllabus: https://classes.cornell.edu/browse/roster/SP18/class/ORIE/1380
 - apply:
 https://cis-student-hiring.coecis.cornell.edu/
Regularized empirical risk minimization

choose model by solving

\[
\minimize \sum_{i=1}^{n} \ell(x_i, y_i; w) + r(w)
\]

with variable \(w \in \mathbb{R}^d \)

- parameter vector \(w \in \mathbb{R}^d \)
- loss function \(\ell : \mathcal{X} \times \mathcal{Y} \times \mathbb{R}^d \to \mathbb{R} \)
- regularizer \(r : \mathbb{R}^d \to \mathbb{R} \)
choose model by solving

\[
\text{minimize } \sum_{i=1}^{n} \ell(x_i, y_i; w) + r(w)
\]

with variable \(w \in \mathbb{R}^d \)

- parameter vector \(w \in \mathbb{R}^d \)
- loss function \(\ell : \mathcal{X} \times \mathcal{Y} \times \mathbb{R}^d \rightarrow \mathbb{R} \)
- regularizer \(r : \mathbb{R}^d \rightarrow \mathbb{R} \)

why?

- want to minimize the risk \(\mathbb{E}_{(x,y) \sim P} \ell(x, y; w) \)
- approximate it by the empirical risk \(\sum_{i=1}^{n} \ell(x, y; w) \)
- add regularizer to help model generalize
Solving regularized risk minimization

how should we fit these models?

▶ with a different software package for each model?
▶ with a different algorithm for each model?
▶ with a general purpose optimization solver?

desiderata

▶ fast
▶ flexible

we’ll use the **proximal gradient** method
Proximal operator

define the **proximal operator** of the function $r : \mathbb{R}^d \rightarrow \mathbb{R}$

$$\text{prox}_r(z) = \arg\min_w (r(w) + \frac{1}{2} \|w - z\|^2_2)$$
define the **proximal operator** of the function \(r : \mathbb{R}^d \rightarrow \mathbb{R} \)

\[
\text{prox}_r(z) = \arg\min_w (r(w) + \frac{1}{2}||w - z||^2_2)
\]

\(\text{prox}_r : \mathbb{R}^d \rightarrow \mathbb{R}^d \)
define the **proximal operator** of the function \(r : \mathbb{R}^d \rightarrow \mathbb{R} \)

\[
\text{prox}_r(z) = \arg\min_w (r(w) + \frac{1}{2}\|w - z\|^2_2)
\]

- **prox_{r} : \mathbb{R}^d \rightarrow \mathbb{R}^d**
- **generalized projection:** if \(1_C \) is the indicator of set \(C \),

\[
\text{prox}_{1_C}(w) = \Pi_C(w)
\]
define the **proximal operator** of the function $r : \mathbb{R}^d \rightarrow \mathbb{R}$

$$
\text{prox}_r(z) = \arg\min_w (r(w) + \frac{1}{2}\|w - z\|^2_2)
$$

- **prox$_r : \mathbb{R}^d \rightarrow \mathbb{R}^d$**
- **generalized projection**: if 1_C is the indicator of set C,

$$
\text{prox}_{1_C}(w) = \Pi_C(w)
$$

- **implicit gradient step**: if $w = \text{prox}_r(z)$ and r is smooth,

$$
\nabla r(w) + w - z = 0
$$

$$
w = z - \nabla r(w)
$$
Proximal operator

define the **proximal operator** of the function \(r : \mathbb{R}^d \to \mathbb{R} \)

\[
\text{prox}_r(z) = \arg\min_w (r(w) + \frac{1}{2}\|w - z\|^2_2)
\]

- \(\text{prox}_r : \mathbb{R}^d \to \mathbb{R}^d \)
- **generalized projection**: if \(1_C \) is the indicator of set \(C \),

\[
\text{prox}_{1_C}(w) = \Pi_C(w)
\]

- **implicit gradient step**: if \(w = \text{prox}_r(z) \) and \(r \) is smooth,

\[
\nabla r(w) + w - z = 0 \\
w = z - \nabla r(w)
\]

- **simple to evaluate**: closed form solutions for many functions

more info: [Parikh Boyd 2013]
Maps from functions to functions

no consistent notation for map from functions to functions.

