ORIE 4741: Learning with Big Messy Data

Loss functions

Professor Udell
Operations Research and Information Engineering
Cornell

November 11, 2016
Regularized empirical risk minimization

choose model by solving

\[
\text{minimize } \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i; w) + r(w)
\]

with variable \(w \in \mathbb{R}^d \)

- parameter vector \(w \in \mathbb{R}^d \)
- loss function \(\ell : \mathcal{X} \times \mathcal{Y} \times \mathbb{R}^d \rightarrow \mathbb{R} \)
- regularizer \(r : \mathbb{R}^d \rightarrow \mathbb{R} \)
Regularized empirical risk minimization

choose model by solving

\[
\text{minimize } \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i; w) + r(w)
\]

with variable \(w \in \mathbb{R}^d \)

- parameter vector \(w \in \mathbb{R}^d \)
- loss function \(\ell : \mathcal{X} \times \mathcal{Y} \times \mathbb{R}^d \to \mathbb{R} \)
- regularizer \(r : \mathbb{R}^d \to \mathbb{R} \)

why?

- want to minimize the risk \(\mathbb{E}_{(x, y) \sim P} \ell(x, y; w) \)
- approximate it by the empirical risk \(\sum_{i=1}^{n} \ell(x, y; w) \)
- add regularizer to help model generalize
Loss functions

what kind of loss functions should we use?
depends on type of data
 ▶ real
 ▶ boolean
 ▶ ordinal
 ▶ nominal
 ▶ ...

and on noise in data
 ▶ small?
 ▶ large but sparse?
 ▶ from some probabilistic model?
 ▶ ...

Outline

Regression

Classification

The prediction space

Multiclass classification

Ordinal regression

Beyond linear models
Loss functions for real-valued data

- quadratic
- ℓ_1
- huber
- quantile
- ...
Least squares regression finds the mean

least squares (ℓ_2) regression:

$$\text{minimize} \quad \frac{1}{n}\sum_{i=1}^{n}(y_i - w^T x_i)^2 + r(w)$$

special case: no covariates. What is

$$\arg\min_w \frac{1}{n}\sum_{i=1}^{n}(y_i - w)^2?$$
Least squares regression finds the mean

least squares (ℓ_2) regression:

$$\text{minimize} \quad \frac{1}{n} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + r(w)$$

special case: no covariates. what is $\arg\min_w \frac{1}{n} \sum_{i=1}^{n} (y_i - w)^2$?

A: mean(y)!
\[\ell_1 \text{ regression finds the median} \]

\[\ell_1 \text{ regression:} \]

\[
\text{minimize} \quad \frac{1}{n} \sum_{i=1}^{n} |y_i - w^T x_i| + r(w)
\]

special case: no covariates. what is

\[
\arg\min_w \frac{1}{n} \sum_{i=1}^{n} |y_i - w|?
\]
ℓ_1 regression finds the median

ℓ_1 regression:

$$\text{minimize } \frac{1}{n} \sum_{i=1}^{n} |y_i - w^T x_i| + r(w)$$

special case: no covariates. what is

$$\text{argmin}_w \frac{1}{n} \sum_{i=1}^{n} |y_i - w|?$$

- if pn of the y_i’s are bigger than w,
- then as w increases to $w + \delta$,
- $\frac{1}{n} \sum_{i:y_i>w} |y_i - w|$ decreases by $p\delta$
- $\frac{1}{n} \sum_{i:y_i<w} |y_i - w|$ increases by $(1 - p)\delta$
- if $p = \frac{1}{2}$, objective stays the same
\(\ell_1 \) regression finds the median

\(\ell_1 \) regression:

\[
\text{minimize} \quad \frac{1}{n} \sum_{i=1}^{n} |y_i - w^T x_i| + r(w)
\]

special case: no covariates. what is

\[
\arg\min_{w} \frac{1}{n} \sum_{i=1}^{n} |y_i - w|?
\]

- if \(pn \) of the \(y_i \)'s are bigger than \(w \),
- then as \(w \) increases to \(w + \delta \),
- \(\frac{1}{n} \sum_{i:y_i>\w} |y_i - w| \) decreases by \(p\delta \)
- \(\frac{1}{n} \sum_{i:y_i<w} |y_i - w| \) increases by \((1 - p)\delta \)
- if \(p = \frac{1}{2} \), objective stays the same

A: \(w = \text{median}(y) \)!
Huber regression

Huber regression:

$$\text{minimize} \quad \frac{1}{n} \sum_{i=1}^{n} \text{huber}(y_i - w^T x_i) + r(w)$$

where we define the Huber function

$$\text{huber}(z) = \begin{cases}
\frac{1}{2} z^2 & |z| \leq 1 \\
|z| - \frac{1}{2} & |z| > 1
\end{cases}$$
Huber regression

