ORIE 4741: Learning with Big Messy Data

The Perceptron

Professor Udell
Operations Research and Information Engineering
Cornell

September 10, 2020
Announcements

▶ If you’re taking lecture async: remember to submit participation post after each class. (Note: answer polling questions on the async form; no need to have iClicker REEF installed if you’ll always be async.)
▶ Sections start Wednesday. They are optional, attend any one you prefer. Section this week is a Julia tutorial.
▶ Resources from section posted at https://github.com/ORIE4741/section
▶ Office hours: Zoom links and times are posted on course website.
▶ Gradescope is open for submission of hw0, due Thursday 9-9-19 9:30am.
▶ First quiz this week! It should occupy about 20 minutes; you’ll have up to half an hour to complete it. Start it anytime between 6:15pm Thursday and 9pm Friday.
▶ Start finding project teams...

(All times ET)
Poll

HW0 took me

A. <1 hr
B. 1–5 hrs
C. 5–10 hrs
D. more
A simple classifier: the perceptron

classification problem: e.g., credit card approval

- $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{-1, +1\}$
- data $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$, $x_i \in \mathcal{X}$, $y_i \in \mathcal{Y}$ for each $i = 1, \ldots, n$
- for picture: $\mathcal{X} = \mathbb{R}^2$, $\mathcal{Y} = \{\text{red, blue}\}$
Linear classification

- $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{-1, +1\}$
- data $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$, $x_i \in \mathcal{X}$, $y_i \in \mathcal{Y}$ for each $i = 1, \ldots, n$

make decision using a linear function

- approve credit if

$$\sum_{j=1}^{d} w_j x_j = w^T x \geq b;$$

deny otherwise.

- parametrized by weights $w \in \mathbb{R}^d$
- decision boundary is the hyperplane $\{x : w^T x = b\}$
simplify notation: remove the offset b using a feature transformation
Feature transformation

simplify notation: remove the offset \(b \) using a feature transformation

example: approve credit if

\[
 w^\top x \geq b
\]

eg, \(\mathcal{X} = \mathbb{R} \), \(w = 1 \), \(b = 2 \) (picture)
Feature transformation

simplify notation: remove the offset b using a feature transformation

example: approve credit if

$$w^T x \geq b$$

eg, $\mathcal{X} = \mathbb{R}$, $w = 1$, $b = 2$ (picture)

Q: Can we represent this decision rule by another with no offset?
simplify notation: remove the offset b using a feature transformation

example: approve credit if

$$w^T x \geq b$$

eg, $\mathcal{X} = \mathbb{R}$, $w = 1$, $b = 2$ (picture)

Q: Can we represent this decision rule by another with no offset?
A: Projective transformation (picture)
Feature transformation

simplify notation: remove the offset b using a feature transformation

example: approve credit if

$$w^\top x \geq b$$

eg, $\mathcal{X} = \mathbb{R}$, $w = 1$, $b = 2$ (picture)

Q: Can we represent this decision rule by another with no offset?

A: Projective transformation (picture)

- let $\tilde{x} = (1, x)$, $\tilde{w} = (-b, w)$
Feature transformation

simplify notation: remove the offset \(b \) using a **feature transformation**

example: approve credit if

\[
wx^\top \geq b
\]

eg, \(\mathcal{X} = \mathbf{R} \), \(w = 1 \), \(b = 2 \) (picture)

Q: Can we represent this decision rule by another with no offset?

A: Projective transformation (picture)

- let \(\tilde{x} = (1, x) \), \(\tilde{w} = (-b, w) \)
- then \(\tilde{w}^\top \tilde{x} = w^\top x - b \)

now rename \(\tilde{x} \) and \(\tilde{w} \) as \(x \) and \(w \)
Geometry of classification

- $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{-1, +1\}$
- data $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$, $x_i \in \mathcal{X}$, $y_i \in \mathcal{Y}$ for each $i = 1, \ldots, n$
- approve credit if $w^\top x \geq 0$; deny otherwise.
Geometry of classification

- $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{-1, +1\}$
- data $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$, $x_i \in \mathcal{X}$, $y_i \in \mathcal{Y}$ for each $i = 1, \ldots, n$
- approve credit if $w^\top x \geq 0$; deny otherwise.

