Homework 3: Hoeffding Bound

Due: 10/14/16

1. **Exit polling.** Recall the exit polling example from class: Define μ to be the probability that a voter will vote for Clinton in 2016. Suppose that we poll n voters each at p different polling places. Let

$$z_{i,j} = \begin{cases}
1 & \text{if the } i\text{-th voter at location } j \text{ voted for Clinton} \\
0 & \text{otherwise}
\end{cases}$$

Let $\nu_j = \frac{1}{n} \sum_{i=1}^{n} z_{i,j}$, the sample mean at polling location j.

The probability of obtaining k votes for Clinton at a given location is given by the binomial distribution:

$$P[k|n, \mu] = \binom{n}{k} \mu^k (1 - \mu)^{n-k}$$

(a) Assume the sample size $n = 10$ at each polling location. If all the voters have $\mu = 0.05$ compute the probability that at least one polling location will have $\nu_j = 0$ for the case of $p = 1$, $p = 1000$, and $p = 1,000,000$. Repeat for $\mu = 0.8$.

(b) For the case $n = 6$ and $p = 2$ with $\mu = 0.5$ for both locations, plot the probability

$$P[\max_{j} |\nu_j - \mu| > \epsilon]$$

for $\epsilon \in [0,1]$ (the max is over polling locations). On the same plot show the bound that would be obtained using the Hoeffding Inequality. Remember that for a single location, the Hoeffding bound is

$$P[|\nu - \mu| > \epsilon] \leq 2e^{-2n\epsilon^2}$$