Huber regression:

\[
\text{minimize } \frac{1}{n} \sum_{i=1}^{n} \text{huber}(y_i - w^T x_i) + r(w)
\]

where we define the Huber function

\[
\text{huber}(z) = \begin{cases}
\frac{1}{2}z^2 & |z| \leq 1 \\
|z| - \frac{1}{2} & |z| > 1
\end{cases}
\]

Huber decomposes error into a small (Gaussian) part and a large (robust) part

\[
\text{huber}(x) = \inf_{s+n=x} |s| + \frac{1}{2} n^2
\]

(proof: take derivative)
Robust statistics

Q: when would you want to use a robust loss function?
Robust statistics

Q: when would you want to use a robust loss function?
A: for **robustness** in the presence of large outliers

- large, infrequent sensor malfunctions
- people lying on surveys
- anything that’s not a sum of small iid random variables
define the positive and negative parts of $x \in \mathbb{R}$

$$(x)_+ = \max(x, 0), \quad (x)_- = \max(-x, 0)$$
Quantile regression finds the right quantile

Quantile regression: for $\alpha \in (0, 1)$,

$$\text{minimize } \frac{1}{n} \sum_{i=1}^{n} \alpha (y_i - w^T x_i)_+ + (1 - \alpha) (y_i - w^T x_i)_-$$

special case: no covariates. what is

$$\arg\min_w \frac{1}{n} \sum_{i=1}^{n} \alpha (y_i - w)_+ + (1 - \alpha) (y_i - w)_-?$$
Quantile regression finds the right quantile

Quantile regression: for $\alpha \in (0, 1)$,

$$\minimize \frac{1}{n} \sum_{i=1}^{n} \alpha(y_i - w^T x_i)_+ + (1 - \alpha)(y_i - w^T x_i)_-$$

special case: no covariates. what is

$$\arg\min_w \frac{1}{n} \sum_{i=1}^{n} \alpha(y_i - w)_+ + (1 - \alpha)(y_i - w)_- ?$$

- if pn of the y_i’s are bigger than w,
- then as w increases to $w + \delta$,
- first term decreases by $p\alpha\delta$
- second term increases by $(1 - p)(1 - \alpha)\delta$
- so if $p = 1 - \alpha$, objective stays the same
Quantile regression finds the right quantile

Quantile regression: for $\alpha \in (0, 1)$,

$$\minimize \frac{1}{n} \sum_{i=1}^{n} \alpha (y_i - w^T x_i)_+ + (1 - \alpha)(y_i - w^T x_i)_-$$

special case: no covariates. what is

$$\argmin_w \frac{1}{n} \sum_{i=1}^{n} \alpha (y_i - w)_+ + (1 - \alpha)(y_i - w)_-?$$

- if pn of the y_i’s are bigger than w,
- then as w increases to $w + \delta$,
- first term decreases by $p\alpha\delta$
- second term increases by $(1 - p)(1 - \alpha)\delta$
- so if $p = 1 - \alpha$, objective stays the same

A: w is the αth quantile of y!
Demo: robust regression
Outline

Regression

Classification

The prediction space

Multiclass classification

Ordinal regression

Beyond linear models
Loss functions for classification

suppose $\mathcal{Y} = \{-1, 1\}$. let $\ell(x, y; w) =$
suppose $\mathcal{Y} = \{-1, 1\}$. let $\ell(x, y; w) =$

- 0-1 loss $[[y \neq \text{sign}(w^T x)]]$
- quadratic loss $(y - w^T x)^2$
- hinge loss $(1 - yw^T x)_+$
- logistic loss $\log(1 + \exp(-w^T x))$
- ...

trade off dislike of false positives vs false negatives
Loss functions for classification

\[y = 1 \]
Loss functions for classification

\[y = 1 \]
Loss functions for classification

\[y = -1 \]
Loss functions for classification

$y = -1$
Losses for classification

- hinge loss
 \[\ell_{\text{hinge}}(x, y; w) = (1 - yw^T x)_+ \]

- logistic loss
 \[\ell_{\text{logistic}}(x, y; w) = \log(1 + \exp(-yw^T x)) \]
Logistic loss: interpretation

- logistic function maps real numbers to probabilities

$$\text{logistic}(u) = \frac{\exp(u)}{1 + \exp(u)} = \frac{1}{1 + \exp(-u)}$$

- given $w^T x$, y is a Bernoulli random variable

$$y = \begin{cases} 1 & \text{with prob } \text{logistic}(w^T x) \\ -1 & \text{with prob } (1 - \text{logistic}(w^T x)) = \text{logistic}(-w^T x) \end{cases}$$