If $\|w\| = 1$, inner product $w^\top x$ measures distance of x to classification boundary

- define θ to be angle between x and w
- geometry: distance from x to boundary is $\|x\| \cos(\theta)$
- definition of inner product:

$$w^\top x = \|w\| \|x\| \cos(\theta) = \|x\| \cos(\theta)$$

Since $\|w\| = 1$
Linear classification

- $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{-1, +1\}$
- data $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$, $x_i \in \mathcal{X}$, $y_i \in \mathcal{Y}$ for each $i = 1, \ldots, n$

make decision using a linear function $h : \mathcal{X} \rightarrow \mathcal{Y}$

$$h(x) = \text{sign}(w^\top x)$$

Definition

The sign function is defined as

$$\text{sign}(z) = \begin{cases}
1 & z > 0 \\
0 & z = 0 \\
-1 & z < 0
\end{cases}$$
Linear classification

- $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{-1, +1\}$
- data $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$

make decision using a linear function $h : \mathcal{X} \rightarrow \mathcal{Y}$

$$h(x) = \text{sign}(w^\top x)$$

Definition

The **hypothesis set** \mathcal{H} is the set of candidate functions might we choose to map \mathcal{X} to \mathcal{Y}.

Here, $\mathcal{H} = \{ h : \mathcal{X} \rightarrow \mathcal{Y} \mid h(x) = \text{sign}(w^\top x) \}$
Poll

Is this function $h : \mathbb{R}^2 \rightarrow \mathbb{R}$ a linear classifier?

$$h(x) = \text{sign}(x_1 - 5x_2 - 17) = \begin{cases}
1 & x_1 - 5x_2 > 17 \\
0 & x_1 - 5x_2 = 17 \\
-1 & x_1 - 5x_2 < 17
\end{cases}$$

A. Yes
B. No
Is this function $h : \mathbb{R}^2 \rightarrow \mathbb{R}$ a linear classifier?

$$h(x) = \text{sign}(x_1^2 - 2x_2 + 27)$$

A. Yes

B. No
The perceptron learning rule

how to learn \(h(x) = \text{sign}(w^T x) \) so that \(h(x_i) \approx y_i \)?

Frank Rosenblatt’s Mark I Perceptron machine was the first implementation of the perceptron algorithm. The machine was connected to a camera that used 20\(\times \)20 cadmium sulfide photocells to produce a 400-pixel image. The main visible feature is a patchboard that allowed experimentation with different combinations of input features. To the right of that are arrays of potentiometers that implemented the adaptive weights.
The perceptron learning rule

how to learn $h(x) = \text{sign}(w^\top x - b)$ so that $h(x_i) \approx y_i$?

perceptron algorithm [Rosenblatt, 1962]:

- initialize $w = 0$
- while there is a misclassified example (x, y)
 - $w \leftarrow w + yx$
Perceptron: iteration 1
Perceptron: iteration 3
Perceptron: iteration 5
Perceptron: iteration 7
Perceptron: iteration 13
Margin of classifier

correct classification means

\[
\begin{cases}
 w^T x > 0, & y = 1 \\
 w^T x < 0, & y = -1
\end{cases}
\]
Margin of classifier

correct classification means

\[
\begin{cases}
 w^\top x > 0, & y = 1 \\
 w^\top x < 0, & y = -1 \\
\end{cases}
\implies yw^\top x > 0
\]
Margin of classifier

correct classification means

\[
\begin{align*}
&w^\top x > 0, \quad y = 1 \\
&w^\top x < 0, \quad y = -1 \quad \implies \quad yw^\top x > 0
\end{align*}
\]

Definition

The **margin** of classifier \(w \) on example \((x, y)\) is

\[
yw^\top x
\]

- positive margin means \((x, y)\) is correctly classified by \(w \)
- negative margin means \((x, y)\) is not correctly classified by \(w \)
Margin of classifier

Correct classification means

\[
\begin{cases}
 w^T x > 0, & y = 1 \\
 w^T x < 0, & y = -1
\end{cases}
\implies yw^T x > 0
\]

Definition

The **margin** of classifier \(w \) on example \((x, y)\) is

\[yw^T x\]

