ORIE 4741: Learning with Big Messy Data

Generalization

Professor Udell
Operations Research and Information Engineering
Cornell

September 23, 2017
Announcements

- midterm 10/5
- makeup exam 10/2, by arrangement with instructors (by email)
- homework due next Tuesday
- substitute next week: Sumanta Basu on decision trees!
- I won’t hold OH next week
Generalization and Overfitting

- goal of model is not to predict well on D
- goal of model is to predict well on new data

if the model has ____ training set error and ____ test set error, we say the model:

<table>
<thead>
<tr>
<th>low training set error</th>
<th>high training set error</th>
</tr>
</thead>
<tbody>
<tr>
<td>low test set error</td>
<td>generalizes</td>
</tr>
<tr>
<td>high test set error</td>
<td>overfits</td>
</tr>
<tr>
<td></td>
<td>?!?!</td>
</tr>
<tr>
<td></td>
<td>underfits</td>
</tr>
</tbody>
</table>
Simplest case: generalizing from a mean

exit polling

- sample n voters leaving polling places\(^1\)
- for each voter i, define the Boolean random variable
 \[
 z_i = \begin{cases}
 1 & \text{if voter } i \text{ voted for Clinton} \\
 0 & \text{otherwise}
 \end{cases}
 \]
- sample mean: $\nu = \frac{1}{n} \sum_{i=1}^{n} z_i$
- true mean: $\mu = \mathbb{E}_{i \sim \text{US electorate}} z_i$ is Clinton’s expected vote share

\(^1\)and suppose no one votes by mail or early or . . . , so these are iid samples from the US electorate
Simplest case: generalizing from a mean

exit polling

▶ sample n voters leaving polling places\(^1\)
▶ for each voter i, define the Boolean random variable

$$z_i = \begin{cases}
1 & \text{if voter } i \text{ voted for Clinton} \\
0 & \text{otherwise}
\end{cases}$$

▶ sample mean: $\nu = \frac{1}{n} \sum_{i=1}^{n} z_i$
▶ true mean: $\mu = \mathbb{E}_{i \sim \text{US electorate}} z_i$ is Clinton’s expected vote share

what does the sample mean ν tell us about the true mean μ?

\(^1\)and suppose no one votes by mail or early or . . . , so these are iid samples from the US electorate
Hoeffding Inequality

Theorem (Hoeffding Inequality)

Let $z_i \in \{0, 1\}$, $i = 1, \ldots, n$, be independent Boolean random variables with mean $\mathbb{E}z_i = \mu$. Define the sample mean $\nu = \frac{1}{n} \sum_{i=1}^{n} z_i$. Then for any $\epsilon > 0$,

$$
\mathbb{P}[|\nu - \mu| > \epsilon] \leq 2 \exp\left(-2\epsilon^2 n\right).
$$

an example of a **concentration inequality**
Hoeffding inequality

Theorem (Hoeffding Inequality)

Let \(z_i \in \{0, 1\}, i = 1, \ldots, n \), be independent Boolean random variables with mean \(\mathbb{E} z_i = \mu \). Define the sample mean \(\nu = \frac{1}{n} \sum_{i=1}^{n} z_i \). Then for any \(\epsilon > 0 \),

\[
\mathbb{P}[|\nu - \mu| > \epsilon] \leq 2 \exp \left(-2\epsilon^2 n\right).
\]

an example of a concentration inequality

- \(\mu \) can’t be much higher than \(\nu \)
- \(\mu \) can’t be much lower than \(\nu \)
- more samples \(n \) improve estimate exponentially quickly
Back to the learning problem

fix a hypothesis $h : \mathcal{X} \to \mathcal{Y}$. take

$$z_i = \begin{cases} 1 & y_i = h(x_i) \\ 0 & \text{otherwise} \end{cases} = \mathbb{1}(y_i = h(x_i))$$
Back to the learning problem

fix a hypothesis $h : \mathcal{X} \rightarrow \mathcal{Y}$. take

$$z_i = \begin{cases} 1 & y_i = h(x_i) \\ 0 & \text{otherwise} \end{cases} = \mathbb{1}(y_i = h(x_i))$$

example. build a model of voting behavior:

- $y_i = f(x_i)$ is 1 if voter i voted for Clinton, 0 otherwise
- $h(x_i)$ is our guess of how the voter will vote, using hypothesis h
- z_i is 1 if we guess correctly for voter i, 0 otherwise
- z_i depends on x_i, y_i, and h
Adding in probability

make our model probabilistic:

- fix a probability distribution $P(x, y)$
- sample (x_i, y_i) iid from $P(x, y)$
- form data set \mathcal{D} by sampling:
 - for $i = 1, \ldots, n$
 - sample $(x_i, y_i) \sim P(x, y)$
 - set $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$
Adding in probability

make our model probabilistic:

- fix a probability distribution \(P(x, y) \)
- sample \((x_i, y_i)\) iid from \(P(x, y) \)
- form data set \(\mathcal{D} \) by sampling:
 - for \(i = 1, \ldots, n \)
 - sample \((x_i, y_i) \sim P(x, y)\)
 - set \(\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\} \)

special case. \(y = f(x) \) is deterministic conditioned on \(x \):

\[
P(y|x) = \begin{cases}
1 & y = f(x) \\
0 & \text{otherwise}
\end{cases}
\]
Hoeffding for the noisy learning problem

- fix a hypothesis $h : \mathcal{X} \rightarrow \mathcal{Y}$.
- draw samples (x_i, y_i) iid from $P(x, y)$ to form $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$
- take $z_i = 1(y_i = h(x_i))$
- z_i are iid (since (x_i, y_i) are iid, and h is fixed)
- $\mathbb{E}z = \mathbb{E}(x, y)\sim P(x, y) 1(y = h(x))$

so we can apply Hoeffding! for any $\epsilon > 0$,

$$\mathbb{P} \left[\left| \frac{1}{n} \sum_{i=1}^{n} z_i - \mathbb{E}z \right| > \epsilon \right] \leq 2 \exp \left(-2\epsilon^2 n \right)$$
Hoeffding for the noisy learning problem

- fix a hypothesis $h : \mathcal{X} \rightarrow \mathcal{Y}$.
- draw samples (x_i, y_i) iid from $P(x, y)$ to form $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$
- take $z_i = 1(y_i = h(x_i))$
- z_i are iid (since (x_i, y_i) are iid, and h is fixed)
- $\mathbb{E}z = \mathbb{E}_{(x,y) \sim P(x,y)} 1(y = h(x))$

so we can apply Hoeffding! for any $\epsilon > 0$,

$$\mathbb{P}\left[\left| \frac{1}{n}\sum_{i=1}^{n} z_i - \mathbb{E} z \right| > \epsilon \right] \leq 2 \exp \left(-2\epsilon^2 n \right)$$

Q: what is the probability over?
Hoeffding for the noisy learning problem

- fix a hypothesis $h : \mathcal{X} \rightarrow \mathcal{Y}$.
- draw samples (x_i, y_i) iid from $P(x, y)$ to form $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$
- take $z_i = 1(y_i = h(x_i))$
- z_i are iid (since (x_i, y_i) are iid, and h is fixed)
- $\mathbb{E}z = \mathbb{E}_{(x,y) \sim P(x,y)} 1(y = h(x))$

so we can apply Hoeffding! for any $\epsilon > 0$,

$$\Pr \left[\left| \frac{1}{n} \sum_{i=1}^{n} z_i - \mathbb{E}z \right| > \epsilon \right] \leq 2 \exp \left(-2\epsilon^2 n \right)$$

Q: what is the probability over?

A: other data sets $\mathcal{D}' = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ drawn iid according to $P(x, y)$
Hoeffding for the noisy learning problem

- fix a hypothesis $h : \mathcal{X} \rightarrow \mathcal{Y}$.
- draw samples (x_i, y_i) iid from $P(x, y)$ to form $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$
- take $z_i = 1(y_i = h(x_i))$
- z_i are iid (since (x_i, y_i) are iid, and h is fixed)
- $\mathbb{E} z = \mathbb{E}_{(x,y)\sim P(x,y)} 1(y = h(x))$

so we can apply Hoeffding! for any $\epsilon > 0$,

$$
P \left[\left| \frac{1}{n} \sum_{i=1}^{n} z_i - \mathbb{E} z \right| > \epsilon \right] \leq 2 \exp \left(-2\epsilon^2 n \right)$$

Q: what is the probability over?
A: other data sets $\mathcal{D}' = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ drawn iid according to $P(x, y)$