- logistic loss is -log likelihood of y given $w^T x$

$$\ell_{\text{logistic}}(x, y; w) = -\log(\text{logistic}(yw^T x))$$

$$= -\log \left(\frac{1}{1 + \exp(-yw^T x)} \right)$$

$$= \log \left(1 + \exp \left(-yw^T x \right) \right)$$
Hinge loss: interpretation

suppose we solve

\[
\begin{align*}
\text{minimize} & \quad \|w\|^2 \\
\text{subject to} & \quad \sum_{i=1}^{n} \ell_{\text{hinge}}(x_i, y_i; w) = 0
\end{align*}
\]

(recall \(\ell_{\text{hinge}}(x, y; w) = (1 - yw^T x) \))

- solution classifies every point correctly, with a safety margin:
 for every \(i = 1, \ldots, n \),
 \[
 1 \leq y_i w^T x_i
 \]

- compare to perceptron
- as \(\|w\|^2 \) gets smaller, the margin gets bigger
Hinge loss: interpretation
Support Vector Machine (SVM)

now instead solve the support vector machine problem (SVM)

\[
\text{minimize} \quad \sum_{i=1}^{n} \ell_{\text{hinge}}(x_i, y_i; w) + \lambda \|w\|^2
\]

▶ allows some mistakes
▶ trades off the severity of mistakes with the safety margin
Loss functions for classification

suppose \(\mathcal{Y} = \{-1, 1\} \). let \(\ell(x, y; w) = \)
Loss functions for classification

suppose $Y = \{-1, 1\}$. let $\ell(x, y; w) =$

- 0-1 loss $[[y \neq \text{sign}(w^T x)]]$
- quadratic loss $(y - w^T x)^2$
- hinge loss $(1 - yw^T x)_+$
- logistic loss $\log(1 + \exp(-w^T x))$
- ...

trade off dislike of false positives vs false negatives
Loss functions for classification

suppose $\mathcal{Y} = \{-1, 1\}$. let $\ell(x, y; w) =$

- 0-1 loss $[[y \neq \text{sign}(w^T x)]]$
- quadratic loss $(y - w^T x)^2$
- hinge loss $(1 - yw^T x)_+$
- logistic loss $\log(1 + \exp(-w^T x))$
- ...

trade off dislike of false positives vs false negatives properties:

- continuous?
Loss functions for classification

suppose $\mathcal{Y} = \{-1, 1\}$. let $\ell(x, y; w) =$

- 0-1 loss $[[y \neq \text{sign}(w^T x)]]$
- quadratic loss $(y - w^T x)^2$
- hinge loss $(1 - yw^T x)_+$
- logistic loss $\log(1 + \exp(-w^T x))$
- ...

trade off dislike of false positives vs false negatives properties:

- continuous? quadratic, hinge, logistic
- differentiable?
Loss functions for classification

Suppose $\mathcal{Y} = \{-1, 1\}$. Let $\ell(x, y; w) =$

- 0-1 loss $[[y \neq \text{sign}(w^T x)]]$
- quadratic loss $(y - w^T x)^2$
- hinge loss $(1 - yw^T x)_+$
- logistic loss $\log(1 + \exp(-w^T x))$
- ...

Trade off dislike of false positives vs false negatives properties:

- Continuous? Quadratic, hinge, logistic
- Differentiable? Quadratic, logistic
- Insensitive to outliers?
Loss functions for classification

suppose $\mathcal{Y} = \{-1, 1\}$. let $\ell(x, y; w) =$

- 0-1 loss $[y \neq \text{sign}(w^T x)]$
- quadratic loss $(y - w^T x)^2$
- hinge loss $(1 - yw^T x)_+$
- logistic loss $\log(1 + \exp(-w^T x))$
- ...

trade off dislike of false positives vs false negatives properties:

- continuous? quadratic, hinge, logistic
- differentiable? quadratic, logistic
- insensitive to outliers? 0-1
- sensitive to outliers?
Loss functions for classification

suppose $\mathcal{Y} = \{-1, 1\}$. let $\ell(x, y; w) =$

- 0-1 loss $[[y \neq \text{sign}(w^T x)]]$
- quadratic loss $(y - w^T x)^2$
- hinge loss $(1 - yw^T x)_+$
- logistic loss $\log(1 + \exp(-w^T x))$
- ...

trade off dislike of false positives vs false negatives properties:

- continuous? quadratic, hinge, logistic
- differentiable? quadratic, logistic
- insensitive to outliers? 0-1
- sensitive to outliers? quadratic
- quadratic?
Loss functions for classification

suppose $\mathcal{Y} = \{-1, 1\}$. let $\ell(x, y; w) =$

- 0-1 loss $[[y \neq \text{sign}(w^T x)]]$
- quadratic loss $(y - w^T x)^2$
- hinge loss $(1 - yw^T x)_+$
- logistic loss $\log(1 + \exp(-w^T x))$
- ...

trade off dislike of false positives vs false negatives properties:

- continuous? quadratic, hinge, logistic
- differentiable? quadratic, logistic
- insensitive to outliers? 0-1
- sensitive to outliers? quadratic
- quadratic? quadratic
- probabilistic interpretation?
Loss functions for classification

suppose $\mathcal{Y} = \{-1, 1\}$. let $\ell(x, y; w) =$

- 0-1 loss $[[y \neq \text{sign}(w^T x)]]$
- quadratic loss $(y - w^T x)^2$
- hinge loss $(1 - yw^T x)_+$
- logistic loss $\log(1 + \exp (-w^T x))$
- ...

trade off dislike of false positives vs false negatives properties:

- continuous? quadratic, hinge, logistic
- differentiable? quadratic, logistic
- insensitive to outliers? 0-1
- sensitive to outliers? quadratic
- quadratic? quadratic
- probabilistic interpretation? logistic
Outline

Regression

Classification

The prediction space

Multiclass classification

Ordinal regression

Beyond linear models
Recap linear models

- input space \mathbb{R}^d
- output space \mathcal{Y}
 - regression: $\mathcal{Y} = \mathbb{R}$
 - classification: $\mathcal{Y} = \{-1, 1\}$
- parameter space \mathbb{R}^d
- hypothesis class $h \in \mathcal{H}$

$$\mathcal{H} = \{ h : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R} \}$$
$$= \{ h(x; w) = w^T x \}$$

- rewrite the objective using this notation

$$\minimize \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i; w)) + r(w)$$

with variable $w \in \mathbb{R}^d$
The prediction space

- input space \mathcal{X}
- output space \mathcal{Y}
- parameter space \mathcal{W}
- prediction space \mathcal{Z}
- hypothesis class $h \in \mathcal{H}$

$$\mathcal{H} = \{ h : \mathcal{X} \times \mathcal{W} \to \mathcal{Z} \}$$

- rewrite the objective using this notation

$$\text{minimize } \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i; w)) + r(w)$$

with variable $w \in \mathcal{W}$

- loss function $\ell : \mathcal{Y} \times \mathcal{Z} \to \mathbb{R}$ maps between prediction space and output space
How to predict?

given

- a loss function $\ell : \mathcal{Y} \times \mathcal{Z} \to \mathbb{R}$
- a hypothesis class $h : \mathcal{X} \times \mathcal{W}$, and
- model parameters $w \in \mathcal{W}$ fit to data

Q: how to predict \hat{y} for a new sample x?
How to predict?

given

- a loss function \(\ell: \mathcal{Y} \times \mathcal{Z} \to \mathbb{R} \)
- a hypothesis class \(h: \mathcal{X} \times \mathcal{W} \), and
- model parameters \(w \in \mathcal{W} \) fit to data

Q: how to predict \(\hat{y} \) for a new sample \(x \)?

A: predict \(\hat{y} \) by solving

\[
\hat{y} = \arg\min_{y \in \mathcal{Y}} \ell(y, h(x; w))
\]

MLE interpretation: if \(z = w^T x \), \(\ell(y, z) = -\log P(y \mid z) \), then \(\hat{y} \) is most probable \(y \in \mathcal{Y} \) given \(z = w^T x \).
Prediction: examples

given

- a loss function \(\ell : \mathcal{Y} \times \mathcal{Z} \rightarrow \mathbb{R} \)
- a hypothesis class \(h : \mathcal{X} \times \mathcal{W} \), and
- model parameters \(w \in \mathcal{W} \) fit to data

predict \(\hat{y} \) by solving

\[
\hat{y} = \arg\min_{y \in \mathcal{Y}} \ell(y, h(x; w))
\]