- Positive margin means \((x, y)\) is correctly classified by \(w \)
- Negative margin means \((x, y)\) is not correctly classified by \(w \)
- **Bigger** margin means \((x, y)\) is **more** correctly classified
The perceptron learning rule

notation: use superscripts $w^{(t)}$ for iterates

perceptron algorithm [Rosenblatt, 1962]:

- initialize $w^{(0)} = 0$
- for $t = 1, \ldots$
 - if there is a misclassified example $(x^{(t)}, y^{(t)})$
 - $w^{(t+1)} = w^{(t)} + y^{(t)}x^{(t)}$
 - else quit
The perceptron learning rule

perceptron algorithm: for misclassified \((x^{(t)}, y^{(t)})\),

\[w^{(t+1)} = w^{(t)} + y^{(t)}x^{(t)} \]
The perceptron learning rule

perceptron algorithm: for misclassified \((x^{(t)}, y^{(t)})\),

\[
 w^{(t+1)} = w^{(t)} + y^{(t)}x^{(t)}
\]

Q: why is this a good idea?
The perceptron learning rule

perceptron algorithm: for misclassified \((x^{(t)}, y^{(t)})\),

\[
w^{(t+1)} = w^{(t)} + y^{(t)}x^{(t)}
\]

Q: why is this a good idea?

A: classification is “better” for \(w^{(t+1)}\) than for \(w^{(t)}\): we will show: margin on \((x^{(t)}, y^{(t)})\) is bigger for \(w^{(t+1)}\). recall

Definition

The **margin** of classifier \(w\) on example \((x, y)\) is

\[
yw^\top x
\]

- positive margin means \((x, y)\) is correctly classified by \(w\)
- negative margin means \((x, y)\) is not correctly classified by \(w\)
The perceptron learning rule

perceptron algorithm: for misclassified \((x^{(t)}, y^{(t)})\),

\[w^{(t+1)} = w^{(t)} + y^{(t)}x^{(t)} \]

why is this a good idea?
The perceptron learning rule

perceptron algorithm: for misclassified \((x^{(t)}, y^{(t)})\),

\[w^{(t+1)} = w^{(t)} + y^{(t)} x^{(t)} \]

why is this a good idea?

▶ example \((x^{(t)}, y^{(t)})\) is misclassified at time \(t\)
The perceptron learning rule

perceptron algorithm: for misclassified \((x^{(t)}, y^{(t)})\),

\[w^{(t+1)} = w^{(t)} + y^{(t)}x^{(t)} \]

why is this a good idea?

- example \((x^{(t)}, y^{(t)})\) is misclassified at time \(t\)
- \(\iff \text{sign}(w^{(t)\top}x^{(t)}) \neq y^{(t)}\)
The perceptron learning rule

perceptron algorithm: for misclassified \((x^{(t)}, y^{(t)})\),

\[w^{(t+1)} = w^{(t)} + y^{(t)}x^{(t)} \]

why is this a good idea?

- example \((x^{(t)}, y^{(t)})\) is misclassified at time \(t\)
- \(\iff \text{sign}(w^{(t)\top}x^{(t)}) \neq y^{(t)}\)
- \(\iff y^{(t)}w^{(t)\top}x^{(t)} < 0.\)
The perceptron learning rule

perceptron algorithm: for misclassified \((x^{(t)}, y^{(t)}) \),
\[
w^{(t+1)} = w^{(t)} + y^{(t)}x^{(t)}
\]

why is this a good idea?

▶ example \((x^{(t)}, y^{(t)}) \) is misclassified at time \(t \)
▶ \(\iff \text{sign}(w^{(t)}\top x^{(t)}) \neq y^{(t)} \)
▶ \(\iff y^{(t)}w^{(t)}\top x^{(t)} < 0. \)
▶ compute
\[
y^{(t)}w^{(t+1)}\top x^{(t)} = y^{(t)}(w^{(t)} + y^{(t)}x^{(t)})\top x^{(t)}
\]
\[
= y^{(t)}w^{(t)}\top x^{(t)} + (y^{(t)})^2\|x^{(t)}\|^2
\]
\[
\geq y^{(t)}w^{(t)}\top x^{(t)}
\]
The perceptron learning rule

perceptron algorithm: for misclassified \((x(t), y(t))\),

\[w(t+1) = w(t) + y(t)x(t) \]

why is this a good idea?

