ORIE 4741: Learning with Big Messy Data

Introduction

Professor Udell

Operations Research and Information Engineering
Cornell

September 8, 2020
Outline

Logistics

Stories

Definitions

Kinds of learning

Syllabus
ORIE 4741: Learning with Big Messy Data

want to take this class?

▶ ASAP:
 ▶ enroll (or drop) (or get on wait list)
 ▶ fill out course survey (provides access campuswire Q&A)
 ▶ sign up for iClicker REEF

▶ Thursday 9/10/2020: homework 0

links on course website:
https://people.orie.cornell.edu/mru8/orie4741/
Course staff

- Prof. Madeleine Udell
- TA: Chengrun Yang (ECE PhD)
- TA: Yuxuan Chen (Statistics PhD)
- TA: Anusha Avyukt (Statistics MPS)
- TA: Juliet Zhong (ORIE MEng + Undergraduate)
- TA: Allison Grimsted (ORIE Undergraduate)
- TA: Carrie Rucker (ORIE Undergraduate)
Tech stack

► Zoom for lectures
► Course website for course materials
 (syllabus, schedule, homework, project, etc)
► iClicker REEF for polls
► Campuswire for Q&A and announcements
► Gradescope for quizzes, submitting homework, grades, solutions
► Github for code (demos, projects, and hw starter code)
Tech stack

- Zoom for lectures
- Course website for course materials (syllabus, schedule, homework, project, etc)
- iClicker REEF for polls
- Campuswire for Q&A and announcements
- Gradescope for quizzes, submitting homework, grades, solutions
- Github for code (demos, projects, and hw starter code)

Zoom contingencies

- If I get logged off (eg, due to connectivity issues), your TAs will stay on and provide further instructions
- If the Zoom platform fails (eg, Zoom-bombing or Zoom outage), look on Campuswire for further instructions
Course requirements and grading

course website:
(grading, course requirements, lectures, homework, etc)
https://people.orie.cornell.edu/mru8/orie4741/

▶ (15%) Participation: for every lecture (after this one), use
 ▶ iClicker REEF for sync lectures
 ▶ participation form for async lectures
▶ (30%) Homework
 ▶ due every two weeks or so
 ▶ first one due next Thursday
▶ (15%) Quizzes
 ▶ 30 min quiz every week or so
▶ (40%) Project
Course requirements and grading

course website:
(grading, course requirements, lectures, homework, etc)
https://people.orie.cornell.edu/mru8/orie4741/

▶ (15%) Participation: for every lecture (after this one), use
 ▶ iClicker REEF for sync lectures
 ▶ participation form for async lectures
▶ (30%) Homework
 ▶ due every two weeks or so
 ▶ first one due next Thursday
▶ (15%) Quizzes
 ▶ 30 min quiz every week or so
▶ (40%) Project

FAQ:
▶ yes, you can take the class async in any timezone
▶ yes, you can take section async, or not take the section
Questions

during lecture:

▶ ask out loud
▶ zoom chat to TA Carrie Rucker

outside of lecture:

▶ ask at office hours
▶ ask on campuswire
▶ don’t send email
Outline

Logistics

Stories

Definitions

Kinds of learning

Syllabus
Oh, you work with big messy data? Maybe you could help us out...?
My career in big data

academic

▶ B.S. in Mathematics and Physics at Yale
▶ Ph.D. in Computational and Mathematical Engineering at Stanford
▶ postdoctoral fellow at the Center for the Mathematics of Information at Caltech
▶ professor in ORIE at Cornell

applied work

▶ finance: Goldman Sachs, BlackRock, Capital One, Schönfeld, Two Sigma, . . .
▶ cybersecurity: DARPA, Expanse (formerly Qadium)
▶ healthcare: Apixio, Ontario
▶ clean energy: Aurora
▶ commerce: Retina.ai, Marketing Attribution
▶ politics: Obama 2012
My career in big data

academic

▶ B.S. in Mathematics and Physics at Yale
▶ Ph.D. in Computational and Mathematical Engineering at Stanford
▶ postdoctoral fellow at the Center for the Mathematics of Information at Caltech
▶ professor in ORIE at Cornell

applied work

▶ finance: Goldman Sachs, BlackRock, Capital One, Schonfeld, Two Sigma, ...
▶ cybersecurity: DARPA, Expanse (formerly Qadium)
▶ healthcare: Apixio, Ontario
▶ clean energy: Aurora
▶ commerce: Retina.ai, Marketing Attribution
▶ politics: Obama 2012
Data table: politics