- for quadratic loss,
Prediction: examples

given

- a loss function $\ell : \mathcal{Y} \times \mathcal{Z} \rightarrow \mathbb{R}$
- a hypothesis class $h : \mathcal{X} \times \mathcal{W}$, and
- model parameters $w \in \mathcal{W}$ fit to data

predict \hat{y} by solving

$$\hat{y} = \arg\min_{y \in \mathcal{Y}} \ell(y, h(x; w))$$

- for quadratic loss, $\mathcal{Y} = \mathcal{Z}$, and $\hat{y} = w^T x$
- for ℓ_1, Huber loss, or quantile loss,
Prediction: examples

given

- a loss function \(\ell : \mathcal{Y} \times \mathcal{Z} \to \mathbb{R} \)
- a hypothesis class \(h : \mathcal{X} \times \mathcal{W} \), and
- model parameters \(w \in \mathcal{W} \) fit to data

predict \(\hat{y} \) by solving

\[
\hat{y} = \arg\min_{y \in \mathcal{Y}} \ell(y, h(x; w))
\]

- for quadratic loss, \(\mathcal{Y} = \mathcal{Z} \), and \(\hat{y} = w^T x \)
- for \(\ell_1 \), Huber loss, or quantile loss, \(\mathcal{Y} = \mathcal{Z} \), and \(\hat{y} = w^T x \)
- for hinge loss \(\ell(y, h(x; w)) = (1 - yw^T x)_+ \),
Prediction: examples

given

- a loss function \(\ell : \mathcal{Y} \times \mathcal{Z} \to \mathbf{R} \)
- a hypothesis class \(h : \mathcal{X} \times \mathcal{W} \), and
- model parameters \(w \in \mathcal{W} \) fit to data

predict \(\hat{y} \) by solving

\[
\hat{y} = \arg\min_{y \in \mathcal{Y}} \ell(y, h(x; w))
\]

- for quadratic loss, \(\mathcal{Y} = \mathcal{Z} \), and \(\hat{y} = w^T x \)
- for \(\ell_1 \), Huber loss, or quantile loss, \(\mathcal{Y} = \mathcal{Z} \), and \(\hat{y} = w^T x \)
- for hinge loss \(\ell(y, h(x; w)) = (1 - yw^T x)_+ \), \(\hat{y} = \text{sign}(w^T x) \)
- for logistic loss \(\ell(y, h(x; w)) = \log(1 + \exp(-yw^T x)) \),
Prediction: examples

given

• a loss function $\ell : \mathcal{Y} \times \mathcal{Z} \to \mathbb{R}$
• a hypothesis class $h : \mathcal{X} \times \mathcal{W}$, and
• model parameters $w \in \mathcal{W}$ fit to data

predict \hat{y} by solving

$$
\hat{y} = \arg\min_{y \in \mathcal{Y}} \ell(y, h(x; w))
$$

• for quadratic loss, $\mathcal{Y} = \mathcal{Z}$, and $\hat{y} = w^T x$
• for ℓ_1, Huber loss, or quantile loss, $\mathcal{Y} = \mathcal{Z}$, and $\hat{y} = w^T x$
• for hinge loss $\ell(y, h(x; w)) = (1 - yw^T x)_+$, $\hat{y} = \text{sign}(w^T x)$
• for logistic loss $\ell(y, h(x; w)) = \log(1 + \exp(-yw^T x))$, $\hat{y} = \text{sign}(w^T x)$
Outline

Regression

Classification

The prediction space

Multiclass classification

Ordinal regression

Beyond linear models
Multiclass classification

how to predict **nominal** values?
how to predict **nominal** values?

idea 1: classification

1. encode \(y \in \mathcal{Y} \) as a vector \(\psi(y) \)
2. predict entries of \(\psi(y) \)
3. each entry of \(z = h(x; w) \) will predict corresponding entry of \(\psi(y) \)
Multiclass classification

how to predict **nominal** values?

- **idea 1: classification**
 1. encode $y \in \mathcal{Y}$ as a vector $\psi(y)$
 2. predict entries of $\psi(y)$
 3. each entry of $z = h(x; w)$ will predict corresponding entry of $\psi(y)$

- **idea 2: learning probabilities**
 1. learn the probability $\mathbb{P}(y = y' \mid x)$ for every $y' \in \mathcal{Y}$
 2. predict $y = \arg\max_{y' \in \mathcal{Y}} \mathbb{P}(y = y' \mid x)$
 3. $z = h(x; w)$ will parametrize probability distribution
Multiclass classification: examples

examples:

- classifying which breed of dog is present in an image
- classifying the type of heart disease given a electrocardiogram (EKG)
- predicting if a water well is ok, needs repair, or is defunct
- more examples from projects?
Multiclass classification via binary classification

idea 1: classification

1. encode $y \in \mathcal{Y}$ as a vector $\psi(y) \in \{-1, 1\}^k$
2. predict entries of $\psi(y)$
3. each entry of $z = h(x; w)$ will predict corresponding entry of $\psi(y)$

