ORIE 4741: Learning with Big Messy Data

Bootstrap and MLE

Professor Udell
Operations Research and Information Engineering
Cornell

November 11, 2016
Estimate sensitivity of prediction

- suppose each \((x_i, y_i) \sim P, i = 1, \ldots, n, \text{iid}\)
- given \(D = \{(x_1, y_1), \ldots, (x_n, y_n}\}\)
- estimate model \(g_D : \mathcal{X} \rightarrow \mathcal{Y}\)
- use it to make prediction \(g_D(x)\) for new input \(x\)

Q: How sensitive is the prediction to the data set \(D\)?
Q: Can we compute a confidence interval for the prediction?
Ideal confidence intervals

for $k = 1, \ldots$

- sample new $(x^k_i, y^k_i) \sim P$, $i = 1, \ldots, n$, iid to form new \mathcal{D}_k
- estimate model $g_{\mathcal{D}_k} : \mathcal{X} \rightarrow \mathcal{Y}$
- use it to make prediction $g_{\mathcal{D}_k}(x)$ for new input x

Q: How sensitive is the prediction to the data set \mathcal{D}?
Ideal confidence intervals

for $k = 1, \ldots$

- sample new $(x^k_i, y^k_i) \sim P$, $i = 1, \ldots, n$, iid to form new D_k
- estimate model $g_{D_k} : \mathcal{X} \to \mathcal{Y}$
- use it to make prediction $g_{D_k}(x)$ for new input x

Q: How sensitive is the prediction to the data set D?
A: Look at histogram of $\{g_{D_k}(x)\}_k$

Q: Can we compute a confidence interval for the prediction?
Ideal confidence intervals

for $k = 1, \ldots$

▶ sample new $(x^k_i, y^k_i) \sim P$, $i = 1, \ldots, n$, iid to form new D_k
▶ estimate model $g_{D_k} : \mathcal{X} \to \mathcal{Y}$
▶ use it to make prediction $g_{D_k}(x)$ for new input x

Q: How sensitive is the prediction to the data set D?
A: Look at histogram of $\{g_{D_k}(x)\}_k$

Q: Can we compute a confidence interval for the prediction?
A: Look at 95% confidence bound for $\{g_{D_k}(x)\}_k$
Bootstrap: confidence with limited data

for $k = 1, \ldots$

- sample (x_i^k, y_i^k) with replacement from \mathcal{D}, $i = 1, \ldots, n$, to form \mathcal{D}_k
- estimate model $g_{\mathcal{D}_k} : \mathcal{X} \rightarrow \mathcal{Y}$
- use it to make prediction $g_{\mathcal{D}_k}(x)$ for new input x

Q: How sensitive is the prediction to the data set \mathcal{D}?
for $k = 1, \ldots$

- sample (x_i^k, y_i^k) with replacement from D, $i = 1, \ldots, n$, to form D_k
- estimate model $g_{D_k} : \mathcal{X} \rightarrow \mathcal{Y}$
- use it to make prediction $g_{D_k}(x)$ for new input x

Q: How sensitive is the prediction to the data set D?

A: Look at histogram of $\{g_{D_k}(x)\}_k$

Q: Can we compute a **confidence interval** for the prediction?
Bootstrap: confidence with limited data

for $k = 1, \ldots$

- sample (x_i^k, y_i^k) with replacement from D, $i = 1, \ldots, n$, to form D_k
- estimate model $g_{D_k} : \mathcal{X} \rightarrow \mathcal{Y}$
- use it to make prediction $g_{D_k}(x)$ for new input x

Q: How sensitive is the prediction to the data set D?
A: Look at histogram of $\{g_{D_k}(x)\}_k$

Q: Can we compute a confidence interval for the prediction?
A: Look at 95% confidence bound for $\{g_{D_k}(x)\}_k$
Bootstrap estimator for the variance

pick a function $h : \mathcal{D} \rightarrow \mathbb{R}$. We want to estimate how much h varies when applied to finite data sets from the same distribution.

- resample $\mathcal{D}_1, \ldots, \mathcal{D}_K$ from \mathcal{D}
- compute $h(\mathcal{D}_1), \ldots, h(\mathcal{D}_K)$
- estimate the mean $\hat{\mu}_h = \frac{1}{K} \sum_{k=1}^{K} h(\mathcal{D}_k)$
- estimate the variance

$$
\hat{\sigma}_h = \sqrt{\frac{1}{K} \sum_{k=1}^{K} (h(\mathcal{D}_k) - \hat{\mu}_h)^2}
$$
Demo: Bootstrap

https://github.com/ORIE4741/demos/linear.ipynb
Why does bootstrap work?

sample \((x_i^k, y_i^k)\) with replacement from \(\mathcal{D}\)

\[
P\left((x_1^1, y_1^1) = (x, y)\right) = \sum_{i=1}^{n} P(\text{picked } (x_i, y_i) \text{ from } \mathcal{D} \text{ and it was equal to } (x, y))
\]

\[
= \sum_{i=1}^{n} P(\text{picked } (x_i, y_i) \text{ from } \mathcal{D})
\]

\[
= \sum_{i=1}^{n} \frac{1}{n} P(x, y)
\]

\[
= \frac{1}{n} \sum_{i=1}^{n} P(x, y)
\]

\[
= \frac{n}{n} P(x, y)
\]

\[
= P(x, y)
\]
Why does bootstrap work?

