ORIE 4741: Learning with Big Messy Data

Feature Engineering

Professor Udell
Operations Research and Information Engineering
Cornell

September 13, 2021
Announcements 9/14/21

▶ section this week: github + jupyter tutorial
▶ bonus section from last year: linear algebra review
▶ hw1 is out, due this Thursday at 9:15am
▶ form project groups by this Sunday. see https://people.orie.cornell.edu/mru8/orie4741/projects.html
▶ looking for a project group? post your idea on zulip in the #project channel
Poll

How many Cornell students tested positive for COVID yesterday?

A. 2
B. 6
C. 13
D. 27
E. 233
Poll

Can we see examples of good projects from previous years?

A. yes
B. no
Questions about homework 1 should be posted on Zulip

A. in the #general channel, with a topic like “homework”

B. in the #homework 1 channel, with a topic like “q3c ambiguous wording”
Outline

Feature engineering

Polynomial transformations

Boolean, nominal, ordinal, text, ...

Time series
Linear models

To fit a linear model (= linear in parameters \(w \))

- pick a transformation \(\phi : \mathcal{X} \rightarrow \mathbb{R}^d \)
- predict \(y \) using a linear function of \(\phi(x) \)

\[
h(x) = w^T \phi(x) = \sum_{i=1}^{d} w_i \phi_i(x)
\]

- we want \(h(x_i) \approx y_i \) for every \(i = 1, \ldots, n \)

Q: why do we want a model linear in the parameters \(w \)?
A: because the optimization problems are easy to solve! e.g., just use least squares.
Linear models

To fit a linear model (= linear in parameters w)

- pick a transformation $\phi : \mathcal{X} \to \mathbb{R}^d$
- predict y using a linear function of $\phi(x)$

$$h(x) = w^T \phi(x) = \sum_{i=1}^{d} w_i(\phi(x))_i$$

- we want $h(x_i) \approx y_i$ for every $i = 1, \ldots, n$

Q: why do we want a model linear in the parameters w?
Linear models

To fit a linear model (linear in parameters w)

- pick a transformation $\phi : \mathcal{X} \rightarrow \mathbb{R}^d$
- predict y using a linear function of $\phi(x)$

$$h(x) = w^T \phi(x) = \sum_{i=1}^{d} w_i (\phi(x))_i$$

- we want $h(x_i) \approx y_i$ for every $i = 1, \ldots, n$

Q: why do we want a model linear in the parameters w?

A: because the optimization problems are easy to solve! e.g., just use least squares.
Feature engineering

How to pick $\phi : \mathcal{X} \rightarrow \mathbb{R}^d$?

- so response y will depend linearly on $\phi(x)$
- so d is not too big
Feature engineering

How to pick $\phi : \mathcal{X} \rightarrow \mathbb{R}^d$?

- so response y will depend linearly on $\phi(x)$
- so d is not too big

if you think this looks like a hack: you’re right
Feature engineering

events:

- adding offset
- standardizing features
- polynomial fits
- products of features
- autoregressive models
- local linear regression
- transforming Booleans
- transforming ordinals
- transforming nominals
- transforming images
- transforming text
- concatenating data
- all of the above

https://xkcd.com/2048/
Outline

Feature engineering

Polynomial transformations

Boolean, nominal, ordinal, text, …

Time series
Adding offset

\[X = \mathbb{R}^{d-1} \]

let \(\phi(x) = (x, 1) \)

now \(h(x) = w^T \phi(x) = w_{1:d-1}^T x + w_d \)
Fitting a polynomial

- $\mathcal{X} = \mathbb{R}$
- let
 \[\phi(x) = (1, x, x^2, x^3, \ldots, x^{d-1}) \]
 be the vector of all monomials in x of degree $< d$
- now $h(x) = w^T \phi(x) = w_1 + w_2 x + w_3 x^2 + \cdots + w_d x^{d-1}$
Demo: Linear models

https://github.com/ORIE4741/demos
IMHE and the cubic fit

The ‘cubic fit’ can depend on the data you use

Source: IHME, Johns Hopkins University, Post analysis

https://www.washingtonpost.com/politics/2020/05/05/white-houses-self-serving-approach-estimating-deadliness-
Fitting a multivariate polynomial