for a function $f : \mathbb{R}^d \rightarrow \mathbb{R}$,

- **prox** maps f to a new function $\text{prox}_f : \mathbb{R}^d \rightarrow \mathbb{R}^d$
 - $\text{prox}_f(x)$ evaluates this function at the point x

- ∇ maps f to a new function $\nabla f : \mathbb{R}^d \rightarrow \mathbb{R}^d$
 - $\nabla f(x)$ evaluates this function at the point x

- $\frac{\partial}{\partial x}$ maps f to a new function $\frac{\partial f}{\partial x} : \mathbb{R}^d \rightarrow \mathbb{R}^d$
 - $\frac{\partial f}{\partial x}(x)|_{x=\bar{x}}$ evaluates this function at the point \bar{x}
 - this one has the most confusing notation of all...
Maps from functions to functions

in a nice programming language, you can write something like

\[\text{prox}(f)(x) \]

or

\[\text{prox}(f,x) \]
Let’s evaluate some proximal operators!

define the **proximal operator** of the function $r : \mathbb{R}^d \rightarrow \mathbb{R}$

$$\text{prox}_r(z) = \arg\min_w (r(w) + \frac{1}{2}\|w - z\|^2_2)$$

- $r(w) = 0$ (identity)
- $r(w) = \sum_{i=1}^d r_i(w_i)$ (separable)
- $r(w) = \|w\|^2_2$ (shrinkage)
- $r(w) = \|w\|_1$ (soft-thresholding)
- $r(w) = 1(w \geq 0)$ (projection)
- $r(w) = \sum_{i=1}^{d-1} (w_{i+1} - w_i)^2$ (smoothing)
Proximal gradient method

want to solve

\[
\text{minimize} \quad \ell(w) + r(w)
\]

- \(\ell : \mathbb{R}^d \rightarrow \mathbb{R} \) smooth
- \(r : \mathbb{R}^d \rightarrow \mathbb{R} \) with a fast prox operator

proximal gradient method.

- pick step size sequence \(\{\alpha_t\}_{t=1}^{\infty} \) and \(w^0 \in \mathbb{R}^d \)
- repeat
 - \(w^{t+1} = \text{prox}_{\alpha_t r}(w^t - \alpha_t \nabla \ell(w^t)) \)
Proximal gradient method

want to solve

\[
\text{minimize } \ell(w) + r(w)
\]

- \(\ell : \mathbb{R}^d \rightarrow \mathbb{R} \) smooth
- \(r : \mathbb{R}^d \rightarrow \mathbb{R} \) with a fast prox operator

proximal gradient method.

- pick step size sequence \(\{\alpha_t\}_{t=1}^{\infty} \) and \(w^0 \in \mathbb{R}^d \)
- repeat
 - \(w^{t+1} = \text{prox}_{\alpha_t r}(w^t - \alpha_t \nabla \ell(w^t)) \)

complexity:

- \(\mathcal{O}(nd) \) to evaluate gradient of loss function
- \(\mathcal{O}(d) \) to prox and to update
Example: NNLS

want to solve

$$\text{minimize} \quad \frac{1}{2} \| y - Xw \|^2 + 1(w \geq 0)$$

recall

- $\nabla \left(\frac{1}{2} \| y - Xw \|^2 \right) = -X^T(y - Xw)$
- $\text{prox}_{1(\cdot \geq 0)}(w) = \max(0, w)$

proximal gradient method.

- pick step size sequence $\{\alpha_t\}_{t=0}^{\infty}$ and $w^0 \in \mathbb{R}^d$
- for $t = 0, 1, \ldots$
 - $w^{t+1} = \max(0, w^t + \alpha_t X^T(y - Xw^t))$
Example: NNLS

want to solve

$$\text{minimize } \frac{1}{2} \|y - Xw\|^2 + 1(w \geq 0)$$

recall

- $\nabla \left(\frac{1}{2} \|y - Xw\|^2 \right) = -X^T(y - Xw)$
- $\text{prox}_{1(\cdot \geq 0)}(w) = \max(0, w)$

proximal gradient method.