Q: is $\frac{1}{n} \sum_{i=1}^{n} z_i$ more like training set error or test set error?
Hoeffding for the noisy learning problem

- fix a hypothesis $h : \mathcal{X} \rightarrow \mathcal{Y}$.
- draw samples (x_i, y_i) iid from $P(x, y)$ to form $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$
- take $z_i = 1(y_i = h(x_i))$
- z_i are iid (since (x_i, y_i) are iid, and h is fixed)
- $\mathbb{E}z = \mathbb{E}_{(x, y) \sim P(x, y)} 1(y = h(x))$

so we can apply Hoeffding! for any $\epsilon > 0$,

$$
\mathbb{P} \left(\left| \frac{1}{n} \sum_{i=1}^{n} z_i - \mathbb{E}z \right| > \epsilon \right) \leq 2 \exp \left(-2\epsilon^2 n \right)
$$

Q: what is the probability over?
A: other data sets $\mathcal{D}' = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ drawn iid according to $P(x, y)$

Q: is $\frac{1}{n} \sum_{i=1}^{n} z_i$ more like training set error or test set error?
A: test set error, since h is independent of \mathcal{D}
In-sample and out-of-sample error

some new terminology:

▶ **in-sample error.**

\[E_{\text{in}}(h) = \text{fraction of } D \text{ where } y_i \text{ and } h(x_i) \text{ disagree} \]

\[= \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(y_i \neq h(x_i)) \]

▶ **out-of-sample error.**

\[E_{\text{out}}(h) = \text{probability that } y \text{ and } h(x) \text{ disagree} \]

\[= \mathbb{P}_{(x,y) \sim P(x,y)} [y \neq h(x)] \]

notice

\[E_{\text{out}}(h) = \mathbb{E} [E_{\text{in}}(h)] \]
Hoeffding for the noisy learning problem

- fix a hypothesis $h : \mathcal{X} \rightarrow \mathcal{Y}$.
- consider (x_i, y_i) as samples drawn from $P(x, y)$
- take $z_i = \mathbb{1}(y_i = h(x_i))$
- z_i are iid (since (x_i, y_i) are iid, and h is fixed)
- $\mathbb{E}z = \mathbb{E}_{(x,y) \sim P(x,y)} \mathbb{1}(y = h(x))$

apply Hoeffding: for any $\varepsilon > 0$,

$$\mathbb{P}[|E_{in}(h) - E_{out}(h)| > \varepsilon] \leq 2 \exp \left(-2\varepsilon^2 n \right)$$
Does Hoeffding work for our learned model?

two scenarios:

1. Without looking at any data, pick a model \(h : \mathcal{X} \to \mathcal{Y} \) to predict who will vote for Clinton. Then sample data \(\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\} \), and set \(z_i = \mathbb{1}(y_i = h(x_i)) \).

2. Sample the data \(\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\} \), and use it to develop a model \(g : \mathcal{X} \to \mathcal{Y} \) to predict who will vote for Clinton (e.g., using perceptron). Set \(z'_i = \mathbb{1}(y_i = g(x_i)) \).

Is the sample mean \(\frac{1}{n} \sum_{i=1}^{n} z_i \) a good estimate for the expected performance \(\mathbb{E} z \)? Is \(\frac{1}{n} \sum_{i=1}^{n} z'_i \) a good estimate for \(\mathbb{E} z' \)?
Does Hoeffding work for our learned model?

two scenarios:

1. Without looking at any data, pick a model \(h : \mathcal{X} \rightarrow \mathcal{Y} \) to predict who will vote for Clinton. Then sample data \(\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\} \), and set \(z_i = \mathbb{1}(y_i = h(x_i)) \).

2. Sample the data \(\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\} \), and use it to develop a model \(g : \mathcal{X} \rightarrow \mathcal{Y} \) to predict who will vote for Clinton (e.g., using perceptron). Set \(z'_i = \mathbb{1}(y_i = g(x_i)) \).

Is the sample mean \(\frac{1}{n} \sum_{i=1}^{n} z_i \) a good estimate for the expected performance \(\mathbb{E}z \)? Is \(\frac{1}{n} \sum_{i=1}^{n} z'_i \) a good estimate for \(\mathbb{E}z' \)?