- \(\mathcal{X} = \mathbb{R}^2 \)
- pick a maximum degree \(k \)
- let

\[
\phi(x) = (1, x_1, x_2, x_1^2, x_1x_2, x_2^2, x_1^3, x_1^2x_2, x_1x_2^2, x_2^3 \ldots, x_2^k)
\]

be the vector of all monomials in \(x_1 \) and \(x_2 \) of degree \(\leq k \)
- now \(h(x) = \mathbf{w}^T \phi(x) \) can fit any polynomial of degree \(\leq k \) in \(\mathcal{X} \)
Fitting a multivariate polynomial

- \(\mathcal{X} = \mathbb{R}^2 \)
- pick a maximum degree \(k \)
- let

\[
\phi(x) = (1, x_1, x_2, x_1^2, x_1x_2, x_2^2, x_1^3, x_1^2x_2, x_1x_2^2, x_2^3 \ldots, x_2^k)
\]

be the vector of all monomials in \(x_1 \) and \(x_2 \) of degree \(\leq k \)
- now \(h(x) = w^T \phi(x) \) can fit any polynomial of degree \(\leq k \) in \(\mathcal{X} \)

and similarly for \(\mathcal{X} = \mathbb{R}^d \ldots \)
Demo: Linear models

polynomial classification

https://github.com/ORIE4741/demos
Linear classification

![Linear classification graph](image-url)
Example 1: multivariate polynomial classification

- \(\mathcal{X} = \mathbb{R}^2, \mathcal{Y} = \{-1, 1\} \)
- let
 \[
 \phi(x) = (1, x_1, x_2, x_1^2, x_1x_2, x_2^2)
 \]
 be the vector of all monomials of degree \(\leq 2 \)
- now let \(h(x) = \text{sign}(w^T \phi(x)) \)

Q: if \(h(x) = \text{sign}(-30 - 9x_1 + 2x_2 + x_1^2 + x_2^2) \), what is \(\{x : h(x) = 1\} \)?

A. a circle
B. an ellipse
C. a line
D. a hyperbola
E. a half-plane
Example 2: multivariate polynomial classification

- $\mathcal{X} = \mathbb{R}^2$, $\mathcal{Y} = \{-1, 1\}$
- let
 \[
 \phi(x) = (1, x_1, x_2, x_1^2, x_1x_2, x_2^2)
 \]
 be the vector of all monomials of degree ≤ 2
- now let $h(x) = \text{sign}(w^T \phi(x))$

Q: If $h(x) = \text{sign}(-5 - 3x_1 + 2x_2 + x_1^2 - x_1x_2 + 5x_2^2)$, what is $\{x : h(x) = 1\}$?

A. a circle
B. an ellipse
C. a line
D. a hyperbola
E. a half-plane
Example 3: multivariate polynomial classification

- $\mathcal{X} = \mathbb{R}^2$, $\mathcal{Y} = \{-1, 1\}$
- let
 $$\phi(x) = (1, x_1, x_2, x_1^2, x_1x_2, x_2^2)$$
 be the vector of all monomials of degree ≤ 2
- now let $h(x) = \text{sign}(w^T \phi(x))$

Q: if $h(x) = \text{sign}(-5 - 3x_1 + 2x_2 + x_1^2 - x_1x_2 + 5x_2^2)$, what is $\{x : h(x) = 1\}$?

