Missing Value Imputation via Gaussian Copula

Yuxuan Zhao

ORIE 4741, Nov 11 2021
Why I am here today?

- In your course project, it is very likely to run into missing data.
Why I am here today?

- In your course project, it is very likely to run into missing data.
- The missing data imputation method I introduce today can be simply used without selecting hyperparameters.
- The software can be easily installed and used.
Why I am here today?

- In your course project, it is very likely to run into missing data.
- The missing data imputation method I introduce today can be simply used without selecting hyperparameters.
- The software can be easily installed and used.
- We want to know if our method works well for your problem!
Table of Contents

1. Motivation
2. Gaussian copula model
3. Demo
Let’s first see a general social survey dataset

Figure 1: 2538 participants and 9 questions. 18.2% entries are missing in total.
Example variables

- **Subjective class identification**: If you were asked to use one of four names for your social class, which would you say you belong in: the lower class, the working class, the middle class, or the upper class?

- **General happiness**: Taken all together, how would you say things are these days—would you say that you are very happy, pretty happy, or not too happy?

- **Respondents income**: In which of these groups did your earnings from (OCCUPATION IN OCC) for last year—[the previous year]—fall? That is, before taxes or other deductions. Just tell me the letter.

- **Weeks r. worked last year**: In [the previous year] how many weeks did you work either full-time or part-time not counting work around the house—include paid vacations and sick leave?
Recap: GLRM imputes mixed data better than PCA

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that XW approximates $Y \in \mathbb{R}^{n \times p}$ well:

$$\minimize \sum_{(i,j) \in \Omega} \ell_j \left(Y_{ij}, x_i^T w_j \right) + \sum_{i=1}^{n} r_i (x_i) + \sum_{j=1}^{d} \tilde{r}_j (w_j)$$

- ℓ_j can vary for different j.
- The regularizer for row r_i and column \tilde{r}_j can vary.
Recap: GLRM imputes mixed data better than PCA

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that XW approximates $Y \in \mathbb{R}^{n \times p}$ well:

$$\begin{align*}
\text{minimize} & \quad \sum_{(i,j) \in \Omega} \ell_j \left(Y_{ij}, x_i^T w_j \right) + \sum_{i=1}^{n} r_i (x_i) + \sum_{j=1}^{d} \tilde{r}_j (w_j) \\
\end{align*}$$

- ℓ_j can vary for different j.
- The regularizer for row r_i and column \tilde{r}_j can vary.

Great flexibility usually means many choices to make...
GLRM: practical consideration

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that XW approximates $Y \in \mathbb{R}^{n \times p}$ well:

$$\text{minimize} \sum_{(i,j) \in \Omega} \ell_j \left(Y_{ij}, x_i^T w_j \right) + \sum_{i=1}^{n} r_i (x_i) + \sum_{j=1}^{d} \tilde{r}_j (w_j)$$

- What ℓ_j to choose?
- How to assign weights to ℓ_j when columns have different scales?
- What regularizer r_i, \tilde{r}_j to use?
GLRM: practical consideration

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that XW approximates $Y \in \mathbb{R}^{n \times p}$ well:

$$\minimize \sum_{(i,j) \in \Omega} \ell_j \left(Y_{ij}, x_i^T w_j \right) + \sum_{i=1}^{n} r_i (x_i) + \sum_{j=1}^{d} \tilde{r}_j (w_j)$$

▶ What ℓ_j to choose?
▶ How to assign weights to ℓ_j when columns have different scales?
▶ What regularizer r_i, \tilde{r}_j to use?

And there are tuning parameters...
GLRM: practical consideration

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that XW approximates $Y \in \mathbb{R}^{n \times p}$ well:

$$\text{minimize} \quad \sum_{(i,j) \in \Omega} \ell_j (Y_{ij}, x_i^T w_j) + \sum_{i=1}^{n} r_i (x_i) + \sum_{j=1}^{d} \tilde{r}_j (w_j)$$

- How to choose the rank k?
- If setting r_i and \tilde{r}_j as quadratic regularization with parameter λ, how to choose λ?
GLRM: practical consideration

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that XW approximates $Y \in \mathbb{R}^{n \times p}$ well:

$$
\text{minimize} \quad \sum_{(i,j) \in \Omega} \ell_j \left(Y_{ij}, x_i^T w_j \right) + \sum_{i=1}^{n} r_i (x_i) + \sum_{j=1}^{d} \tilde{r}_j (w_j)
$$