<table>
<thead>
<tr>
<th>age</th>
<th>gender</th>
<th>state</th>
<th>income</th>
<th>education</th>
<th>voted?</th>
<th>support</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>F</td>
<td>CT</td>
<td>$53,000</td>
<td>college</td>
<td>yes</td>
<td>Biden</td>
</tr>
<tr>
<td>57</td>
<td>?</td>
<td>NY</td>
<td>$19,000</td>
<td>high school</td>
<td>yes</td>
<td>?</td>
</tr>
<tr>
<td>?</td>
<td>M</td>
<td>CA</td>
<td>$102,000</td>
<td>masters</td>
<td>no</td>
<td>Trump</td>
</tr>
<tr>
<td>41</td>
<td>F</td>
<td>NV</td>
<td>$23,000</td>
<td>?</td>
<td>yes</td>
<td>Trump</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data table: politics

<table>
<thead>
<tr>
<th>age</th>
<th>gender</th>
<th>state</th>
<th>income</th>
<th>education</th>
<th>voted?</th>
<th>support</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>F</td>
<td>CT</td>
<td>$53,000</td>
<td>college</td>
<td>yes</td>
<td>Biden</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>?</td>
<td>NY</td>
<td>$19,000</td>
<td>high school</td>
<td>yes</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>M</td>
<td>CA</td>
<td>$102,000</td>
<td>masters</td>
<td>no</td>
<td>Trump</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>F</td>
<td>NV</td>
<td>$23,000</td>
<td>?</td>
<td>yes</td>
<td>Trump</td>
<td></td>
</tr>
</tbody>
</table>

goals:

- detect demographic groups?
- find typical responses?
- identify related features?
- impute missing entries?
How to get data for politics?

two major sources of data:

► census
► voter registration

data quality is critical!

► for hw0, you’ll respond to census + register to vote
► if eligible:
 ► census eligibility: college students (including foreign) should be counted at the on-campus or off-campus residence where they sleep most of the time (even if you went home before Census Day last spring, and even if you’re a foreign citizen)
 ► voter eligibility: US citizen 18+
Clinical Summary

Noble, James

Demographics
- **Address:** 4616 West Hiram Street, Chicago, IL 60637
- **Email:** noble@omg.com
- **DOB:** 04/05/1962
- **Age:** 50
- **Patient ID:** 88561

Primary Ins: Astra U.S. Healthcare - Master

Consultant

Diagnosis
- **ICD-9:**
 - **Diagnosis:** Torso pain
 - **ICD-9:** 727.9

Visits

Smoking Status
- **Status:** Never smoker
- **ID:** 4
- **Date:** 06/18/2012

Procedures

Rx History

Non-Drug Allergies
- **Description:** latex
- **Reaction:** severe rash

Family History

Surgeries

Appointments
<table>
<thead>
<tr>
<th>age</th>
<th>gender</th>
<th>heart disease</th>
<th>statins?</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>F</td>
<td>yes</td>
<td>no</td>
<td>...</td>
</tr>
<tr>
<td>57</td>
<td>?</td>
<td>no</td>
<td>no</td>
<td>...</td>
</tr>
<tr>
<td>?</td>
<td>M</td>
<td>no</td>
<td>no</td>
<td>...</td>
</tr>
<tr>
<td>41</td>
<td>F</td>
<td>yes</td>
<td>yes</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- find similar patients?
- understand systemic healthcare needs?
- use symptoms to detect which patients have COVID-19?
- detect patients who had series of mini-strokes?
COVID projections