A. a circle
B. an ellipse
C. a line
D. a hyperbola
E. a half-plane
Example 3: multivariate polynomial classification

\(\mathcal{X} = \mathbb{R}^2, \mathcal{Y} = \{-1, 1\} \)

let

\[
\phi(x) = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2)
\]

be the vector of all monomials of degree \(\leq 2 \)

now let \(h(x) = \text{sign}(w^T \phi(x)) \)

Q: if \(h(x) = \text{sign}(-5 - 3x_1 + 2x_2 + x_1^2 - x_1 x_2 - 2x_2^2) \), what is \(\{x : h(x) = 1\} \)?

A. a circle
B. an ellipse
C. a line
D. a hyperbola
E. a half-plane
Outline

Feature engineering

Polynomial transformations

Boolean, nominal, ordinal, text, …

Time series
Notation: boolean indicator function

define

\[\mathbb{1}(\text{statement}) = \begin{cases}
1 & \text{statement is true} \\
0 & \text{statement is false}
\end{cases} \]

examples:

- \(\mathbb{1}(1 < 0) = 0 \)
- \(\mathbb{1}(17 = 17) = 1 \)
Boolean variables

- $\mathcal{X} = \{\text{true, false}\}$
- let $\phi(x) = 1(x)$
Boolean expressions

$\mathcal{X} = \{\text{true, false}\}^2 = \{(\text{true, true}), (\text{true, false}), (\text{false, true}), (\text{false, false})\}$.

Let $\phi(x) = [\mathbb{1}(x_1), \mathbb{1}(x_2), \mathbb{1}(x_1 \text{ and } x_2), \mathbb{1}(x_1 \text{ or } x_2)]$

Equivalent: polynomials in $[\mathbb{1}(x_1), \mathbb{1}(x_2)]$ span the same space

Encodes logical expressions!
Nominal values: one-hot encoding

- nominal data: e.g., $\mathcal{X} = \{\text{apple, orange, banana}\}$
- let

$$\phi(x) = [\mathbb{1}(x = \text{apple}), \mathbb{1}(x = \text{orange}), \mathbb{1}(x = \text{banana})]$$

- called **one-hot encoding**: only one element is non-zero
Nominal values: one-hot encoding

- nominal data: e.g., \(\mathcal{X} = \{ \text{apple}, \text{orange}, \text{banana} \} \)
- let
 \[
 \phi(x) = [\mathbb{1}(x = \text{apple}), \mathbb{1}(x = \text{orange}), \mathbb{1}(x = \text{banana})]
 \]
- called **one-hot encoding**: only one element is non-zero

extension: sets
Nominal values: look up features!

why not use other information known about each item?

- $\mathcal{X} = \{\text{apple, orange, banana}\}$
 - price, calories, weight,

- $\mathcal{X} = \text{zip code}$
 - average income, temperature in July, walk score, % residential,

-

database lingo: **join** tables on nominal value
Ordinal values: real encoding

- ordinal data: e.g.,
 \[\mathcal{X} = \{\text{Stage I, Stage II, Stage III, Stage IV}\} \]
- let
 \[\phi(x) = \begin{cases}
 1, & x = \text{Stage I} \\
 2, & x = \text{Stage II} \\
 3, & x = \text{Stage III} \\
 4, & x = \text{Stage IV}
 \end{cases} \]
- default encoding
Ordinal values: real encoding

- \(\mathcal{X} = \{ \text{Stage I, Stage II, Stage III, Stage IV} \} \)
- \(\mathcal{Y} = \mathbf{R} \), number of years lived after diagnosis
- use real encoding \(\phi \) to transform ordinal data
- fit linear model with offset to predict \(y \) as \(w\phi(x) + b \)

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.
Ordinal values: real encoding

- $\mathcal{X} = \{\text{Stage I, Stage II, Stage III, Stage IV}\}$
- $\mathcal{Y} = \mathbb{R}$, number of years lived after diagnosis
- use real encoding ϕ to transform ordinal data
- fit linear model with offset to predict y as $w\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

Q: What is w? b?
Ordinal values: real encoding

- \(\mathcal{X} = \{ \text{Stage I}, \text{Stage II}, \text{Stage III}, \text{Stage IV} \} \)
- \(\mathcal{Y} = \mathbb{R} \), number of years lived after diagnosis
- Use real encoding \(\phi \) to transform ordinal data
- Fit linear model with offset to predict \(y \) as \(w \phi(x) + b \)

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

Q: What is \(w \) \(b \)?