- How to choose the rank k?
- If setting r_i and \tilde{r}_j as quadratic regularization with parameter λ, how to choose λ?
- Need to search over two-dimensional grid.
GLRM: practical consideration

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that XW approximates $Y \in \mathbb{R}^{n \times p}$ well:

$$\text{minimize} \sum_{(i,j) \in \Omega} \ell_j \left(Y_{ij}, x_i^T w_j \right) + \sum_{i=1}^{n} r_i (x_i) + \sum_{j=1}^{d} \tilde{r}_j (w_j)$$

- How to choose the rank k?
- If setting r_i and \tilde{r}_j as quadratic regularization with parameter λ, how to choose λ?
- Need to search over two-dimensional grid.

Is the problem just about computation?
GLRM: low rank assumption

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that XW approximates $Y \in \mathbb{R}^{n \times p}$ well:

$$
\text{minimize} \sum_{(i,j) \in \Omega} \ell_j \left(Y_{ij}, x_i^T w_j \right) + \sum_{i=1}^{n} r_i (x_i) + \sum_{j=1}^{d} \tilde{r}_j (w_j)
$$

- Only works well when Y can be approximated by low rank matrix.
- Big data (large n and large p) usually have low rank structure.
 - Movie rating datasets: many movies and many users
- Long skinny data (large n and small p) usually does not have low rank structure.
 - Social survey data: many participants, few questions.
Get over the low rank assumption

- Large n allows learning more complex variable dependence than the low rank structure.
- Statistical dependence structure: model the joint distribution
 - Gaussian distribution for quantitative vector
Get over the low rank assumption

- Large n allows learning more complex variable dependence than the low rank structure.
- Statistical dependence structure: model the joint distribution
 - Gaussian distribution for quantitative vector
 - All 1-dimensional marginals are Gaussian
 - The joint p-dimensional distribution is multivariate Gaussian
Get over the low rank assumption

- Large n allows learning more complex variable dependence than the low rank structure.
- Statistical dependence structure: model the joint distribution
 - Gaussian distribution for quantitative vector
 1. All 1-dimensional marginals are Gaussian
 2. The joint p-dimensional distribution is multivariate Gaussian

First, can we use 1-dimensional Gaussian to model ordinal/binary variable?
Motivation

Histograms for some GSS variables

General happiness
- Counts from left to right: Very happy to Not too happy
- 0 400 800 1200
- 1 2 3

Respondent's income
- Counts from left to right: Less than $1000 to more than $25000
- 0 200 400 600 800
- 1 2 3 4 5 6 7 8 9 10 11 12

How many people in contact in a typical weekday
- Counts from left to right: 0–4 persons to 50 or more
- 0 50 150 250 350
- 1 2 3 4 5

Weeks r. worked last year
- Counts from left to right: 0 to 52
- 0 200 600 1000

Motivation
Generate ordinal data by thresholding Gaussian variable

- Select thresholds to ensure desired class proportion.
- A mapping between ordinal levels and intervals.
- \(f(z) = x \) for \(z \in [a_x, a_{x+1}) \) or \(f^{-1}(x) = [a_x, a_{x+1}) \).
Estimated thresholds for some GSS variables

Figure 2: Red vertical lines indicate estimated thresholds.
Table of Contents

1 Motivation

2 Gaussian copula model

3 Demo
Gaussian copula model for mixed data

We say $x = (x_1, \ldots, x_p)$ follows the Gaussian copula model if

- **marginals:** $x = f(z)$ for $f = (f_1, \ldots, f_p)$ entrywise monotonic,

 $x_j = f_j(z_j), \quad j = 1, \ldots, p$

- **copula:** $z \sim \mathcal{N}(0, \Sigma)$ with correlation matrix Σ
Gaussian copula model for mixed data

We say $x = (x_1, \ldots, x_p)$ follows the **Gaussian copula model** if

- **marginals:** $x = f(z)$ for $f = (f_1, \ldots, f_n)$ entrywise monotonic,
 $$x_j = f_j(z_j), \quad j = 1, \ldots, p$$

- **copula:** $z \sim \mathcal{N}(0, \Sigma)$ with correlation matrix Σ

- Estimate f_j to match the observed empirical distribution
- Estimate Σ through an EM algorithm
Given parameter estimate, imputation is easy

Figure 3: Curves indicate density and dots mark the observation.
Given parameter estimate, imputation is easy

Figure 4: Curves indicate density and crosses mark the prediction.
Given parameter estimate, imputation is easy