United States
Current deaths: 183,594 | Projected total deaths: 219,110 (by Nov 1)

Deaths per day

Total deaths

Reproduction number - R_t (estimate)

Population: 331,814,684

https://covid19-projections.com/
COVID projections: Cornell data

https://covid.cornell.edu/testing/dashboard/
Poll

(click “participants” and use Zoom reactions to respond to poll)

So far .2% of Cornell population has had COVID-19. I think X% of Cornell population will get COVID this semester, where X is

- (yes) < .5%
- (no) .5 – 1%
- (go slower) 1 – 5%
- (go faster) 5 – 10%
- (coffee) > 10%
Poll

(click “participants” and use Zoom reactions to respond to poll)

I think

► (yes) I will get COVID
► (no) I will not get COVID
► (coffee) I’ve already had COVID
Poll

(click “participants” and use Zoom reactions to respond to poll)

I think a vaccine will be widely available by

▶ (yes) November
▶ (no) January
▶ (slower) Spring 2021
▶ (faster) Summer 2021
▶ (coffee) later
▶ (down) never
Data for projections: simulation

- simulate model given parameter values
- learn parameter values to match data

https://github.com/ORIE4741/demos/blob/master/SIR.ipynb
Simulation: results

by varying parameters, we see

- with infrequent testing (weekly+), pandemic is nearly impossible to control
- people who go to big parties get COVID
 - if too many people go to big parties, Cornell shuts down
 - if moderate (e.g. 10%) of people go to big parties, classes shut down
 - if < 1% go to big parties, Cornell stays open
- if PPE is effective,
 - people who just go to classes are nearly always ok
 - people who go to small parties might get COVID
- if PPE is not effective,
 - people who just go to classes might get COVID
 - people who go to small parties have even odds of getting COVID
Simulation: assumptions

Simulation is evocative, not realistic. Assumes

- Fluid limit: large population, no randomness
- Only 3 groups that mix internally
- Only 3 modes of contact: parties, classes, external (eg grocery shopping)
- No latency period
- Actions don’t depend on infection rates
- Quarantine is effective
- ...
Application areas

- health
- politics
- governance
- advertising
- retail
- ecommerce
- finance
- ...

...
Outline

Logistics

Stories

Definitions

Kinds of learning

Syllabus
Big

- NASA, 1997: “taxing the capacities of main memory, local disk, and even remote disk”

\[^1 \text{image courtesy of Kim Minor @ IBM} \]
Big

- NASA, 1997: “taxing the capacities of main memory, local disk, and even remote disk”
- OED, 2015: “data of a very large size, typically to the extent that its manipulation and management present significant logistical challenges”

1\footnote{image courtesy of Kim Minor @ IBM}
Big

- NASA, 1997: “taxing the capacities of main memory, local disk, and even remote disk”
- OED, 2015: “data of a very large size, typically to the extent that its manipulation and management present significant logistical challenges”
- 4 Vs:

<table>
<thead>
<tr>
<th>Volume</th>
<th>Velocity</th>
<th>Variety</th>
<th>Veracity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data at rest</td>
<td>Data in motion</td>
<td>Data in many forms</td>
<td>Data in doubt</td>
</tr>
<tr>
<td>Terabytes to exabytes of existing data to process</td>
<td>Streaming data, milliseconds to seconds to respond</td>
<td>Structured, unstructured, text and multimedia</td>
<td>Uncertainty due to data inconsistency and incompleteness, ambiguities, latency, deception and model approximations</td>
</tr>
</tbody>
</table>

1 Image courtesy of Kim Minor @ IBM
Big

- NASA, 1997: “taxing the capacities of main memory, local disk, and even remote disk”
- OED, 2015: “data of a very large size, typically to the extent that its manipulation and management present significant logistical challenges”
- 4 Vs:

<table>
<thead>
<tr>
<th>Volume</th>
<th>Velocity</th>
<th>Variety</th>
<th>Veracity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data at rest</td>
<td>Data in motion</td>
<td>Data in many forms</td>
<td>Data in doubt</td>
</tr>
<tr>
<td>Terabytes to</td>
<td>Streaming data,</td>
<td>Structured, unstructured,</td>
<td>Uncertainty due to data inconsistency,</td>
</tr>
<tr>
<td>exabytes of</td>
<td>milliseconds to</td>
<td>text and multimedia</td>
<td>incompleteness, ambiguities, latency,</td>
</tr>
<tr>
<td>existing data</td>
<td>seconds to respond</td>
<td></td>
<td>deception and model approximations</td>
</tr>
<tr>
<td>to process</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5th V: value

¹image courtesy of Kim Minor @ IBM
Big: our definition

Definition
An algorithm for **big data** is one with computational and memory requirements that scale **linearly** (or nearly linearly) in the size of the data.
Big: our definition

Definition

An algorithm for **big data** is one with computational and memory requirements that scale **linearly** (or nearly linearly) in the size of the data.

why this definition? independent of

- hardware
- business
Big: our definition

Definition
An algorithm for *big data* is one with computational and memory requirements that scale *linearly* (or nearly linearly) in the size of the data.

why this definition? independent of

- hardware
- business

if you use only algorithms for *big data*, then you’re working with *big data*
Messy

- noisy: some (or all) values suffer errors, inaccuracies, or malicious corruption
Messy

- noisy: some (or all) values suffer errors, inaccuracies, or malicious corruption
- missing: some values are missing, inconsistent, not recorded, or lost
Messy

- noisy: some (or all) values suffer errors, inaccuracies, or malicious corruption
- missing: some values are missing, inconsistent, not recorded, or lost
- heterogeneous: values of many different types
 - continuous values (e.g., 4.2, \(\pi \))
 - discrete values (e.g., 0, 4, 994)
 - nominal values (e.g., apple, banana, pear)
 - ordinal values (e.g., rarely, sometimes, often)
 - graphs or networks (e.g., person 1 is friends with person 2)
 - text (e.g., doctor’s note describing symptoms)
 - sets (e.g., items purchased)
Learning

▶ machine learning?
▶ human learning?
▶ when data is big and messy, machine help is essential for human learning!
Learning

- machine learning?
Learning

- machine learning?
- human learning?
Learning

- machine learning?
- human learning?
- when data is **big** and **messy**, machine help is essential for human learning!
Outline

Logistics

Stories

Definitions

Kinds of learning

Syllabus
Data table

- **n** examples (patients, respondents, households, assets)
- **d** features (tests, questions, sensors, times)

\[
A = \begin{bmatrix}
 a_{11} & \cdots & a_{1d} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{nd}
\end{bmatrix}
\]

- a_i is ith row of A: feature vector for ith example
- $a_{.j}$ is jth column of A: values for jth feature across all examples
- a_{ij} is jth feature of ith example
Supervised learning

- identify one column of data that we want to predict

\[
A = \begin{bmatrix}
 x_{11} & \cdots & x_{1 \, d-1} & y_1 \\
 \vdots & \ddots & \vdots & \vdots \\
 x_{n1} & \cdots & x_{n \, d-1} & y_n \\
\end{bmatrix} = \begin{bmatrix} X \mid y \end{bmatrix}
\]

- \(x_i \in \mathcal{X} \) for \(i = 1, \ldots, n \) are rows of \(X \)
- \(y_i \in \mathcal{Y} \) for \(i = 1, \ldots, n \) are entries of \(y \)
Supervised learning

- identify one column of data that we want to predict

\[
\begin{bmatrix}
A
\end{bmatrix} = \begin{bmatrix}
x_{11} & \cdots & x_{1d-1} & y_1 \\
\vdots & \ddots & \vdots & \vdots \\
x_{n1} & \cdots & x_{nd-1} & y_n
\end{bmatrix} = \begin{bmatrix}
X \\
y
\end{bmatrix}
\]