A. \(b = 6, \ w = -2 \)
B. \(b = 2, \ w = 0 \)
C. \(b = 6, \ w = 2 \)
D. \(b = 0, \ w = -2 \)
Ordinal values: real encoding

- $\mathcal{X} = \{\text{Stage I, Stage II, Stage III, Stage IV}\}$
- $\mathcal{Y} = \mathbb{R}$, number of years lived after diagnosis
- use real encoding ϕ to transform ordinal data
- fit linear model with offset to predict y as $w\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years: $b = 6$, $w = -2$. How long does the model predict a person with Stage IV cancer will survive?

Q: A. 6 years B. 2 years C. 0 years D. -2 years
Ordinal values: real encoding

- $\mathcal{X} = \{\text{Stage I, Stage II, Stage III, Stage IV}\}$
- $\mathcal{Y} = \mathbb{R}$, number of years lived after diagnosis
- Use real encoding ϕ to transform ordinal data
- Fit linear model with offset to predict y as $w\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years: $b = 6$, $w = -2$.

Q: How long does the model predict a person with Stage IV cancer will survive?
Ordinal values: real encoding

- $\mathcal{X} = \{\text{Stage I, Stage II, Stage III, Stage IV}\}$
- $\mathcal{Y} = \mathbb{R}$, number of years lived after diagnosis
- use real encoding ϕ to transform ordinal data
- fit linear model with offset to predict y as $w\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years: $b = 6$, $w = -2$.

Q: How long does the model predict a person with Stage IV cancer will survive?

A. 6 years
B. 2 years
C. 0 years
D. -2 years
Ordinal values: boolean encoding

- ordinal data: e.g.,
 \(\mathcal{X} = \{\text{Stage I}, \text{Stage II}, \text{Stage III}, \text{Stage IV}\} \)

- let

 \(\phi(x) = [\mathbb{1}(x \geq \text{Stage II}), \mathbb{1}(x \geq \text{Stage III}), \mathbb{1}(x \geq \text{Stage IV})] \)
Ordinal values: boolean encoding

- $\mathcal{X} = \{\text{Stage I}, \text{Stage II}, \text{Stage III}, \text{Stage IV}\}$
- $\mathcal{Y} = \mathbb{R}$, number of years lived after diagnosis
- define transformation $\phi : \mathcal{X} \to \mathbb{R}$ as
 \[
 \phi(x) = \begin{cases}
 1 & (x \geq \text{Stage II}) \\
 1 & (x \geq \text{Stage III}) \\
 1 & (x \geq \text{Stage IV})
 \end{cases}
 \]
- fit linear model with offset to predict y as $w^\top \phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.
Ordinal values: boolean encoding

- $\mathcal{X} = \{\text{Stage I, Stage II, Stage III, Stage IV}\}$
- $\mathcal{Y} = \mathbb{R}$, number of years lived after diagnosis
- define transformation $\phi : \mathcal{X} \rightarrow \mathbb{R}$ as
 \[
 \phi(x) = [\mathbb{1}(x \geq \text{Stage II}), \mathbb{1}(x \geq \text{Stage III}), \mathbb{1}(x \geq \text{Stage IV})]
 \]
- fit linear model with offset to predict y as $w^T \phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

Q: What is w? b?
Ordinal values: boolean encoding

- \(\mathcal{X} = \{\text{Stage I, Stage II, Stage III, Stage IV}\} \)
- \(\mathcal{Y} = \mathbb{R} \), number of years lived after diagnosis
- define transformation \(\phi : \mathcal{X} \rightarrow \mathbb{R} \) as
 \[
 \phi(x) = \begin{cases}
 1 & (x \geq \text{Stage II}) \\
 1 & (x \geq \text{Stage III}) \\
 1 & (x \geq \text{Stage IV})
 \end{cases}
 \]
- fit linear model with offset to predict \(y \) as \(w^\top \phi(x) + b \)

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

Q: What is \(w \)? \(b \)?