Q: Are the \(z_i \)s iid? What about the \(z'_i \)s?
Does Hoeffding work for our learned model?

two scenarios:

1. Without looking at any data, pick a model $h : \mathcal{X} \rightarrow \mathcal{Y}$ to predict who will vote for Clinton. Then sample data $D = \{(x_1, y_1), \ldots, (x_n, y_n)\}$, and set $z_i = 1(y_i = h(x_i))$.

2. Sample the data $D = \{(x_1, y_1), \ldots, (x_n, y_n)\}$, and use it to develop a model $g : \mathcal{X} \rightarrow \mathcal{Y}$ to predict who will vote for Clinton (e.g., using perceptron). Set $z'_i = 1(y_i = g(x_i))$.

Is the sample mean $\frac{1}{n} \sum_{i=1}^{n} z_i$ a good estimate for the expected performance $\mathbb{E}z$? Is $\frac{1}{n} \sum_{i=1}^{n} z'_i$ a good estimate for $\mathbb{E}z'$?

Q: Are the z_is iid? What about the z'_is?

A: z_is are iid. z'_is are not independent: they depend on g, which depends on the whole data set $D = \{(x_1, y_1), \ldots, (x_n, y_n)\}$.
Does Hoeffding work for our learned model?

two scenarios:

1. Without looking at any data, pick a model \(h : \mathcal{X} \to \mathcal{Y} \) to predict who will vote for Clinton. Then sample data \(\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\} \), and set \(z_i = \mathbb{1}(y_i = h(x_i)) \).

2. Sample the data \(\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\} \), and use it to develop a model \(g : \mathcal{X} \to \mathcal{Y} \) to predict who will vote for Clinton (e.g., using perceptron). Set \(z'_i = \mathbb{1}(y_i = g(x_i)) \).

Is the sample mean \(\frac{1}{n} \sum_{i=1}^{n} z_i \) a good estimate for the expected performance \(\mathbb{E}z \)? Is \(\frac{1}{n} \sum_{i=1}^{n} z'_i \) a good estimate for \(\mathbb{E}z' \)?

Q: Are the \(z_i \)'s iid? What about the \(z'_i \)'s?

A: \(z_i \)'s are iid. \(z'_i \)'s are not independent: they depend on \(g \), which depends on the whole data set \(\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\} \).

Q: Does Hoeffding apply to the first? the second?
Does Hoeffding work for our learned model?

two scenarios:

1. Without looking at any data, pick a model $h : \mathcal{X} \to \mathcal{Y}$ to predict who will vote for Clinton. Then sample data $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$, and set $z_i = 1(y_i = h(x_i))$.

2. Sample the data $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$, and use it to develop a model $g : \mathcal{X} \to \mathcal{Y}$ to predict who will vote for Clinton (e.g., using perceptron). Set $z'_i = 1(y_i = g(x_i))$.

Is the sample mean $\frac{1}{n} \sum_{i=1}^{n} z_i$ a good estimate for the expected performance $\mathbb{E}z$? Is $\frac{1}{n} \sum_{i=1}^{n} z'_i$ a good estimate for $\mathbb{E}z'$?

Q: Are the z_is iid? What about the z'_is?

A: z_is are iid. z'_is are not independent: they depend on g, which depends on the whole data set $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$.

Q: Does Hoeffding apply to the first? the second?

A: Hoeffding applies to first, not to second.

Extreme case for second scenario: model memorizes the data.
Recall validation procedure

how to decide which model to use?

- split data into training set D_{train} and test set D_{test}
- pick m different interesting model classes
e.g., different ϕs: $\phi_1, \phi_2, \ldots, \phi_m$
- fit ("train") models on training set D_{train}
 get one model $h : \mathcal{X} \rightarrow \mathcal{Y}$ for each ϕs, and set
 \[
 \mathcal{H} = \{ h_1, h_2, \ldots, h_m \}
 \]
- compute error of each model on test set D_{test} and choose lowest:
 \[
 g = \arg\min_{h \in \mathcal{H}} E_{D_{\text{test}}} (h)
 \]
Recall validation procedure

how to decide which model to use?