Q: how to pick $\psi(y)$? (suppose $\mathcal{Y} = \{1, \ldots, k\}$)
Multiclass classification via binary classification

idea 1: classification

1. encode $y \in \mathcal{Y}$ as a vector $\psi(y) \in \{-1, 1\}^k$
2. predict entries of $\psi(y)$
3. each entry of $z = h(x; w)$ will predict corresponding entry of $\psi(y)$

Q: how to pick $\psi(y)$? (suppose $\mathcal{Y} = \{1, \ldots, k\}$)

- one-hot encoding: if $y = i$,

 $\psi(y) = (-1, \ldots, 1, \ldots, -1) \in \{-1, 1\}^k$

 (resulting scheme is called one-vs-all classification)
Multiclass classification via binary classification

idea 1: classification

1. encode \(y \in Y \) as a vector \(\psi(y) \in \{-1, 1\}^k \)
2. predict entries of \(\psi(y) \)
3. each entry of \(z = h(x; w) \) will predict corresponding entry of \(\psi(y) \)

Q: how to pick \(\psi(y) \)? (suppose \(Y = \{1, \ldots, k\} \))

- one-hot encoding: if \(y = i \),

\[
\psi(y) = (-1, \ldots, \underbrace{1}_{\text{ith entry}}, \ldots, -1) \in \{-1, 1\}^k
\]

(resulting scheme is called **one-vs-all** classification)

- binary codes:
 - define binary expansion of \(y \), \(\text{bin}(y) \in \{0, 1\}^{\log(k)} \)
 - let \(\psi(y) = 2 \text{bin}(y) - 1 \in \{-1, 1\}^{\log(k)} \)
Multiclass classification via binary classification

idea 1: classification

1. encode $y \in \mathcal{Y}$ as a vector $\psi(y) \in \{-1, 1\}^k$
2. predict entries of $\psi(y)$
3. each entry of $z = h(x; w)$ will predict corresponding entry of $\psi(y)$

Q: how to pick $\psi(y)$? (suppose $\mathcal{Y} = \{1, \ldots, k\}$)

- one-hot encoding: if $y = i$,
 $$\psi(y) = (-1, \ldots, 1, \ldots, -1) \in \{-1, 1\}^k$$
 (resulting scheme is called one-vs-all classification)

- binary codes:
 - define binary expansion of y, $\text{bin}(y) \in \{0, 1\}^\log(k)$
 - let $\psi(y) = 2 \text{bin}(y) - 1 \in \{-1, 1\}^\log(k)$

- error-correcting codes
idea 1: classification

1. encode $y \in \mathcal{Y}$ as a vector $\psi(y) \in \{-1, 1\}^k$
2. predict entries of $\psi(y)$
3. each entry of $z = h(x; w)$ will predict corresponding entry of $\psi(y)$

Q: how to pick $\psi(y)$? (suppose $\mathcal{Y} = \{1, \ldots, k\}$)

- one-hot encoding: if $y = i$,

 $\psi(y) = (-1, \ldots, 1, \ldots, -1) \in \{-1, 1\}^k$

 (resulting scheme is called **one-vs-all** classification)

- binary codes:

 - define binary expansion of y, $\text{bin}(y) \in \{0, 1\}^{\log(k)}$

 - let $\psi(y) = 2 \text{bin}(y) - 1 \in \{-1, 1\}^{\log(k)}$

- error-correcting codes

these vary in the **dimension** of $\psi(y) = \text{dimension of } z$
Multiclass classification via binary classification

idea 1: classification

1. encode \(y \in \mathcal{Y} \) as a vector \(\psi(y) \in \{-1, 1\}^k \)
2. predict entries of \(\psi(y) \)
3. each entry of \(z = h(x; w) \) will predict corresponding entry of \(\psi(y) \)

Q: how to predict entries of \(\psi(y) \in \{-1, 1\}^k \)?
Multiclass classification via binary classification

idea 1: classification

1. encode $y \in \mathcal{Y}$ as a vector $\psi(y) \in \{-1, 1\}^k$
2. predict entries of $\psi(y)$
3. each entry of $z = h(x; w)$ will predict corresponding entry of $\psi(y)$

Q: how to predict entries of $\psi(y) \in \{-1, 1\}^k$?