A: \(b = 4 \), \(w_1 = -2 \), \(w_2 \) and \(w_3 \) not determined
Ordinal values: boolean encoding

- $\mathcal{X} = \{\text{Stage I, Stage II, Stage III, Stage IV}\}$
- $\mathcal{Y} = \mathbb{R}$, number of years lived after diagnosis
- define transformation $\phi : \mathcal{X} \rightarrow \mathbb{R}$ as

$$\phi(x) = [\mathbb{1}(x \geq \text{Stage II}), \mathbb{1}(x \geq \text{Stage III}), \mathbb{1}(x \geq \text{Stage IV})]$$

- fit linear model with offset to predict y as $w^T \phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

Q: What is w? b?

A: $b = 4$, $w_1 = -2$, w_2 and w_3 not determined

Q: How long does the model predict a person with Stage IV cancer will survive?

A: can't say without more information
Ordinal values: boolean encoding

- \(\mathcal{X} = \{ \text{Stage I, Stage II, Stage III, Stage IV} \} \)
- \(\mathcal{Y} = \mathbb{R} \), number of years lived after diagnosis
- Define transformation \(\phi : \mathcal{X} \rightarrow \mathbb{R} \) as
 \[
 \phi(x) = [\mathbb{1}(x \geq \text{Stage II}), \mathbb{1}(x \geq \text{Stage III}), \mathbb{1}(x \geq \text{Stage IV})]
 \]
- Fit linear model with offset to predict \(y \) as \(w^\top \phi(x) + b \)

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

Q: What is \(w \)? \(b \)?

A: \(b = 4 \), \(w_1 = -2 \), \(w_2 \) and \(w_3 \) not determined

Q: How long does the model predict a person with Stage IV cancer will survive?

A: Can’t say without more information
$\mathcal{X} = \text{sentences, documents, tweets, \ldots}$

- **bag of words** model (one-hot encoding):
 - pick set of words $\{w_1, \ldots, w_d\}$
 - $\phi(x) = [\mathbb{1}(x \text{ contains } w_1), \ldots, \mathbb{1}(x \text{ contains } w_d)]$
 - ignores order of words in sentence
$\mathcal{X} = \text{sentences, documents, tweets, ...}$

- **bag of words** model (one-hot encoding):
 - pick set of words $\{w_1, \ldots, w_d\}$
 - $\phi(x) = [\mathbb{1}(x \text{ contains } w_1), \ldots, \mathbb{1}(x \text{ contains } w_d)]$
 - ignores order of words in sentence

- **pre-trained neural networks**:
 - sentiment analysis: https://medium.com/@b.terryjack/nlp-pre-trained-sentiment-analysis-1eb52a9d742c
 - Universal Sentence Encoder (USE) embedding: https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/semantic_similarity_with_tf_hub_universal_encoder.ipynb
 - lots of others: https://modelzoo.co/
Neural networks: whirlwind primer

\[\text{NN}(x) = \sigma(W_1\sigma(W_2 \cdots \sigma(W_\ell x)))) \]

- \(\sigma \) is a nonlinearity applied elementwise to a vector, e.g.
 - ReLU: \(\sigma(x) = \max(x, 0) \)
 - sigmoid: \(\sigma(x) = \log(1 + \exp(x)) \)
- each \(W \) is a matrix
- trained on very large datasets, e.g., Wikipedia, YouTube
Why not use deep learning?