Figure 5: Curves indicate density and crosses mark the prediction.
Given parameters, imputation is easy

- observed entries x_O of new row $x \in \mathbb{R}^p$, $O \subset \{1, \ldots, p\}$
- missing entries $M = \{1, \ldots, p\} \setminus O$
- marginals $f = (f_O, f_M)$ and copula correlation matrix Σ
- the truncated region: $z_O \in f_O^{-1}(x_O) := \prod_{j \in O} f_j^{-1}(x_j)$

Impute missing entries using normality of z_M:

- latent missing z_M are normal given z_O:

$$z_M | z_O \sim \mathcal{N}(\Sigma_M, O \Sigma_O^{-1} O z_O, \Sigma_M, M - \Sigma_M, O \Sigma_O^{-1} O \Sigma_O, M)$$
Given parameters, imputation is easy

- observed entries \(\mathbf{x}_O \) of new row \(\mathbf{x} \in \mathbb{R}^p, O \subset \{1, \ldots, p\} \)
- missing entries \(\mathcal{M} = \{1, \ldots, p\} \setminus O \)
- marginals \(\mathbf{f} = (\mathbf{f}_O, \mathbf{f}_M) \) and copula correlation matrix \(\Sigma \)
- the truncated region: \(\mathbf{z}_O \in \mathbf{f}_O^{-1}(\mathbf{x}_O) := \prod_{j \in O} f_j^{-1}(x_j) \)

Impute missing entries using normality of \(\mathbf{z}_M \):

- latent missing \(\mathbf{z}_M \) are normal given \(\mathbf{z}_O \):

\[
\mathbf{z}_M | \mathbf{z}_O \sim \mathcal{N}(\Sigma_{\mathcal{M},\mathcal{O}} \Sigma_{\mathcal{O},\mathcal{O}}^{-1} \mathbf{z}_O, \Sigma_{\mathcal{M},\mathcal{M}} - \Sigma_{\mathcal{M},\mathcal{O}} \Sigma_{\mathcal{O},\mathcal{O}}^{-1} \Sigma_{\mathcal{O},\mathcal{M}})
\]

- predict with mean

\[
\hat{\mathbf{z}}_M = \Sigma_{\mathcal{M},\mathcal{O}} \Sigma_{\mathcal{O},\mathcal{O}}^{-1} \mathbb{E}[\mathbf{z}_O | \mathbf{z}_O \in \mathbf{f}_O^{-1}(\mathbf{x}_O)]
\]

- map back to observed space \(\hat{\mathbf{x}}_M = \mathbf{f}_M(\hat{\mathbf{z}}_M) \)
Multiple imputation

When imputation is the intermediate step to learn some parameter θ, e.g. linear coefficients, on imputed complete dataset:

1. Generate m different imputed datasets $X^{(1)}, \ldots, X^{(m)}$.
2. For each imputed dataset $X^{(j)}$, learn the desired model parameter $\hat{\theta}^{(j)}$ for $j = 1, \ldots, m$.
3. Combine all estimates into one: $\hat{\theta} = \frac{\sum_{j=1}^{m} \hat{\theta}^{(j)}}{m}$.
Given parameters, imputation is easy

- observed entries x_O of new row $x \in \mathbb{R}^p$, $O \subset \{1, \ldots, p\}$
- missing entries $M = \{1, \ldots, p\} \setminus O$
- marginals $f = (f_O, f_M)$ and copula correlation matrix Σ
- the truncated region: $z_O \in f_O^{-1}(x_O) := \prod_{j \in O} f_j^{-1}(x_j)$

Impute missing entries using normality of z_M:

- latent missing z_M are normal given z_O:

$$z_M|z_O \sim \mathcal{N}(\Sigma_M, O \Sigma_O^{-1} z_O, \Sigma_M, M - \Sigma_M, O \Sigma_O^{-1} \Sigma_O, M)$$

- Sample $z_M^{(i)}$ from the above distribution for $i = 1, \ldots, m$.
- map back to observed space $\hat{x}_M^{(i)} = f_M(\hat{z}_M^{(i)})$ for $i = 1, \ldots, m$.

Gaussian copula model
Table of Contents

1 Motivation

2 Gaussian copula model

3 Demo
Check out our Github page

► Python package
 https://github.com/udellgroup/GaussianCopulaImp
► Single line installment: pip install GaussianCopulaImp
► More tutorials on multiple imputation, accelerating the algorithm for large datasets, etc.