▶ reduce to a bunch of binary problems!
▶ let $W \in \mathbb{R}^{k \times d}$, so $z = Wx \in \mathbb{R}^k$
▶ pick your favorite loss function ℓ^{bin} for binary classification
▶ fit parameter W by minimizing loss function

$$
\ell^{\text{nom}}(y, z) = \sum_{i=1}^{k} \ell^{\text{bin}}(\psi(y)_i, z_i)
$$
One-vs-All classification

![Graph showing one-vs-all classification with three classes: 1, 2, 3. The graph plots points on a 2D space with two axes, x_1 and x_2. The classes are separated by decision boundaries represented by lines. The legend includes lines and markers indicating the classification rules: 1 vs 2,3, 3 vs 1,2, and 2 vs 1,3.]
Multiclass classification via learning probabilities

(for concreteness, suppose $\mathcal{Y} = \{1, \ldots, k\}$) idea 2: learning probabilities

1. learn the probability $P(y = y' \mid x)$ for every $y' \in \mathcal{Y}$
2. predict $y = \operatorname{argmax}_{y' \in \mathcal{Y}} P(y = y' \mid x)$
3. $z = h(x; w) \in \mathbb{R}^k$ will parametrize probability distribution

Q: how to predict probabilities?
Multiclass classification via learning probabilities

- let $W \in \mathbb{R}^{k \times d}$, so $Wx \in \mathbb{R}^{k}$

- **multinomial logit** takes a hint from logistic: let $z = h(x; W) = Wx$, and suppose

$$
\mathbb{P}(y = i \mid z) = \frac{\exp(z_i)}{\sum_{j=1}^{k} \exp(z_j)}
$$

(ensures probabilities are positive and sum to 1)

- fit by minimizing negative log likelihood

$$
\ell(y, z) = -\log(\mathbb{P}(y \mid z))
$$

$$
= -\log\left(\frac{\exp(z_y)}{\sum_{j=1}^{k} \exp(z_j)}\right)
$$
Multinomial classification

![Graph](image)

The graph illustrates a dataset with three classes (1, 2, and 3) plotted in a two-dimensional space defined by variables x_1 and x_2. The data points are color-coded to represent each class:
- Class 1 is represented by blue circles.
- Class 2 is represented by red crosses.
- Class 3 is represented by green triangles.

The graph shows three lines:
- A red line represents the decision boundary for distinguishing between classes 1 vs 2,3.
- A green line represents the decision boundary for distinguishing between classes 3 vs 1,2.
- A blue line represents the decision boundary for distinguishing between classes 2 vs 1,3.

The axes are labeled x_1 and x_2, and the graph includes a legend with the class and decision boundary information.
Outline

Regression

Classification

The prediction space

Multiclass classification

Ordinal regression

Beyond linear models
Ordinal regression

how to predict **ordinal** values?
how to predict **ordinal** values?

- **idea 0: regression**
 1. encode $y \in \mathcal{Y}$ in \mathbb{R}
how to predict **ordinal** values?

- **idea 0: regression**
 1. encode $y \in \mathcal{Y}$ in \mathbb{R}

- **idea 1: classification**
 1. encode $y \in \mathcal{Y}$ as a vector $\psi(y)$
 2. predict entries of $\psi(y)$
 3. each entry of $z = h(x; w)$ will predict corresponding entry of $\psi(y)$
Ordinal regression

how to predict ordinal values?

▶ idea 0: regression
 1. encode $y \in \mathcal{Y}$ in \mathbb{R}

▶ idea 1: classification
 1. encode $y \in \mathcal{Y}$ as a vector $\psi(y)$
 2. predict entries of $\psi(y)$
 3. each entry of $z = h(x; w)$ will predict corresponding entry of $\psi(y)$

▶ idea 2: learning probabilities
 1. learn the probability $\mathbb{P}(y = y' \mid x)$ for every $y' \in \mathcal{Y}$
 2. predict $y = \arg\max_{y' \in \mathcal{Y}} \mathbb{P}(y = y' \mid x)$
 3. $z = h(x; w)$ will parametrize probability distribution
Ordinal regression

(for concreteness, suppose $\mathcal{Y} = \{1, \ldots, k\}$) idea 0: regression

1. encode $y \in \mathcal{Y}$ in \mathbb{R}
2. predict with $\mathcal{Z} = \mathbb{R}$

- quadratic loss
 \[
 \ell(y, z) = (y - z)^2
 \]

- ordinal hinge loss
 \[
 \ell(y, z) = \sum_{y' = 1}^{y-1} (1 - z + y')_+ + \sum_{y' = y+1}^{k} (1 + z - y')_+
 \]
Ordinal regression via predicting a vector

idea 1: classification

1. encode $y \in \mathcal{Y}$ as a vector $\psi(y)$
2. predict entries of $\psi(y)$
3. each entry of $z = h(x; w)$ will predict corresponding entry of $\psi(y)$

(for concreteness, suppose $\mathcal{Y} = \{1, \ldots, k\}$)