Common carbon footprint benchmarks

<table>
<thead>
<tr>
<th>Description</th>
<th>CO2 Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roundtrip flight b/w NY and SF (1 passenger)</td>
<td>1,984</td>
</tr>
<tr>
<td>Human life (avg. 1 year)</td>
<td>11,023</td>
</tr>
<tr>
<td>American life (avg. 1 year)</td>
<td>36,156</td>
</tr>
<tr>
<td>US car including fuel (avg. 1 lifetime)</td>
<td>126,000</td>
</tr>
<tr>
<td>Transformer (213M parameters) w/ neural architecture search</td>
<td>626,155</td>
</tr>
</tbody>
</table>

Chart: MIT Technology Review • Source: Strubell et al. • Created with Datawrapper

towards a solution: https://arxiv.org/abs/1907.10597
Outline

Feature engineering

Polynomial transformations

Boolean, nominal, ordinal, text, . . .

Time series
Fitting a time series

- given a time series \(x_t \in \mathbb{R}, \ t = 1, \ldots, T \)
- want to predict the value at the next time \(T + 1 \)
- input: time index \(t \) and time series \(x_{1:t} \) up to time \(t \)
- let

\[
\phi(t, x) = (x_{t-1}, x_{t-2}, \ldots, x_{t-d})
\]

(called the “lagged outcomes”)

- now \(h(x) = w^T \phi(x) = w_1 x_{t-1} + w_2 x_{t-2} + \cdots + w_d x^{t-d} \)

also called an **auto-regressive (AR) model**
Fitting a local model: local neighbors

- $\mathcal{X} = \mathbb{R}^m$
- pick a set of points $\mu_i \in \mathbb{R}^m$, $i = 1, \ldots, d$, radius $\delta \in \mathbb{R}$
- let $\phi(x) = [\mathbb{1}(\|x - \mu_1\|^2 \leq \delta), \ldots, \mathbb{1}(\|x - \mu_d\|^2 \leq \delta)]$

often, $d = n$ and $\mu_i = x_i$
Fitting a local model: 1 nearest neighbor

- $\mathcal{X} = \mathbb{R}^m$
- pick a set of points $\mu_i \in \mathbb{R}^m$, $i = 1, \ldots, d$
- let $\delta = \min(\|x - \mu_1\|^2, \ldots, \|x - \mu_d\|^2)$
- let $\phi(x) = \begin{bmatrix} \mathbb{I}(\|x - \mu_1\|^2 \leq \delta), \ldots, \mathbb{I}(\|x - \mu_d\|^2 \leq \delta) \end{bmatrix}$

often, $d = n$ and $\mu_i = x_i$
Fitting a local model: smoothing

\[X = \mathbb{R}^m \]

\[\mathrm{pick} \ \text{a set of points} \ \mu_i \in \mathbb{R}^m, \ i = 1, \ldots, d, \ \text{parameter} \ \alpha \in \mathbb{R} \]

\[\mathrm{let} \]

\[\phi(x) = (\exp(-\alpha \|x - \mu_1\|^2), \ldots, \exp(-\alpha \|x - \mu_d\|^2)) \]

\[\mathrm{often}, \ d = n \ \mathrm{and} \ \mu_i = x_i \]
Crime demo:
preprocessing: https://juliabox.com/notebooks/demos/Crime.ipynb
predicting: https://juliabox.com/notebooks/demos/Predicting%20crime.ipynb

COVID demo:
predicting: https://juliabox.com/notebooks/demos/Predicting%20COVID.ipynb
Review

- linear models are linear in the **parameters** w
- can fit many different models by picking feature mapping $\phi : \mathcal{X} \rightarrow \mathbb{R}^d$
What makes a good project?

- Clear outcome to predict
- Linear regression should do something interesting
- A data science project; not an NLP or Vision project
- New, interesting model; not a Kaggle competition