- pick step size sequence $\{\alpha_t\}_{t=0}^\infty$ and $w^0 \in \mathbb{R}^d$
- for $t = 0, 1, \ldots$
 - $w^{t+1} = \max(0, w^t + \alpha_t X^T(y - Xw^t))$

note: this is not the same as $\max(0, (X^TX)^{-1}X^Ty)$
Example: NNLS

proximal gradient method for NNLS.

- pick step size sequence \(\{ \alpha_t \}_{t=0}^{\infty} \) and \(w^0 \in \mathbb{R}^d \)
- for \(t = 0, 1, \ldots \)
 - compute \(g^t = X^T(y - Xw^t) \) (\(\mathcal{O}(nd) \) flops)
 - \(w^{t+1} = \max(0, w^t + \alpha_t g^t) \) (\(\mathcal{O}(d) \) flops)

\(\mathcal{O}(nd) \) flops per iteration
Example: NNLS

option: do work up front to reduce per-iteration complexity

proximal gradient method for NNLS.

- pick step size sequence \(\{\alpha_t\}_{t=0}^{\infty} \) and \(w^0 \in \mathbb{R}^d \)
- form \(b = X^T y \) (\(\mathcal{O}(dn) \) flops), \(G = X^T X \) (\(\mathcal{O}(nd^2) \) flops)
- for \(t = 0, 1, \ldots \)
 - \(w^{t+1} = \max(0, w^t + \alpha_t(b - Gw^t)) \) (\(\mathcal{O}(d^2) \) flops)

\(\mathcal{O}(nd^2) \) flops to begin, \(\mathcal{O}(d^2) \) flops per iteration
Example: NNLS

Option: do work up front to reduce per-iteration complexity

Proximal gradient method for NNLS.

- pick step size sequence $\{\alpha_t\}_{t=0}^{\infty}$ and $w^0 \in \mathbb{R}^d$
- form $b = X^T y$ ($\mathcal{O}(dn)$ flops), $G = X^T X$ ($\mathcal{O}(nd^2)$ flops)
- for $t = 0, 1, \ldots$
 - $w^{t+1} = \max(0, w^t + \alpha_t (b - Gw^t))$ ($\mathcal{O}(d^2)$ flops)

$\mathcal{O}(nd^2)$ flops to begin, $\mathcal{O}(d^2)$ flops per iteration

Note: can compute b and G in parallel...
Example: Lasso

want to solve

\[
\text{minimize} \quad \frac{1}{2} \|y - Xw\|^2 + \lambda \|w\|_1
\]

recall

- \(\nabla \left(\frac{1}{2} \|y - Xw\|^2 \right) = -X^T(y - Xw) \)
- \(\text{prox}_{\mu \|\cdot\|_1}(w) = s_\mu(w) \) where

\[
(s_\mu(w))_i = \begin{cases}
 w_i - \mu & w_i \geq \mu \\
 0 & |w_i| \leq \mu \\
 w_i + \mu & w_i \leq -\mu
\end{cases}
\]

proximal gradient method.

- pick step size sequence \(\{\alpha_t\}_{t=0}^\infty \) and \(w^0 \in \mathbb{R}^d \)
- form \(b = X^Ty \) (\(O(dn) \) flops), \(G = X^TX \) (\(O(nd^2) \) flops)
- for \(t = 0, 1, \ldots \)
 - \(w^{t+1} = s_{\alpha_t \lambda}(w^t + \alpha_t(b - Gw^t)) \) (\(O(d^2) \) flops)
Example: Lasso

want to solve

$$\text{minimize} \quad \frac{1}{2}\|y - Xw\|^2 + \lambda \|w\|_1$$

recall

1. $\nabla \left(\frac{1}{2}\|y - Xw\|^2 \right) = -X^T(y - Xw)$
2. $\text{prox}_{\mu \| \cdot \|_1}(w) = s_\mu(w)$ where

$$
\begin{cases}
 w_i - \mu & \text{if } w_i \geq \mu \\
 0 & \text{if } |w_i| \leq \mu \\
 w_i + \mu & \text{if } w_i \leq -\mu
\end{cases}
$$

proximal gradient method.