\(\mathcal{D}_k \) each have the same distribution as \(\mathcal{D} \). So for any function \(h : \mathcal{D} \rightarrow \mathbb{R} \),

\[
\mathbb{E}_\mathcal{D} \frac{1}{K} \sum_{k=1}^{K} h(\mathcal{D}_k) = \mathbb{E}_\mathcal{D} h(\mathcal{D})
\]
References

Probabilistic setup

- Suppose you know a function $p : \mathbb{R} \rightarrow [0, 1]$ so that
 \[P(y_i = y \mid x_i, w) = p(y; x_i, w) \]
- For example, if $y_i = w^T x_i + \varepsilon_i$, $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$, then
 \[P(y_i = y \mid x_i, w) \sim \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \]
- Likelihood of data given parameter w is
 \[L(\mathcal{D}; w) = \prod_{i=1}^{n} P(y_i = y \mid x_i, w) \]
- For example, for linear model with Gaussian error,
 \[L(\mathcal{D}; w) \sim \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \]
Maximum Likelihood Estimation (MLE)

MLE: choose \(w \) to maximize \(L(\mathcal{D}; w) \)

- **likelihood**
 \[L(\mathcal{D}; w) = \prod_{i=1}^{n} p(y_i; x_i, w) \]

- **negative log likelihood**
 \[\ell(\mathcal{D}; w) = -\log L(\mathcal{D}; w) \]

- maximize \(L(\mathcal{D}; w) \) \(\iff \) minimize \(\ell(\mathcal{D}; w) \)
Example: Maximum Likelihood Estimation (MLE)

- for linear model with Gaussian error,

\[\ell(D; w) \sim -\log \left(\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \right) \]

\[= \sum_{i=1}^{n} -\log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \right) \]

\[= \sum_{i=1}^{n} \left(\frac{1}{2} \log(2\pi\sigma^2) - \log \left(\exp \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \right) \right) \]

\[= \frac{n}{2} \log(2\pi\sigma^2) + \sum_{i=1}^{n} \frac{1}{2\sigma^2} (y_i - w^T x_i)^2 \]

\[= \frac{n}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - w^T x_i)^2 \]

- so maximize \(L(D; w) \iff \minimize \sum_{i=1}^{n} (y_i - w^T x_i)^2 \)
what if I have beliefs about what w should be before I begin?

- w should be small
- w should be sparse
- w should be nonnegative

idea: impose **prior** on w to specify

$$\mathbb{P}(w)$$

before seeing any data
Maximum-a-posteriori estimation

after I see data, compute posterior probability

$$P(D; w) = P(D | w) P(w)$$

maximum a posteriori (MAP estimation): choose w to maximize posterior probability
Maximum-a-posteriori estimation

after I see data, compute posterior probability

$$P(D; w) = P(D \mid w) P(w)$$

maximum a posteriori (MAP estimation): choose w to maximize posterior probability

n.b. this is **not** what a true Bayesian would do
(see, e.g., Bishop, Pattern Recognition and Machine Learning)
Ridge regression: interpretation as MAP estimator

- Prior probability of model $w \sim \mathcal{N}(0, I_d)$
- Noise $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$, $i = 1, \ldots, n$
- Response $y_i = w^T x_i + \epsilon_i$, $i = 1, \ldots, n$

$$
P(D; w) = P(D \mid w) P(w)
\sim \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(\frac{-(y_i - w^T x_i)^2}{2\sigma^2} \right) \prod_{i=1}^{d} \frac{1}{\sqrt{2\pi}} \exp \left(\frac{-w_i^2}{2} \right)
= (2\pi\sigma^2)^{-\frac{n}{2}} \prod_{i=1}^{n} \left(\exp \left(\frac{-(y_i - w^T x_i)^2}{2\sigma^2} \right) \right) (2\pi)^{-\frac{d}{2}} \prod_{i=1}^{d} \left(\exp \left(\frac{-w_i^2}{2} \right) \right)
\ell(D; w) = -\log (P(D; w))
= \frac{n}{2} \log(2\pi\sigma^2) + \frac{d}{2} \log(2\pi) + \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \frac{1}{2} \sum_{i=1}^{d} w_i^2$$
Ridge regression: interpretation as MAP estimator

- prior probability of model $w \sim \mathcal{N}(0, I_d)$
- noise $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$, $i = 1, \ldots, n$
- response $y_i = w^T x_i + \epsilon_i$, $i = 1, \ldots, n$

\[
P(D; w) = P(D | w) \ P(w)
\]

\[
\sim \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(y_i - w^T x_i)^2}{2\sigma^2}\right) \prod_{i=1}^{d} \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-w_i^2}{2}\right)
\]

\[
= (2\pi\sigma^2)^{-\frac{n}{2}} \prod_{i=1}^{n} \left(\exp\left(\frac{-(y_i - w^T x_i)^2}{2\sigma^2}\right)\right) (2\pi)^{-\frac{d}{2}} \prod_{i=1}^{d} \left(\exp\left(\frac{-w_i^2}{2}\right)\right)
\]

\[
\ell(D; w) = -\log(P(D; w))
\]

\[
= \frac{n}{2} \log(2\pi\sigma^2) + \frac{d}{2} \log(2\pi) + \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \frac{1}{2} \sum_{i=1}^{d} w_i^2
\]

... aha! and we have **ridge regression** with $\lambda = \sigma^2$