- example \((x(t), y(t))\) is misclassified at time \(t\)
- \(\iff \) \(\text{sign}(w(t)^\top x(t)) \neq y(t)\)
- \(\iff \) \(y(t)w(t)^\top x(t) < 0.\)
- compute

\[
y(t)w(t+1)^\top x(t) = y(t)(w(t) + y(t)x(t))^\top x(t) \\
= y(t)w(t)^\top x(t) + (y(t))^2\|x(t)\|^2 \\
\geq y(t)w(t)^\top x(t)
\]

- so \(w(t+1)\) classifies \((x(t), y(t))\) better than \(w(t)\) did
The perceptron learning rule

perceptron algorithm: for misclassified \((x^{(t)}, y^{(t)})\),
\[
w^{(t+1)} = w^{(t)} + y^{(t)}x^{(t)}
\]

why is this a good idea?

- example \((x^{(t)}, y^{(t)})\) is misclassified at time \(t\)
- \(\iff \text{sign}(w^{(t)\top}x^{(t)}) \neq y^{(t)}\)
- \(\iff y^{(t)}w^{(t)\top}x^{(t)} < 0.\)
- compute
\[
y^{(t)}w^{(t+1)\top}x^{(t)} = y^{(t)}(w^{(t)} + y^{(t)}x^{(t)})\top x^{(t)}
\]
\[
= y^{(t)}w^{(t)\top}x^{(t)} + (y^{(t)})^2\|x^{(t)}\|^2
\]
\[
\geq y^{(t)}w^{(t)\top}x^{(t)}
\]

- so \(w^{(t+1)}\) classifies \((x^{(t)}, y^{(t)})\) \textbf{better} than \(w^{(t)}\) did
 (but possibly still not correctly)
The data \(\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\} \) is linearly separable if

\[
y_i = \text{sign}(\langle w^\dagger, x_i \rangle) \quad i = 1, \ldots, n
\]

for some vector \(w^\dagger \).

That is, there is some hyperplane that (strictly) separates the data into positive and negative examples.
Linearly separable data

Definition

the data \(\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\} \) is **linearly separable** if

\[
y_i = \text{sign}(\langle w^\dagger, x_i \rangle) \quad i = 1, \ldots, n
\]

for some vector \(w^\dagger \).

that is, there is some hyperplane that (strictly) separates the data into positive and negative examples

- \(w^\dagger \) has positive margin \(y_i w^\top x_i > 0 \) for every example
- so the **minimum margin** \(\rho = \min_{i=1,\ldots,n} y_i x_i^\top w^\dagger > 0 \)
The perceptron learning rule works

how do we know that the perceptron algorithm will work?
The perceptron learning rule works

how do we know that the perceptron algorithm will work?
we’ll prove that

Theorem

If the data is linearly separable, then the perceptron algorithm eventually makes no mistakes.
The perceptron learning rule works

how do we know that the perceptron algorithm will work?
we’ll prove that

Theorem

If the data is linearly separable, then the perceptron algorithm eventually makes no mistakes.

downside: it could take a long time...
Proof of convergence (I)

Let w^\dagger be a vector that strictly separates the data into positive and negative examples. So the minimum margin is positive:

$$\rho = \min_{i=1,...,n} y_i x_i^\top w^\dagger > 0.$$

Suppose for simplicity that we start with $w^{(0)} = 0$.

- Notice $w^{(t)}$ becomes aligned with w^\dagger:

 $$(w^\dagger)^\top w^{(t+1)} = (w^\dagger)^\top (w^{(t)} + y^{(t)} x^{(t)})$$
 $$= (w^\dagger)^\top w^{(t)} + y^{(t)} (w^\dagger)^\top x^{(t)}$$
 $$\geq (w^\dagger)^\top w^{(t)} + \rho.$$

- So by induction, as long as there's a misclassified example at time t,

 $$(w^\dagger)^\top w^{(t)} \geq \rho t.$$
Proof of convergence (II)

- Define $R = \max_{i=1,...,n} \|x_i\|$.
- Notice $\|w^{(t)}\|$ doesn’t grow too fast:

$$\|w^{(t+1)}\|^2 = \|w^{(t)} + y^{(t)}x^{(t)}\|^2$$
$$= \|w^{(t)}\|^2 + \|x^{(t)}\|^2 + 2y^{(t)}w^{(t)\top}x^{(t)}$$
$$\leq \|w^{(t)}\|^2 + \|x^{(t)}\|^2$$
$$\leq \|w^{(t)}\|^2 + R^2$$

because $(x^{(t)}, y^{(t)})$ was misclassified by $w^{(t)}$.