1. pick step size sequence $\{\alpha_t\}_{t=0}^{\infty}$ and $w^0 \in \mathbb{R}^d$
2. form $b = X^Ty$ ($\mathcal{O}(dn)$ flops), $G = X^TX$ ($\mathcal{O}(nd^2)$ flops)
3. for $t = 0, 1, \ldots$
 1. $w^{t+1} = s_{\alpha_t \lambda}(w^t + \alpha_t(b - Gw^t))$ ($\mathcal{O}(d^2)$ flops)

notice: the hard part ($\mathcal{O}(d^2)$) is computing the gradient...!
two questions to ask:

- will the iteration ever stop?
- what kind of point will it stop at?

if the iteration stops, we say it has converged
Convergence: what kind of point will it stop at?

» let’s suppose r is differentiable\(^1\)

» if we find w so that

\[
w = \text{prox}_{\alpha t} r (w - \alpha t \nabla \ell (w))
\]

then

\[
w = \arg\min_{w'} (\alpha t r (w') + \frac{1}{2} \| w' - (w - \alpha t \nabla \ell (w)) \|^2)
\]

\[
0 = \nabla \alpha t r (w) + w - w + \alpha t \nabla \ell (w)
\]

\[
= \nabla (r(w) + \ell (w))
\]

» so the gradient of the objective is 0

» if ℓ and r are convex, that means w minimizes $\ell + r$

\(^1\)take Convex Optimization for the proof for non-differentiable r
Convergence: will it stop?

definitions:

\[p^* = \inf_w \ell(w) + r(w) \]

assumptions:

- loss function is continuously differentiable with L-Lipschitz derivative:
 \[
 \ell(w') \leq \ell(w) + \langle \nabla \ell(w), w' - w \rangle + \frac{L}{2} \| w' - w \|^2
 \]

- for simplicity, consider constant step size $\alpha_t = \alpha$
Proximal point method converges

prove it for $\ell = 0$ first (aka the proximal point method)

for any $t = 0, 1, \ldots,$

$$w^{t+1} = \arg\min_w \alpha r(w) + \frac{1}{2}\|w - w^t\|^2$$

so in particular,

$$\alpha r(w^{t+1}) + \frac{1}{2}\|w^{t+1} - w^t\|^2 \leq \alpha r(w^t) + \frac{1}{2}\|w^t - w^t\|^2$$

$$\frac{1}{2\alpha}\|w^{t+1} - w^t\|^2 \leq r(w^t) - r(w^{t+1})$$

now add up these inequalities for $t = 0, 1, \ldots, T$:

$$\frac{1}{2\alpha} \sum_{t=0}^{T} \|w^{t+1} - w^t\|^2 \leq \sum_{t=0}^{T} (r(w^t) - r(w^{t+1}))$$

$$\leq r(w^0) - p^*$$

it converges!
Proximal gradient method converges (I)

now prove it for $\ell \neq 0$. for any $t = 0, 1, \ldots,$

$$w^{t+1} = \arg\min_w \alpha r(w) + \frac{1}{2} \|w - (w^t - \alpha \nabla \ell(w^t))\|^2$$

so in particular,

$$r(w^{t+1}) + \frac{1}{2\alpha} \|w^{t+1} - (w^t - \alpha \nabla \ell(w^t))\|^2$$

$$\leq r(w^t) + \frac{1}{2\alpha} \|w^t - (w^t - \alpha \nabla \ell(w^t))\|^2$$

$$r(w^{t+1}) + \frac{1}{2\alpha} \|w^{t+1} - w^t\|^2 + \frac{\alpha}{2} \|\nabla \ell(w^t)\|^2 + \langle \nabla \ell(w^t), w^{t+1} - w^t \rangle$$

$$\leq r(w^t) + \frac{\alpha}{2} \|\nabla \ell(w^t)\|^2$$

$$r(w^{t+1}) + \frac{1}{2\alpha} \|w^{t+1} - w^t\|^2 + \langle \nabla \ell(w^t), w^{t+1} - w^t \rangle$$

$$\leq r(w^t)$$
Proximal gradient method converges (II)

now use $\ell(w') \leq \ell(w) + \langle \nabla \ell(w), w' - w \rangle \frac{L}{2} \| w' - w \|^2$
with $w' = w^{t+1}$, $w = w^t$