- how to encode y as a vector?
Ordinal regression via predicting a vector

Idea 1: classification

1. encode \(y \in \mathcal{Y} \) as a vector \(\psi(y) \)
2. predict entries of \(\psi(y) \)
3. each entry of \(z = h(x; w) \) will predict corresponding entry of \(\psi(y) \)

(for concreteness, suppose \(\mathcal{Y} = \{1, \ldots, k\} \))

- how to encode \(y \) as a vector? how about
 \[
 \psi(y) = ([y > 1], [y > 2], \ldots, [y > k - 1]) \in \mathbb{R}^{k-1}
 \]
- let \(W \in \mathbb{R}^{k-1 \times d} \), so \(z = Wx \in \mathbb{R}^{k-1} \)
- pick your favorite loss function \(\ell^{\text{bin}} \) for binary classification
- fit model \(W \) by minimizing loss function

\[
\ell^{\text{ord}}(y; z) = \sum_{i=1}^{k-1} \ell^{\text{bin}}(\psi(y)_i; z_i)
\]
Ordinal regression via predicting a vector

- set $\psi(y) = ([[y > 1]], [[y > 2]], \ldots, [[y > k - 1]]) \in \mathbb{R}^{k-1}$
- let $W \in \mathbb{R}^{k-1 \times d}$, so $z = Wx \in \mathbb{R}^{k-1}$
- fit parameter W by minimizing loss function

$$\ell^{\text{ord}}(y; z) = \sum_{i=1}^{k-1} \ell^{\text{bin}}(\psi(y)_i, z_i)$$

- ith column of W defines a line separating levels $y \leq i$ from levels $y > i$

Q: How to predict \hat{y} given x and W?
Ordinal regression via predicting a vector

- set $\psi(y) = ([[y > 1]], [[y > 2]], \ldots, [[y > k-1]]) \in \mathbb{R}^{k-1}$
- let $W \in \mathbb{R}^{k-1 \times d}$, so $z = Wx \in \mathbb{R}^{k-1}$
- fit parameter W by minimizing loss function

$$\ell^{\text{ord}}(y; z) = \sum_{i=1}^{k-1} \ell^{\text{bin}}(\psi(y)_i, z_i)$$

- ith column of W defines a line separating levels $y \leq i$ from levels $y > i$

Q: How to predict \hat{y} given x and W?

A: Compute $z = Wx$, and predict

$$\hat{y} = \arg\min_{y \in \mathbb{Y}} \ell^{\text{ord}}(y; z)$$
Ordinal regression
Regularization for ordinal regression

- need to ensure that

\[P(y > 1 \mid z) \geq P(y > 2 \mid z) \geq \ldots \geq P(y > k - 1 \mid z) \]

- since \(P(y > i \mid z) \sim \exp ((z_i)) \), need to ensure that

\[z_1 \geq z_2 \geq \ldots \geq z_{k-1} \]

- can do this by insisting that

\[
W = \begin{bmatrix}
 w^T & b_1 \\
 w^T & b_2 \\
 \vdots & \vdots \\
 w^T & b_{k-1}
\end{bmatrix}
\]

and \(b_1 \geq b_2 \geq \cdots \geq b_{k-1} \)

- then \(z = Wx \) satisfies \(z_1 \geq z_2 \geq \cdots \geq z_{k-1} \)

- this is a kind of \textit{regularization} on \(W \)!
Outline

Regression

Classification

The prediction space

Multiclass classification

Ordinal regression

Beyond linear models
Coding and decoding

we now have four different spaces

▶ input space \mathcal{X}
▶ output space \mathcal{Y}
▶ parameter space \mathcal{W}
▶ prediction space \mathcal{Z}

a **model** is given by a choice of

▶ loss function $\ell : \mathcal{Y} \times \mathcal{Z} \to \mathbb{R}$,
▶ regularizer $r : \mathcal{W} \to \mathbb{R}$, and
▶ hypothesis class $h : \mathcal{X} \times \mathcal{W} \to \mathcal{Z}$
we fit the model by solving

\[
\text{minimize } \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i; w)) + r(w)
\]

to find \(w \in \mathcal{W} \)
given a parameter \(w \in \mathcal{W} \) and a new input \(x \in \mathcal{X} \), we predict \(y \in \mathcal{Y} \) by solving

\[
y = \arg\min_{y \in \mathcal{Y}} \ell(y, h(x_i; w))
\]
What models fit in this framework?

- linear models
- linear models with feature transformations
- decision trees
- neural networks
- generalized additive models
- unsupervised learning (!)
- ...
Resources

- quantile regression https://www.cscu.cornell.edu/news/statnews/stnews70.pdf