- split data into training set $\mathcal{D}_{\text{train}}$ and test set $\mathcal{D}_{\text{test}}$
- pick m different interesting model classes
e.g., different ϕs: ϕ_1, ϕ_2, \ldots, ϕ_m
- fit ("train") models on training set $\mathcal{D}_{\text{train}}$
 get one model $h : \mathcal{X} \to \mathcal{Y}$ for each ϕs, and set

$$\mathcal{H} = \{ h_1, h_2, \ldots, h_m \}$$

- compute error of each model on test set $\mathcal{D}_{\text{test}}$ and choose lowest:

$$g = \arg \min_{h \in \mathcal{H}} E_{\mathcal{D}_{\text{test}}} (h)$$

Q: Are $\{ z_i = 1 (y_i = g(x_i) : (x_i, y_i) \in \mathcal{D}_{\text{test}}) \}$ independent?
Recall validation procedure

how to decide which model to use?

- split data into training set D_{train} and test set D_{test}
- pick m different interesting model classes
 e.g., different ϕs: $\phi_1, \phi_2, \ldots, \phi_m$
- fit ("train") models on training set D_{train}
 get one model $h : \mathcal{X} \rightarrow \mathcal{Y}$ for each ϕs, and set
 \[\mathcal{H} = \{ h_1, h_2, \ldots, h_m \} \]
- compute error of each model on test set D_{test} and choose lowest:
 \[g = \arg\min_{h \in \mathcal{H}} E_{D_{\text{test}}} (h) \]

Q: Are $\{ z_i = 1 (y_i = g(x_i) : (x_i, y_i) \in D_{\text{test}}) \}$ independent?
A: No; g was trained on D_{test}!
Hoeffding does not directly apply:
$E_{D_{\text{test}}} (g)$ may not accurately estimate $E_{\text{out}} (g)$
The union bound

recall the union bound: for two random events A and B,

$$P(A \cup B) \leq P(A) + P(B)$$
The union bound

recall the **union bound**: for two random events A and B,

$$\mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$$

Q: When is this bound tight? i.e., when is

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)?$$
The union bound

recall the **union bound**: for two random events A and B,

$$\Pr(A \cup B) \leq \Pr(A) + \Pr(B)$$

Q: When is this bound tight? *i.e.,* when is

$$\Pr(A \cup B) = \Pr(A) + \Pr(B)?$$

A: When $A \cap B = \emptyset$
Rescuing Hoeffding: the union bound

- let’s suppose \mathcal{H} is finite, with m hypotheses in it
- the hypothesis g is one of those m hypotheses
- so if (given a data set \mathcal{D})
 \[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \varepsilon, \]
 then for some $h \in \mathcal{H}$, $|E_{\text{in}}(h) - E_{\text{out}}(h)| > \varepsilon$
- (g depends on the data set; we might choose different hs for different data sets)
Rescuing Hoeffding: the union bound

- let’s suppose \mathcal{H} is finite, with m hypotheses in it
- the hypothesis g is one of those m hypotheses
- so if (given a data set \mathcal{D})
 \[|E_{in}(g) - E_{out}(g)| > \varepsilon, \]
 then for some $h \in \mathcal{H}$, $|E_{in}(h) - E_{out}(h)| > \varepsilon$
- (g depends on the data set; we might choose different hs for different data sets)

SO

\[
P[|E_{in}(g) - E_{out}(g)| > \varepsilon] \leq \sum_{h \in \mathcal{H}} P[|E_{in}(h) - E_{out}(h)| > \varepsilon] \leq \sum_{h \in \mathcal{H}} 2 \exp\left(-2\varepsilon^2 n\right) = 2m \exp\left(-2\varepsilon^2 n\right)\]
Hoeffding for learning

we just proved that our learning algorithm generalizes!

Theorem (Generalization bound for learning)

Let \(g \) be a hypothesis chosen from among \(m \) different hypotheses. Then

\[
P[|E_{in}(g) - E_{out}(g)| > \varepsilon] \leq 2m \exp \left(-2\varepsilon^2 n\right).
\]

Q: do you think this bound is tight?
A: no, it can overcount badly. For random events \(A \) and \(B \), if \(P(A \cap B) \) is large, then \(P(A \cup B) \ll P(A) + P(B) \) more information.

look up the Vapnik-Chervoninkis (VC) dimension, e.g., in *Learning from Data* by Abu-Mostafa, Magdon-Ismail, and Lin.
Hoeffding for learning

we just proved that our learning algorithm generalizes!