- \(x_i \in \mathcal{X} \) for \(i = 1, \ldots, n \) are rows of \(X \)
- \(y_i \in \mathcal{Y} \) for \(i = 1, \ldots, n \) are entries of \(y \)
- we believe there is a mapping \(f : \mathcal{X} \rightarrow \mathcal{Y} \)

\[y_i \approx f(x_i) \]

- our goal is to learn \(f \)
Example: supervised learning for credit decisioning

► goal: decide which credit card applicants should be approved
► input space: entries of $\mathcal{X} \in \mathbb{R}^d$ correspond to fields in credit application
 ► e.g., salary, years in residence, outstanding debt, number of credit lines, …
► output space: $\mathcal{Y} = \{+1, -1\}$
 ► +1 means approve
 ► −1 means reject
► data: $\mathcal{D} = (x_1, y_1), \ldots, (x_n, y_n)$
 applications of previous customers, and credit approval decisions made by humans

Q: what are potential problems with using a model built with this data?
A: wrong objective: human decision may not be correct decision; covariate shift: future data may look unlike past data; …
Example: supervised learning for credit decisioning

- goal: decide which credit card applicants should be approved
- input space: entries of $\mathcal{X} \in \mathbb{R}^d$ correspond to fields in credit application
 - e.g., salary, years in residence, outstanding debt, number of credit lines, ...
- output space: $\mathcal{Y} = \{+1, -1\}$
 - $+1$ means approve
 - -1 means reject
- data: $\mathcal{D} = (x_1, y_1), \ldots, (x_n, y_n)$
 applications of previous customers, and credit approval decisions made by humans

Q: what are potential problems with using a model built with this data?
Example: supervised learning for credit decisioning

- goal: decide which credit card applicants should be approved
- input space: entries of $\mathcal{X} \in \mathbb{R}^d$ correspond to fields in credit application
 - e.g., salary, years in residence, outstanding debt, number of credit lines, ...
- output space: $\mathcal{Y} = \{+1, -1\}$
 - $+1$ means approve
 - -1 means reject
- data: $\mathcal{D} = (x_1, y_1), \ldots, (x_n, y_n)$ applications of previous customers, and credit approval decisions made by humans

Q: what are potential problems with using a model built with this data?

A: wrong objective: human decision may not be correct decision;
 covariate shift: future data may look unlike past data; ...
Exercise: formalizing real problems

- identify a prediction goal
- identify the input space \mathcal{X}
- identify the output space \mathcal{Y}
- identify the data $\mathcal{D} = (x_1, y_1), \ldots, (x_n, y_n)$ you’d like to use
- what kinds of noise do you expect in the data?
Outline

Logistics

Stories

Definitions

Kinds of learning

Syllabus
Course objectives (I)

▶ plot
▶ predict
▶ cluster
▶ impute
▶ denoise
▶ recommend
▶ understand
Course objectives (II)

this course is about

▶ algorithms for big messy data
▶ learning to ask the right questions

at the end of the course, you should have learned

▶ at least one method to solve any problem
▶ machine learning is not magic; it’s math
▶ when not to trust your solution
Course objectives (II)

this course is about

▶ algorithms for big messy data
▶ learning to ask the right questions

at the end of the course, you should have learned

▶ at least one method to solve any problem
▶ machine learning is not magic; it’s math
▶ when not to trust your solution

the rest you can learn online. . .
Next steps

▶ ASAP:
 ▶ enroll (or drop) (or get on wait list)
 ▶ fill out course survey (provides access to campuswire Q&A)
 ▶ sign up for iClicker REEF

▶ Thursday 9/10/2020 9:30am: homework 0

links on course website:
https://people.orie.cornell.edu/mru8/orie4741/
Questions?

https://docs.google.com/spreadsheets/d/1vLbwiOWCDOn0wU6cU_r0RHAnY7C0fDZ1F8Yq09pqYYuk