$\ell(w^{t+1}) + r(w^{t+1}) + \frac{1}{2\alpha} \| w^{t+1} - w^t \|^2 + \langle \nabla \ell(w^t), w^{t+1} - w^t \rangle$

$\leq \ell(w^t) + r(w^t) + \langle \nabla \ell(w^t), w^{t+1} - w^t \rangle + \frac{L}{2} \| w^{t+1} - w^t \|^2$

$\ell(w^{t+1}) + r(w^{t+1}) + \frac{1}{2\alpha} \| w^{t+1} - w^t \|^2$

$\leq \ell(w^t) + r(w^t) + \frac{L}{2} \| w^{t+1} - w^t \|^2$
now add up these inequalities for \(t = 0, 1, \ldots, T \):

\[
\frac{1}{2} \left(\frac{1}{\alpha} - L \right) \sum_{t=0}^{T} \| w^{t+1} - w^{t} \|^2 \leq \sum_{t=0}^{T} \ell(w^t) + r(w^t) - \ell(w^{t+1}) + r(w^{t+1})
\]

\[
\leq \ell(w^0) + r(w^0) - p^*
\]

if

\[
\frac{1}{\alpha} - L \geq 0
\]

\[
\implies \alpha \leq \frac{1}{L}
\]

it converges!
Lipschitz?

loss function is differentiable and L-Lipschitz:

$$
\ell(w') \leq \ell(w) + \langle \nabla \ell(w), w' - w \rangle + \frac{L}{2} \|w' - w\|^2
$$

what is L?
loss function is differentiable and L-Lipshitz:

$$
\ell(w') \leq \ell(w) + \langle \nabla \ell(w), w' - w \rangle + \frac{L}{2} \| w' - w \|^2
$$

what is L?

$$
\ell(w') = \| Xw' - y \|^2 \\
= \| X(w' - w) + Xw - y \|^2 \\
= \| Xw - y \|^2 + 2(Xw - y)^T X(w' - w) + \| X(w' - w) \|^2 \\
= \ell(w) + \langle \nabla \ell(w), w' - w \rangle + \| X(w' - w) \|^2 \\
\leq \ell(w) + \langle \nabla \ell(w), w' - w \rangle + \| X \|^2 \| (w' - w) \|^2
$$

so $L = 2\| X \|^2$, where $\| X \|$ is the maximum singular value of X
Speeding it up

- recall: computing the gradient is slow
- idea: approximate the gradient!

A **stochastic gradient** $\tilde{\nabla}\ell(w)$ is a random variable with

$$\mathbb{E}\tilde{\nabla}\ell(w) = \nabla\ell(w)$$
Stochastic gradient: examples

stochastic gradient obeys

$$\mathbb{E} \nabla \ell(w) = \nabla \ell(w)$$

examples: for $$\ell(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2$$,
Stochastic gradient: examples

stochastic gradient obeys

$$\mathbb{E} \tilde{\nabla} \ell(w) = \nabla \ell(w)$$

examples: for $$\ell(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2$$,

- single stochastic gradient. pick a random example $$i$$.
 set

$$\tilde{\nabla} \ell(w) = n \nabla (y_i - w^T x_i)^2 = -2n(y_i - w^T x_i) x_i$$
Stochastic gradient: examples

stochastic gradient obeys

\[\mathbb{E} \tilde{\nabla} \ell(w) = \nabla \ell(w) \]

examples: for \(\ell(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 \),

- **single stochastic gradient.** pick a random example \(i \). set
 \[\tilde{\nabla} \ell(w) = n \nabla (y_i - w^T x_i)^2 = -2n(y_i - w^T x_i)x_i \]

- **minibatch stochastic gradient.** pick a random set of examples \(S \). set
 \[\tilde{\nabla} \ell(w) = \frac{n}{|S|} \nabla \left(\sum_{i \in S} (y_i - w^T x_i)^2 \right) \]
 \[= \frac{n}{|S|} \nabla \left(-2 \sum_{i \in S} (y_i - w^T x_i)x_i \right) \]

(here \(|S|\) is the number of elements in the set \(S \).)
Stochastic proximal gradient

stochastic proximal gradient method.