Theorem (Generalization bound for learning)

Let \(g \) be a hypothesis chosen from among \(m \) different hypotheses. Then

\[
P[|E_{in}(g) - E_{out}(g)| > \varepsilon] \leq 2m \exp \left(-2\varepsilon^2 n\right).
\]

Q: do you think this bound is tight?
Hoeffding for learning

we just proved that our learning algorithm generalizes!

Theorem (Generalization bound for learning)

Let g be a hypothesis chosen from among m different hypotheses. Then

$$\Pr[|E_{in}(g) - E_{out}(g)| > \varepsilon] \leq 2m \exp\left(-2\varepsilon^2 n\right).$$

Q: do you think this bound is tight?

A: no, it can overcount badly. for random events A and B, if $\Pr(A \cap B)$ is large, then $\Pr(A \cup B) \ll \Pr(A) + \Pr(B)$
Hoeffding for learning

we just proved that our learning algorithm generalizes!

Theorem (Generalization bound for learning)

Let g be a hypothesis chosen from among m different hypotheses. Then

$$
P[|E_{in}(g) - E_{out}(g)| > \varepsilon] \leq 2m \exp(-2\varepsilon^2 n) .$$

Q: do you think this bound is tight?

A: no, it can overcount badly. for random events A and B, if $P(A \cap B)$ is large, then $P(A \cup B) \ll P(A) + P(B)$

more information. look up the Vapnik-Chervoninkis (VC) dimension, e.g., in *Learning from Data*, by Abu-Mostafa, Magdon-Ismail, and Lin.
A tradeoff for learning

- we want \mathcal{H} to be **big** to make E_{in} small
- we want \mathcal{H} to be **small** to ensure E_{out} is close to E_{in}
A tradeoff for learning

- we want \mathcal{H} to be **big** to make E_{in} small
- we want \mathcal{H} to be **small** to ensure E_{out} is close to E_{in}

what does this tell us about the difficulty of learning complicated functions f?
Generalization for regression

Theorem (Generalization bound for learning)

Let \(g \) be a hypothesis chosen from among \(m \) different hypotheses. Then

\[
P[|E_{in}(g) - E_{out}(g)| > \varepsilon] \leq 2m \exp \left(-2\varepsilon^2 n\right).
\]

to apply Hoeffding to real-valued outputs:

- pick some small \(\varepsilon > 0 \)
- \(\mathbb{1}((y_i - h(x_i))^2 \leq \varepsilon)) \) is 0 if hypothesis \(h \) predicts well, 1 if hypothesis \(h \) predicts poorly
- define error of hypothesis \(h \) on data set \(D \) as

\[
E_D(h) = \frac{1}{|D|} \sum_{(x,y) \in D} \mathbb{1}((y - h(x))^2 \leq \varepsilon)
\]
Recap

- We introduced a probabilistic framework for generating data.
- We showed that the in-sample error predicts the out-of-sample error for a single hypothesis.
- We showed that the in-sample error predicts the out-of-sample error for a learned hypothesis, when \(\mathcal{H} \) is finite.
- We stopped there, because the math gets much more complicated — but indeed, generalization is possible!
- **The practical lesson:** (especially for complex models), don’t learn and estimate your error on the same data set.
the in-sample error and training error do **not** obey the Hoeffding inequality (without using, e.g., a union bound)

- if test set is **only** used for testing (not for model selection), the test error **does** obey the Hoeffding inequality

\[
P[|E_{\text{test}}(g) - E_{\text{out}}(g)| > \varepsilon] \leq 2 \exp \left(-2\varepsilon^2 |D_{\text{test}}| \right) .
\]

so we can use the test error to predict generalization
Overfitting to the test set

if test set is used for model selection, the test error obeys the Hoeffding inequality **with the union bound**

- for each model family, optimal model trained on D is a hypothesis h
- so finite number of models $m \Rightarrow$ finite hypothesis space H
- hypotheses $h \in H$ are independent of test set D'
- let $g_{D'}$ be the hypothesis $h \in H$ with lowest error on test set D'
- Hoeffding with union bound applies!

$$\mathbb{P}[|E_D'(g_{D'}) - E_{out}(g_{D'})| > \varepsilon] \leq 2m \exp\left(-2\varepsilon^2|D'|\right).$$
References

- Concentration bounds for infinite model classes: see introduction to VC dimension in “Learning from Data” by Abu-Mostafa et al.
- Concentration bounds for time series: see papers by Cosma Shalizi