- So by induction,

$$\|w^{(t)}\|^2 \leq tR^2.$$
Proof of convergence (III)

So as long as there's a misclassified example at time t,

\[(w^\dagger)^\top w(t) \geq \rho t \quad \text{and} \quad \|w(t)\|^2 \leq tR^2.\]

Put it together: if there's a misclassified example at time t,

\[
\rho t \leq (w^\dagger)^\top w(t) \leq \|w^\dagger\|\|w(t)\| \leq \|w^\dagger\|\sqrt{tR},
\]

so

\[
t \leq \left(\frac{\|w^\dagger\| R}{\rho}\right)^2.
\]
Proof of convergence (III)

So as long as there’s a misclassified example at time \(t \),

\[
(w^\dagger)^\top w^{(t)} \geq \rho t \quad \text{and} \quad \|w^{(t)}\|^2 \leq tR^2.
\]

Put it together: if there’s a misclassified example at time \(t \),

\[
\rho t \leq (w^\dagger)^\top w^{(t)} \leq \|w^\dagger\|\|w^{(t)}\| \leq \|w^\dagger\|\sqrt{tR},
\]

so

\[
t \leq \left(\frac{\|w^\dagger\| R}{\rho}\right)^2.
\]

This bounds the maximum running time of the algorithm!
Understanding the bound

- is the bound tight? why or why not?
- what does the bound tell us about non-separable data?
Perceptron with outlier: iteration 1
Perceptron with outlier: iteration 2
Perceptron with outlier: iteration 3
Perceptron with outlier: iteration 4
Perceptron with outlier: iteration 5
Perceptron with outlier: iteration 47
Perceptron with outlier: iteration 48
Perceptron with outlier: iteration 50
How to measure error?

Q: How to measure the quality of an (imperfect) linear classifier?
How to measure error?

Q: How to measure the quality of an (imperfect) linear classifier?

- Number of misclassifications:

\[\sum_{i=1}^{n} y_i \neq \text{sign}(w^T x_i) \]
How to measure error?

Q: How to measure the quality of an (imperfect) linear classifier?

- Number of misclassifications:
 \[\sum_{i=1}^{n} y_i \neq \text{sign}(w^T x_i) \]

- Size of misclassifications (attempt 1):
 \[\sum_{i=1}^{n} \max(-y_i w^T x_i, 0) \]
How to measure error?

Q: How to measure the quality of an (imperfect) linear classifier?

- Number of misclassifications:
 \[\sum_{i=1}^{n} y_i \neq \text{sign}(w^\top x_i) \]

- Size of misclassifications (attempt 1):
 \[\sum_{i=1}^{n} \max(-y_i w^\top x_i, 0) \]

- Size of misclassifications (attempt 2):
 \[\sum_{i=1}^{n} \max(1 - y_i w^\top x_i, 0) \]
Recap: Perceptron

- a simple learning algorithm to learn a linear classifier
- themes we’ll see again: linear functions, iterative updates, margin
- how we plotted the data: axes = \mathcal{X}, color = \mathcal{Y}
- vector $w \in \mathbb{R}^d$ defines linear decision boundary
- simplify algorithm with feature transformation
- proof of convergence: induction, Cauchy-Schwartz, linear algebra
Schema for supervised learning

- unknown target function $f : \mathcal{X} \rightarrow \mathcal{Y}$
- training examples $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$
- hypothesis set \mathcal{H}
- learning algorithm A
- final hypothesis $g : \mathcal{X} \rightarrow \mathcal{Y}$
Generalization

how well will our classifier do on *new* data?
how well will our classifier do on new data?

- if we know nothing about the new data, no guarantees
- but if the new data looks statistically like the old…”