- pick step size sequence \(\{\alpha_t\}_{t=1}^{\infty} \) and \(w^0 \in \mathbb{R}^d \)
- repeat
 - pick \(i \in \{1, \ldots, n\} \) uniformly at random
 - \(w^{t+1} = \text{prox}_{\alpha_t r}(w^t + \alpha_t 2n(y_i - w^T x_i)x_i) \) (\(\mathcal{O}(d) \) flops)
Stochastic proximal gradient

stochastic proximal gradient method.

- pick step size sequence \(\{\alpha_t\}_{t=1}^{\infty} \) and \(w^0 \in \mathbb{R}^d \)
- repeat
 - pick \(i \in \{1, \ldots, n\} \) uniformly at random
 - \(w^{t+1} = \text{prox}_{\alpha_t r}(w^t + \alpha_t 2n(y_i - w^T x_i)x_i) \) (\(O(d) \) flops)

per iteration complexity: \(O(d)! \)
Extensions

next lecture, we’ll see **loss functions** that are not differentiable can still use proximal gradient method!

need to define the **subgradient**
define the **subgradient** of a convex function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ at x

$$\partial f(x) = \{g : \forall y, f(y) \geq f(x) + \langle g, y - x \rangle\}$$

- the subgradient ∂f maps points to sets!
- follows the chain rule: if $f = h \circ g$, $h : \mathbb{R} \rightarrow \mathbb{R}$, and $g : \mathbb{R}^d \rightarrow \mathbb{R}$ is differentiable,

$$\partial f(x) = \partial h(g(x)) \nabla g(x)$$
Subgradient

for $f : \mathbb{R} \to \mathbb{R}$ and convex, here’s a simpler equivalent condition:

- if f is differentiable at x, $\partial f(x) = \{\nabla f(x)\}$
- if f is not differentiable at x, it will still be differentiable just to the left and the right of x^2, so
 - let $g^+ = \lim_{\epsilon \to 0} \nabla f(x + \epsilon)$
 - let $g^- = \lim_{\epsilon \to 0} \nabla f(x - \epsilon)$
 - $\partial f(x)$ is any convex combination (i.e., any weighted average) of those gradients:

$$\partial f(x) = \{\alpha g^+ + (1 - \alpha)g^- : \alpha \in [0, 1]\}$$

\(^2\) (because a convex function is differentiable almost everywhere)
proximal subgradient method.

- pick a step size sequence \(\{\alpha_t\}_{t=1}^{\infty} \) and \(w^0 \in \mathbb{R}^d \)
- repeat
 - pick any \(g \in \partial f(w^t) \)
 - \(w^{t+1} = \text{prox}_{\alpha_t r}(w^t - \alpha_t \nabla \ell(w^t)) \)
Convergence for stochastic proximal (sub)gradient

pick your poison:
- stochastic (sub)gradient, fixed step size $\alpha_t = \alpha$:
 - iterates converge quickly, then wander within a small ball
- stochastic (sub)gradient, decreasing step size $\alpha_t = 1/t$:
 - iterates converge slowly to solution
- minibatch stochastic (sub)gradient with increasing minibatch size, fixed step size $\alpha_t = \alpha$:
 - iterates converge quickly to solution
 - later iterations take (much) longer

conditions:
- ℓ is convex, subdifferentiable, Lipshitz continuous, and
- r is convex and Lipshitz continuous where it is $< \infty$

or
- all iterates are bounded
Q: Why can’t we just use gradient descent to solve all our problems?

A: Because some regularizers and loss functions aren’t differentiable!

Q: Why can’t we just use subgradient descent to solve all our problems?

A: Because some of our regularizers don’t even have subgradients defined everywhere. (e.g., $1 + x$)
Proximal subgradient method

Q: Why can’t we just use gradient descent to solve all our problems?
A: Because some regularizers and loss functions aren’t differentiable!
Proximal subgradient method

Q: Why can’t we just use gradient descent to solve all our problems?
A: Because some regularizers and loss functions aren’t differentiable!

Q: Why can’t we just use subgradient descent to solve all our problems?
Q: Why can’t we just use gradient descent to solve all our problems?
A: Because some regularizers and loss functions aren’t differentiable!
Q: Why can’t we just use subgradient descent to solve all our problems?
A: Because some of our regularizers don’t even have subgradients defined everywhere. (e.g., 1_+)
References